Abstract

Photocurrent generation in low-temperature-grown GaAs (LT-GaAs) has been significantly improved by growing a thin AlAs isolation layer between the LT-GaAs layer and semi-insulating (SI)-GaAs substrate. The AlAs layer allows greater arsenic incorporation into the LT-GaAs layer, prevents current diffusion into the GaAs substrate, and provides optical back-reflection that enhances below bandgap terahertz generation. Our plasmon-enhanced LT-GaAs/AlAs photoconductive antennas provide 4.5 THz bandwidth and 75 dB signal-to-noise ratio (SNR) under 50 mW of 1570 nm excitation, whereas the structure without the AlAs layer gives 3 THz bandwidth, 65 dB SNR for the same conditions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Free-space terahertz radiation from a LT-GaAs-on-quartz large-area photoconductive emitter

David R. Bacon, Andrew D. Burnett, Matthew Swithenbank, Christopher Russell, Lianhe Li, Christopher D. Wood, John Cunningham, Edmund H. Linfield, A. Giles Davies, Paul Dean, and Joshua R. Freeman
Opt. Express 24(23) 26986-26997 (2016)

Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas

Tze-An Liu, Masahiko Tani, Makoto Nakajima, Masanori Hangyo, Kiyomi Sakai, Shin-ichi Nakashima, and Ci-Ling Pan
Opt. Express 12(13) 2954-2959 (2004)

Next generation 1.5 µm terahertz antennas: 
mesa-structuring of 
InGaAs/InAlAs photoconductive layers

H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius
Opt. Express 18(3) 2296-2301 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Orenstein and J. S. Dodge, “Terahertz time-domain spectroscopy of transient metallic and superconducting states,” Phys. Rev. B 92(13), 134507 (2015).
    [Crossref]
  2. H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
    [Crossref]
  3. A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionytė, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 μm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
    [Crossref]
  4. N. Q. Vinh, M. S. Sherwin, S. J. Allen, D. K. George, A. J. Rahmani, and K. W. Plaxco, “High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water,” J. Chem. Phys. 142(16), 164502 (2015).
    [Crossref] [PubMed]
  5. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  6. R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
    [Crossref]
  7. P. Y. Han and X. C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12(11), 1747–1756 (2001).
    [Crossref]
  8. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006 (1990).
    [Crossref]
  9. S. F. Busch, G. E. Town, M. Scheller, and M. Koch, “Focus free terahertz reflection imaging and tomography with bessel beams,” J. Infrared Millim. Terahertz Waves 36(3), 318–326 (2015).
    [Crossref]
  10. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]
  11. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jordens, T. Hochrein, and M. Koch, “Terahertz imaging: Applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [Crossref] [PubMed]
  12. I. Kasalynas, R. Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs Bow-Tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
    [Crossref]
  13. K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
    [Crossref] [PubMed]
  14. F. A. Hegmann, “Nanoscale imaging with terahertz scanning tunneling microscopy,” Advanced Photonics 2016, SeTu3E.2 (2016).
    [Crossref]
  15. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  16. M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz spectroscopy for the assessment of burn injuries in vivo,” J. Biomed. Opt. 18(7), 077004 (2013).
    [Crossref] [PubMed]
  17. N. N. Zinov'ev, A. F. Fitzgerald, S. M. Strafford, D. J. Wood, F. A. Carmichael, R. E. Miles, M. A. Smith, and J. M. Chamberlain, “Identification of tooth decay using terahertz imaging and spectroscopy,” Infrared and Millimeter Waves, 13–14 (2002).
    [Crossref]
  18. B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
    [Crossref] [PubMed]
  19. S. B. Kang, D. C. Chung, S.-J. Kim, J.-K. Chung, S.-Y. Park, K.-C. Kim, and M. H. Kwak, “Terahertz characterization of Y2O3-added AlN ceramics,” Appl. Surf. Sci. 388, 741–745 (2016).
    [Crossref]
  20. T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68(1), 61–68 (2014).
    [Crossref]
  21. S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz spectroscopy of the bending vibrations of acetylene 12C2H2,” Astrophys. J. 705(1), 786–790 (2009).
    [Crossref]
  22. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  23. N. Horiuchi, “Terahertz technology: Endless applications,” Nat. Photonics 4(3), 140 (2010).
    [Crossref]
  24. N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
    [Crossref] [PubMed]
  25. A. A. Dubinov, A. Bylinkin, V. Y. Aleshkin, V. Ryzhii, T. Otsuji, and D. Svintsov, “Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-layer structure,” Opt. Express 24(26), 29603–29612 (2016).
    [Crossref] [PubMed]
  26. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]
  27. Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  28. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
    [Crossref]
  29. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
    [Crossref]
  30. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
    [Crossref]
  31. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
    [Crossref]
  32. F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
    [Crossref]
  33. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
    [Crossref] [PubMed]
  34. A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
    [Crossref]
  35. D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Millim. Terahertz Waves 32(2), 225–232 (2011).
    [Crossref]
  36. B. Globisch, R. J. B. Dietz, S. Nellen, T. Göbel, and M. Schell, “Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance,” AIP Adv. 6(12), 125011 (2016).
    [Crossref]
  37. B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
    [Crossref]
  38. M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
    [Crossref] [PubMed]
  39. I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55,” IEEE Trans. THz Sci. Technol. 2(6), 617–622 (2012).
  40. H. Roehle, R. J. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
    [Crossref] [PubMed]
  41. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
    [Crossref]
  42. R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55‐μm photoresponses in low‐temperature‐grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65(14), 1790–1792 (1994).
    [Crossref]
  43. C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett. 85(21), 4965–4967 (2004).
    [Crossref]
  44. J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
    [Crossref]
  45. F. Fehsaraki, A. Jooshesh, V. Bahrami-Yekta, T. E. D. T. Tiedje, and R. Gordon, “Plasmonic anti-reflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
    [Crossref]
  46. A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
    [Crossref] [PubMed]
  47. L. L. Chang and A. Koma, “Interdiffusion between GaAs and AlAs,” Appl. Phys. Lett. 29(3), 138–141 (1976).
    [Crossref]
  48. J. P. Leburton, K. Hess, N. Holonyak, J. J. Coleman, and M. Camras, “Index of refraction of AlAs‐GaAs superlattices,” J. Appl. Phys. 54(7), 4230–4231 (1983).
    [Crossref]
  49. D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular‐beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A 6(3), 1327–1332 (1988).
    [Crossref]
  50. M. Giehler, J. Herfort, W. Ulrici, L. Däweritz, and K. H. Ploog, “Optical properties of low-temperature grown GaAs on bragg reflectors,” J. Appl. Phys. 92(6), 2974–2976 (2002).
    [Crossref]
  51. X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
    [Crossref]
  52. D. Gammon, B. V. Shanabrook, and D. S. Katzer, “Interfaces in GaAs/AlAs quantum well structures,” Appl. Phys. Lett. 57(25), 2710–2712 (1990).
    [Crossref]
  53. D. E. Wohlert, K. L. Chang, H. C. Lin, K. C. Hsieh, and K. Y. Cheng, “Improvement of AlAs-GaAs interface roughness grown with high as overpressures,” J. Vac. Sci. Technol. B 18(3), 1590 (2000).
    [Crossref]
  54. M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 ev,” Phys. Rev. 127(3), 768–773 (1962).
    [Crossref]
  55. S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
    [Crossref]
  56. K. M. Yu, M. Kaminska, and Z. Liliental Weber, “Characterization of GaAs layers grown by low temperature molecular beam epitaxy using ion beam techniques,” J. Appl. Phys. 72(7), 2850–2856 (1992).
    [Crossref]
  57. B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
    [Crossref]
  58. A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992–28001 (2014).
    [Crossref] [PubMed]
  59. K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
    [Crossref]
  60. N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
    [Crossref]

2017 (1)

F. Fehsaraki, A. Jooshesh, V. Bahrami-Yekta, T. E. D. T. Tiedje, and R. Gordon, “Plasmonic anti-reflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

2016 (5)

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionytė, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 μm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

S. B. Kang, D. C. Chung, S.-J. Kim, J.-K. Chung, S.-Y. Park, K.-C. Kim, and M. H. Kwak, “Terahertz characterization of Y2O3-added AlN ceramics,” Appl. Surf. Sci. 388, 741–745 (2016).
[Crossref]

N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
[Crossref] [PubMed]

A. A. Dubinov, A. Bylinkin, V. Y. Aleshkin, V. Ryzhii, T. Otsuji, and D. Svintsov, “Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-layer structure,” Opt. Express 24(26), 29603–29612 (2016).
[Crossref] [PubMed]

B. Globisch, R. J. B. Dietz, S. Nellen, T. Göbel, and M. Schell, “Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance,” AIP Adv. 6(12), 125011 (2016).
[Crossref]

2015 (6)

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

N. Q. Vinh, M. S. Sherwin, S. J. Allen, D. K. George, A. J. Rahmani, and K. W. Plaxco, “High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water,” J. Chem. Phys. 142(16), 164502 (2015).
[Crossref] [PubMed]

J. Orenstein and J. S. Dodge, “Terahertz time-domain spectroscopy of transient metallic and superconducting states,” Phys. Rev. B 92(13), 134507 (2015).
[Crossref]

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

S. F. Busch, G. E. Town, M. Scheller, and M. Koch, “Focus free terahertz reflection imaging and tomography with bessel beams,” J. Infrared Millim. Terahertz Waves 36(3), 318–326 (2015).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

2014 (6)

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992–28001 (2014).
[Crossref] [PubMed]

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68(1), 61–68 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

2013 (5)

M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

I. Kasalynas, R. Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs Bow-Tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz spectroscopy for the assessment of burn injuries in vivo,” J. Biomed. Opt. 18(7), 077004 (2013).
[Crossref] [PubMed]

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

2012 (2)

K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, “Scanning laser terahertz near-field imaging system,” Opt. Express 20(12), 12959–12965 (2012).
[Crossref] [PubMed]

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55,” IEEE Trans. THz Sci. Technol. 2(6), 617–622 (2012).

2011 (2)

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Millim. Terahertz Waves 32(2), 225–232 (2011).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

2010 (5)

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
[Crossref]

H. Roehle, R. J. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
[Crossref] [PubMed]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jordens, T. Hochrein, and M. Koch, “Terahertz imaging: Applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

N. Horiuchi, “Terahertz technology: Endless applications,” Nat. Photonics 4(3), 140 (2010).
[Crossref]

2009 (1)

S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz spectroscopy of the bending vibrations of acetylene 12C2H2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]

2008 (2)

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

2005 (3)

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

2004 (1)

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett. 85(21), 4965–4967 (2004).
[Crossref]

2003 (1)

2002 (2)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref] [PubMed]

M. Giehler, J. Herfort, W. Ulrici, L. Däweritz, and K. H. Ploog, “Optical properties of low-temperature grown GaAs on bragg reflectors,” J. Appl. Phys. 92(6), 2974–2976 (2002).
[Crossref]

2001 (1)

P. Y. Han and X. C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12(11), 1747–1756 (2001).
[Crossref]

2000 (1)

D. E. Wohlert, K. L. Chang, H. C. Lin, K. C. Hsieh, and K. Y. Cheng, “Improvement of AlAs-GaAs interface roughness grown with high as overpressures,” J. Vac. Sci. Technol. B 18(3), 1590 (2000).
[Crossref]

1996 (2)

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
[Crossref]

1995 (1)

1994 (1)

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55‐μm photoresponses in low‐temperature‐grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65(14), 1790–1792 (1994).
[Crossref]

1993 (1)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[Crossref]

1992 (2)

K. M. Yu, M. Kaminska, and Z. Liliental Weber, “Characterization of GaAs layers grown by low temperature molecular beam epitaxy using ion beam techniques,” J. Appl. Phys. 72(7), 2850–2856 (1992).
[Crossref]

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
[Crossref]

1990 (2)

D. Gammon, B. V. Shanabrook, and D. S. Katzer, “Interfaces in GaAs/AlAs quantum well structures,” Appl. Phys. Lett. 57(25), 2710–2712 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006 (1990).
[Crossref]

1988 (1)

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular‐beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A 6(3), 1327–1332 (1988).
[Crossref]

1983 (1)

J. P. Leburton, K. Hess, N. Holonyak, J. J. Coleman, and M. Camras, “Index of refraction of AlAs‐GaAs superlattices,” J. Appl. Phys. 54(7), 4230–4231 (1983).
[Crossref]

1980 (1)

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

1976 (1)

L. L. Chang and A. Koma, “Interdiffusion between GaAs and AlAs,” Appl. Phys. Lett. 29(3), 138–141 (1976).
[Crossref]

1962 (1)

M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 ev,” Phys. Rev. 127(3), 768–773 (1962).
[Crossref]

Aleshkin, V. Y.

Allen, S. J.

N. Q. Vinh, M. S. Sherwin, S. J. Allen, D. K. George, A. J. Rahmani, and K. W. Plaxco, “High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water,” J. Chem. Phys. 142(16), 164502 (2015).
[Crossref] [PubMed]

Arbab, M. H.

M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz spectroscopy for the assessment of burn injuries in vivo,” J. Biomed. Opt. 18(7), 077004 (2013).
[Crossref] [PubMed]

Aspnes, D. E.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular‐beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A 6(3), 1327–1332 (1988).
[Crossref]

Averitt, R. D.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Bahrami-Yekta, V.

F. Fehsaraki, A. Jooshesh, V. Bahrami-Yekta, T. E. D. T. Tiedje, and R. Gordon, “Plasmonic anti-reflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992–28001 (2014).
[Crossref] [PubMed]

Baker, C.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett. 85(21), 4965–4967 (2004).
[Crossref]

Beere, H. E.

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

Beigang, R.

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

Berry, C. W.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Boden, E. P.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
[Crossref]

Böttcher, J.

Bradley, I. V.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett. 85(21), 4965–4967 (2004).
[Crossref]

Brandt, N. C.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Brown, E. R.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[Crossref]

Busch, S. F.

S. F. Busch, G. E. Town, M. Scheller, and M. Koch, “Focus free terahertz reflection imaging and tomography with bessel beams,” J. Infrared Millim. Terahertz Waves 36(3), 318–326 (2015).
[Crossref]

Bylinkin, A.

Camras, M.

J. P. Leburton, K. Hess, N. Holonyak, J. J. Coleman, and M. Camras, “Index of refraction of AlAs‐GaAs superlattices,” J. Appl. Phys. 54(7), 4230–4231 (1983).
[Crossref]

Chang, K. L.

D. E. Wohlert, K. L. Chang, H. C. Lin, K. C. Hsieh, and K. Y. Cheng, “Improvement of AlAs-GaAs interface roughness grown with high as overpressures,” J. Vac. Sci. Technol. B 18(3), 1590 (2000).
[Crossref]

Chang, L. L.

L. L. Chang and A. Koma, “Interdiffusion between GaAs and AlAs,” Appl. Phys. Lett. 29(3), 138–141 (1976).
[Crossref]

Chen, A.

M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz spectroscopy for the assessment of burn injuries in vivo,” J. Biomed. Opt. 18(7), 077004 (2013).
[Crossref] [PubMed]

Cheng, K. Y.

D. E. Wohlert, K. L. Chang, H. C. Lin, K. C. Hsieh, and K. Y. Cheng, “Improvement of AlAs-GaAs interface roughness grown with high as overpressures,” J. Vac. Sci. Technol. B 18(3), 1590 (2000).
[Crossref]

Chung, D. C.

S. B. Kang, D. C. Chung, S.-J. Kim, J.-K. Chung, S.-Y. Park, K.-C. Kim, and M. H. Kwak, “Terahertz characterization of Y2O3-added AlN ceramics,” Appl. Surf. Sci. 388, 741–745 (2016).
[Crossref]

Chung, J.-K.

S. B. Kang, D. C. Chung, S.-J. Kim, J.-K. Chung, S.-Y. Park, K.-C. Kim, and M. H. Kwak, “Terahertz characterization of Y2O3-added AlN ceramics,” Appl. Surf. Sci. 388, 741–745 (2016).
[Crossref]

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Coleman, J. J.

J. P. Leburton, K. Hess, N. Holonyak, J. J. Coleman, and M. Camras, “Index of refraction of AlAs‐GaAs superlattices,” J. Appl. Phys. 54(7), 4230–4231 (1983).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Dankowski, S. U.

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Darcie, T. E.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992–28001 (2014).
[Crossref] [PubMed]

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

Darmo, J.

Davies, A. G.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Däweritz, L.

M. Giehler, J. Herfort, W. Ulrici, L. Däweritz, and K. H. Ploog, “Optical properties of low-temperature grown GaAs on bragg reflectors,” J. Appl. Phys. 92(6), 2974–2976 (2002).
[Crossref]

Deninger, A.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Millim. Terahertz Waves 32(2), 225–232 (2011).
[Crossref]

Dickey, T. C.

M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz spectroscopy for the assessment of burn injuries in vivo,” J. Biomed. Opt. 18(7), 077004 (2013).
[Crossref] [PubMed]

Dietz, R.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Dietz, R. J.

M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

H. Roehle, R. J. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
[Crossref] [PubMed]

Dietz, R. J. B.

B. Globisch, R. J. B. Dietz, S. Nellen, T. Göbel, and M. Schell, “Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance,” AIP Adv. 6(12), 125011 (2016).
[Crossref]

B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[Crossref]

Dodge, J. S.

J. Orenstein and J. S. Dodge, “Terahertz time-domain spectroscopy of transient metallic and superconducting states,” Phys. Rev. B 92(13), 134507 (2015).
[Crossref]

Döhler, G. H.

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Driscoll, D. C.

A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
[Crossref]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Drouin, B. J.

S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz spectroscopy of the bending vibrations of acetylene 12C2H2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]

Dubinov, A. A.

Evans, M. J.

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett. 85(21), 4965–4967 (2004).
[Crossref]

Exter, M.

Fan, K.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Fan, Y.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Fattinger, C.

Faulks, R.

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

Fehsaraki, F.

F. Fehsaraki, A. Jooshesh, V. Bahrami-Yekta, T. E. D. T. Tiedje, and R. Gordon, “Plasmonic anti-reflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

Fischer, B. M.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref] [PubMed]

Fleischer, S.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Florez, L. T.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular‐beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A 6(3), 1327–1332 (1988).
[Crossref]

Gammon, D.

D. Gammon, B. V. Shanabrook, and D. S. Katzer, “Interfaces in GaAs/AlAs quantum well structures,” Appl. Phys. Lett. 57(25), 2710–2712 (1990).
[Crossref]

Geižutis, A.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionytė, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 μm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

George, D. K.

N. Q. Vinh, M. S. Sherwin, S. J. Allen, D. K. George, A. J. Rahmani, and K. W. Plaxco, “High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water,” J. Chem. Phys. 142(16), 164502 (2015).
[Crossref] [PubMed]

Giehler, M.

M. Giehler, J. Herfort, W. Ulrici, L. Däweritz, and K. H. Ploog, “Optical properties of low-temperature grown GaAs on bragg reflectors,” J. Appl. Phys. 92(6), 2974–2976 (2002).
[Crossref]

Globisch, B.

B. Globisch, R. J. B. Dietz, S. Nellen, T. Göbel, and M. Schell, “Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance,” AIP Adv. 6(12), 125011 (2016).
[Crossref]

B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[Crossref]

Göbel, T.

B. Globisch, R. J. B. Dietz, S. Nellen, T. Göbel, and M. Schell, “Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance,” AIP Adv. 6(12), 125011 (2016).
[Crossref]

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[Crossref]

Gordon, R.

F. Fehsaraki, A. Jooshesh, V. Bahrami-Yekta, T. E. D. T. Tiedje, and R. Gordon, “Plasmonic anti-reflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992–28001 (2014).
[Crossref] [PubMed]

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

Gossard, A. C.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
[Crossref]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Gregory, I. S.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett. 85(21), 4965–4967 (2004).
[Crossref]

Grischkowsky, D.

Hall, G.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Han, P. Y.

P. Y. Han and X. C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12(11), 1747–1756 (2001).
[Crossref]

Hanson, M. P.

A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
[Crossref]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Harbison, J. P.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular‐beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A 6(3), 1327–1332 (1988).
[Crossref]

Hartley, I. D.

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68(1), 61–68 (2014).
[Crossref]

Hashemi, M. R.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Helm, M.

M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Hensel, H. J.

Herfort, J.

M. Giehler, J. Herfort, W. Ulrici, L. Däweritz, and K. H. Ploog, “Optical properties of low-temperature grown GaAs on bragg reflectors,” J. Appl. Phys. 92(6), 2974–2976 (2002).
[Crossref]

Heshmat, B.

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

Hess, K.

J. P. Leburton, K. Hess, N. Holonyak, J. J. Coleman, and M. Camras, “Index of refraction of AlAs‐GaAs superlattices,” J. Appl. Phys. 54(7), 4230–4231 (1983).
[Crossref]

Hochrein, T.

Holonyak, N.

J. P. Leburton, K. Hess, N. Holonyak, J. J. Coleman, and M. Camras, “Index of refraction of AlAs‐GaAs superlattices,” J. Appl. Phys. 54(7), 4230–4231 (1983).
[Crossref]

Horiuchi, N.

N. Horiuchi, “Terahertz technology: Endless applications,” Nat. Photonics 4(3), 140 (2010).
[Crossref]

Hsieh, K. C.

D. E. Wohlert, K. L. Chang, H. C. Lin, K. C. Hsieh, and K. Y. Cheng, “Improvement of AlAs-GaAs interface roughness grown with high as overpressures,” J. Vac. Sci. Technol. B 18(3), 1590 (2000).
[Crossref]

Hu, B. B.

Hwang, H. Y.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Inagaki, T.

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68(1), 61–68 (2014).
[Crossref]

Inoue, H.

Iwamura, H.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55‐μm photoresponses in low‐temperature‐grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65(14), 1790–1792 (1994).
[Crossref]

Jacobsen, R. H.

Jansen, C.

Jarrahi, M.

N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
[Crossref] [PubMed]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref] [PubMed]

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
[Crossref]

Jin, Y.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
[Crossref]

Jooshesh, A.

F. Fehsaraki, A. Jooshesh, V. Bahrami-Yekta, T. E. D. T. Tiedje, and R. Gordon, “Plasmonic anti-reflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992–28001 (2014).
[Crossref] [PubMed]

Jordens, C.

Kagawa, T.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55‐μm photoresponses in low‐temperature‐grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65(14), 1790–1792 (1994).
[Crossref]

Kaminska, M.

K. M. Yu, M. Kaminska, and Z. Liliental Weber, “Characterization of GaAs layers grown by low temperature molecular beam epitaxy using ion beam techniques,” J. Appl. Phys. 72(7), 2850–2856 (1992).
[Crossref]

Kang, S. B.

S. B. Kang, D. C. Chung, S.-J. Kim, J.-K. Chung, S.-Y. Park, K.-C. Kim, and M. H. Kwak, “Terahertz characterization of Y2O3-added AlN ceramics,” Appl. Surf. Sci. 388, 741–745 (2016).
[Crossref]

Kasalynas, I.

I. Kasalynas, R. Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs Bow-Tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

Katzer, D. S.

D. Gammon, B. V. Shanabrook, and D. S. Katzer, “Interfaces in GaAs/AlAs quantum well structures,” Appl. Phys. Lett. 57(25), 2710–2712 (1990).
[Crossref]

Kawamura, Y.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55‐μm photoresponses in low‐temperature‐grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65(14), 1790–1792 (1994).
[Crossref]

Kawase, K.

Kawayama, I.

Keiding, S.

Keiding, S. R.

Keil, U. D.

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Kenney-Wallace, G.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Kiesel, P.

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Kim, K.-C.

S. B. Kang, D. C. Chung, S.-J. Kim, J.-K. Chung, S.-Y. Park, K.-C. Kim, and M. H. Kwak, “Terahertz characterization of Y2O3-added AlN ceramics,” Appl. Surf. Sci. 388, 741–745 (2016).
[Crossref]

Kim, S.-J.

S. B. Kang, D. C. Chung, S.-J. Kim, J.-K. Chung, S.-Y. Park, K.-C. Kim, and M. H. Kwak, “Terahertz characterization of Y2O3-added AlN ceramics,” Appl. Surf. Sci. 388, 741–745 (2016).
[Crossref]

Klein, M. B.

M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz spectroscopy for the assessment of burn injuries in vivo,” J. Biomed. Opt. 18(7), 077004 (2013).
[Crossref] [PubMed]

Kneissl, M.

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Knüpfer, B.

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Koch, M.

S. F. Busch, G. E. Town, M. Scheller, and M. Koch, “Focus free terahertz reflection imaging and tomography with bessel beams,” J. Infrared Millim. Terahertz Waves 36(3), 318–326 (2015).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jordens, T. Hochrein, and M. Koch, “Terahertz imaging: Applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

Koma, A.

L. L. Chang and A. Koma, “Interdiffusion between GaAs and AlAs,” Appl. Phys. Lett. 29(3), 138–141 (1976).
[Crossref]

Koschny, T.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Kostakis, I.

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55,” IEEE Trans. THz Sci. Technol. 2(6), 617–622 (2012).

Krotkus, A.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionytė, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 μm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Krumbholz, N.

Kunzel, H.

M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Künzel, H.

Kwak, M. H.

S. B. Kang, D. C. Chung, S.-J. Kim, J.-K. Chung, S.-Y. Park, K.-C. Kim, and M. H. Kwak, “Terahertz characterization of Y2O3-added AlN ceramics,” Appl. Surf. Sci. 388, 741–745 (2016).
[Crossref]

Leburton, J. P.

J. P. Leburton, K. Hess, N. Holonyak, J. J. Coleman, and M. Camras, “Index of refraction of AlAs‐GaAs superlattices,” J. Appl. Phys. 54(7), 4230–4231 (1983).
[Crossref]

Lewis, R. B.

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

Liliental Weber, Z.

K. M. Yu, M. Kaminska, and Z. Liliental Weber, “Characterization of GaAs layers grown by low temperature molecular beam epitaxy using ion beam techniques,” J. Appl. Phys. 72(7), 2850–2856 (1992).
[Crossref]

Lin, H. C.

D. E. Wohlert, K. L. Chang, H. C. Lin, K. C. Hsieh, and K. Y. Cheng, “Improvement of AlAs-GaAs interface roughness grown with high as overpressures,” J. Vac. Sci. Technol. B 18(3), 1590 (2000).
[Crossref]

Linfield, E. H.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett. 85(21), 4965–4967 (2004).
[Crossref]

Liu, M.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Lu, H.

N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
[Crossref] [PubMed]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
[Crossref]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Lu, T. M.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
[Crossref]

Ma, X. F.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
[Crossref]

Maryenko, D.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Masnadi-Shirazi, M.

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992–28001 (2014).
[Crossref] [PubMed]

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

McIntosh, K. A.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[Crossref]

Missous, M.

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55,” IEEE Trans. THz Sci. Technol. 2(6), 617–622 (2012).

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett. 85(21), 4965–4967 (2004).
[Crossref]

Mittendorff, M.

M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Mizuno, S.

Mori, Y.

Mourad, P. D.

M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz spectroscopy for the assessment of burn injuries in vivo,” J. Biomed. Opt. 18(7), 077004 (2013).
[Crossref] [PubMed]

Murakami, H.

Nellen, S.

B. Globisch, R. J. B. Dietz, S. Nellen, T. Göbel, and M. Schell, “Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance,” AIP Adv. 6(12), 125011 (2016).
[Crossref]

Nelson, K. A.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Nuss, M. C.

Ogawa, Y.

Orenstein, J.

J. Orenstein and J. S. Dodge, “Terahertz time-domain spectroscopy of transient metallic and superconducting states,” Phys. Rev. B 92(13), 134507 (2015).
[Crossref]

Ospald, F.

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
[Crossref]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Otsuji, T.

Pacebutas, V.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionytė, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 μm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Park, S.-Y.

S. B. Kang, D. C. Chung, S.-J. Kim, J.-K. Chung, S.-Y. Park, K.-C. Kim, and M. H. Kwak, “Terahertz characterization of Y2O3-added AlN ceramics,” Appl. Surf. Sci. 388, 741–745 (2016).
[Crossref]

Pearson, J. C.

S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz spectroscopy of the bending vibrations of acetylene 12C2H2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]

Pepper, M.

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

Perkins, B. G.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Peters, O.

Phelps, P. D.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
[Crossref]

Plaxco, K. W.

N. Q. Vinh, M. S. Sherwin, S. J. Allen, D. K. George, A. J. Rahmani, and K. W. Plaxco, “High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water,” J. Chem. Phys. 142(16), 164502 (2015).
[Crossref] [PubMed]

Ploog, K. H.

M. Giehler, J. Herfort, W. Ulrici, L. Däweritz, and K. H. Ploog, “Optical properties of low-temperature grown GaAs on bragg reflectors,” J. Appl. Phys. 92(6), 2974–2976 (2002).
[Crossref]

Preu, S.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Rahmani, A. J.

N. Q. Vinh, M. S. Sherwin, S. J. Allen, D. K. George, A. J. Rahmani, and K. W. Plaxco, “High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water,” J. Chem. Phys. 142(16), 164502 (2015).
[Crossref] [PubMed]

Rämer, J.-M.

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

Reid, M.

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68(1), 61–68 (2014).
[Crossref]

Rettich, F.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Rihani, S.

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

Ritchie, D. A.

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

Roehle, H.

Roggenbuck, A.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Millim. Terahertz Waves 32(2), 225–232 (2011).
[Crossref]

Ruff, M.

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Ryzhii, V.

Saeedkia, D.

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55,” IEEE Trans. THz Sci. Technol. 2(6), 617–622 (2012).

Sala, K.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Salhi, M.

Sartorius, B.

M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Millim. Terahertz Waves 32(2), 225–232 (2011).
[Crossref]

H. Roehle, R. J. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
[Crossref] [PubMed]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

Schell, M.

B. Globisch, R. J. B. Dietz, S. Nellen, T. Göbel, and M. Schell, “Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance,” AIP Adv. 6(12), 125011 (2016).
[Crossref]

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[Crossref]

H. Roehle, R. J. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
[Crossref] [PubMed]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

Scheller, M.

S. F. Busch, G. E. Town, M. Scheller, and M. Koch, “Focus free terahertz reflection imaging and tomography with bessel beams,” J. Infrared Millim. Terahertz Waves 36(3), 318–326 (2015).
[Crossref]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jordens, T. Hochrein, and M. Koch, “Terahertz imaging: Applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

Schindler, S.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Millim. Terahertz Waves 32(2), 225–232 (2011).
[Crossref]

Schlak, M.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Millim. Terahertz Waves 32(2), 225–232 (2011).
[Crossref]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

Schneider, H.

M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Schwagmann, A.

A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
[Crossref]

Serita, K.

Shanabrook, B. V.

D. Gammon, B. V. Shanabrook, and D. S. Katzer, “Interfaces in GaAs/AlAs quantum well structures,” Appl. Phys. Lett. 57(25), 2710–2712 (1990).
[Crossref]

Shen, N.-H.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Sherwin, M. S.

N. Q. Vinh, M. S. Sherwin, S. J. Allen, D. K. George, A. J. Rahmani, and K. W. Plaxco, “High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water,” J. Chem. Phys. 142(16), 164502 (2015).
[Crossref] [PubMed]

Smet, J. H.

A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
[Crossref]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Smith, F. W.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[Crossref]

Smith, L.

Sorenson, C. B.

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Soukoulis, C. M.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Stanionyte, S.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionytė, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 μm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Stanze, D.

B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[Crossref]

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Millim. Terahertz Waves 32(2), 225–232 (2011).
[Crossref]

H. Roehle, R. J. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010).
[Crossref] [PubMed]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

Sternbach, A.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Stewart, K. R.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
[Crossref]

Streb, D.

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Studna, A. A.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular‐beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A 6(3), 1327–1332 (1988).
[Crossref]

Sturge, M. D.

M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 ev,” Phys. Rev. 127(3), 768–773 (1962).
[Crossref]

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

Svintsov, D.

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Takahashi, R.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55‐μm photoresponses in low‐temperature‐grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65(14), 1790–1792 (1994).
[Crossref]

Takahashi, Y.

Tiedje, T.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T. E. Darcie, and R. Gordon, “Nanoplasmonics enhanced terahertz sources,” Opt. Express 22(23), 27992–28001 (2014).
[Crossref] [PubMed]

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

Tiedje, T. E. D. T.

F. Fehsaraki, A. Jooshesh, V. Bahrami-Yekta, T. E. D. T. Tiedje, and R. Gordon, “Plasmonic anti-reflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

Tonouchi, M.

Town, G. E.

S. F. Busch, G. E. Town, M. Scheller, and M. Koch, “Focus free terahertz reflection imaging and tomography with bessel beams,” J. Infrared Millim. Terahertz Waves 36(3), 318–326 (2015).
[Crossref]

Tribe, W. R.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett. 85(21), 4965–4967 (2004).
[Crossref]

Tsuchikawa, S.

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68(1), 61–68 (2014).
[Crossref]

Ulrici, W.

M. Giehler, J. Herfort, W. Ulrici, L. Däweritz, and K. H. Ploog, “Optical properties of low-temperature grown GaAs on bragg reflectors,” J. Appl. Phys. 92(6), 2974–2976 (2002).
[Crossref]

Urbanowicz, A.

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionytė, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 μm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Valusis, G.

I. Kasalynas, R. Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs Bow-Tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

Venckevicius, R.

I. Kasalynas, R. Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs Bow-Tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

Venghaus, H.

Verma, A. K.

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Vieweg, N.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jordens, T. Hochrein, and M. Koch, “Terahertz imaging: Applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

Vinh, N. Q.

N. Q. Vinh, M. S. Sherwin, S. J. Allen, D. K. George, A. J. Rahmani, and K. W. Plaxco, “High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water,” J. Chem. Phys. 142(16), 164502 (2015).
[Crossref] [PubMed]

von Freymann, G.

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

von Klitzing, K.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

Walther, M.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref] [PubMed]

Watanabe, Y.

Wietzke, S.

Winebrenner, D. P.

M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz spectroscopy for the assessment of burn injuries in vivo,” J. Biomed. Opt. 18(7), 077004 (2013).
[Crossref] [PubMed]

Winnerl, S.

M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Wohlert, D. E.

D. E. Wohlert, K. L. Chang, H. C. Lin, K. C. Hsieh, and K. Y. Cheng, “Improvement of AlAs-GaAs interface roughness grown with high as overpressures,” J. Vac. Sci. Technol. B 18(3), 1590 (2000).
[Crossref]

Xu, M.

M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Yakymyshyn, C. P.

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
[Crossref]

Yardimci, N. T.

N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
[Crossref] [PubMed]

Yoshimura, M.

Yu, K. M.

K. M. Yu, M. Kaminska, and Z. Liliental Weber, “Characterization of GaAs layers grown by low temperature molecular beam epitaxy using ion beam techniques,” J. Appl. Phys. 72(7), 2850–2856 (1992).
[Crossref]

Yu, S.

S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz spectroscopy of the bending vibrations of acetylene 12C2H2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]

Zhang, J.

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

Zhang, X.

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

Zhang, X. C.

P. Y. Han and X. C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12(11), 1747–1756 (2001).
[Crossref]

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
[Crossref]

Zhao, Z. Y.

A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
[Crossref]

ACS Nano (1)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

F. Fehsaraki, A. Jooshesh, V. Bahrami-Yekta, T. E. D. T. Tiedje, and R. Gordon, “Plasmonic anti-reflection coating for photoconductive terahertz generation,” ACS Photonics 4(6), 1350–1354 (2017).
[Crossref]

Adv. Opt. Mater. (1)

B. Heshmat, M. Masnadi-Shirazi, R. B. Lewis, J. Zhang, T. Tiedje, R. Gordon, and T. E. Darcie, “Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources,” Adv. Opt. Mater. 1(10), 714–719 (2013).
[Crossref]

AIP Adv. (2)

B. Globisch, R. J. B. Dietz, S. Nellen, T. Göbel, and M. Schell, “Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance,” AIP Adv. 6(12), 125011 (2016).
[Crossref]

A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionytė, and A. Krotkus, “Terahertz time-domain-spectroscopy system based on 1.55 μm fiber laser and photoconductive antennas from dilute bismides,” AIP Adv. 6(2), 025218 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (15)

R. Faulks, S. Rihani, H. E. Beere, M. J. Evans, D. A. Ritchie, and M. Pepper, “Pulsed terahertz time domain spectroscopy of vertically structured photoconductive antennas,” Appl. Phys. Lett. 96(8), 081106 (2010).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μ m ultrafast photoconductive switches based on ErAs: InGaAs,” Appl. Phys. Lett. 92(13), 131117 (2008).
[Crossref]

A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96(14), 141108 (2010).
[Crossref]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
[Crossref] [PubMed]

B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett. 104(17), 172103 (2014).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55‐μm photoresponses in low‐temperature‐grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65(14), 1790–1792 (1994).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett. 85(21), 4965–4967 (2004).
[Crossref]

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

L. L. Chang and A. Koma, “Interdiffusion between GaAs and AlAs,” Appl. Phys. Lett. 29(3), 138–141 (1976).
[Crossref]

X. C. Zhang, X. F. Ma, Y. Jin, T. M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61(26), 3080–3082 (1992).
[Crossref]

D. Gammon, B. V. Shanabrook, and D. S. Katzer, “Interfaces in GaAs/AlAs quantum well structures,” Appl. Phys. Lett. 57(25), 2710–2712 (1990).
[Crossref]

S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sorenson, and A. K. Verma, “Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs,” Appl. Phys. Lett. 68(1), 37–39 (1996).
[Crossref]

Appl. Surf. Sci. (1)

S. B. Kang, D. C. Chung, S.-J. Kim, J.-K. Chung, S.-Y. Park, K.-C. Kim, and M. H. Kwak, “Terahertz characterization of Y2O3-added AlN ceramics,” Appl. Surf. Sci. 388, 741–745 (2016).
[Crossref]

Astrophys. J. (1)

S. Yu, B. J. Drouin, and J. C. Pearson, “Terahertz spectroscopy of the bending vibrations of acetylene 12C2H2,” Astrophys. J. 705(1), 786–790 (2009).
[Crossref]

Holzforschung (1)

T. Inagaki, I. D. Hartley, S. Tsuchikawa, and M. Reid, “Prediction of oven-dry density of wood by time-domain terahertz spectroscopy,” Holzforschung 68(1), 61–68 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

IEEE Sens. J. (1)

I. Kasalynas, R. Venckevicius, and G. Valusis, “Continuous wave spectroscopic terahertz imaging with InGaAs Bow-Tie diodes at room temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

I. Kostakis, D. Saeedkia, and M. Missous, “Terahertz generation and detection using low temperature grown InGaAs-InAlAs photoconductive antennas at 1.55,” IEEE Trans. THz Sci. Technol. 2(6), 617–622 (2012).

J. Appl. Phys. (4)

J. P. Leburton, K. Hess, N. Holonyak, J. J. Coleman, and M. Camras, “Index of refraction of AlAs‐GaAs superlattices,” J. Appl. Phys. 54(7), 4230–4231 (1983).
[Crossref]

M. Giehler, J. Herfort, W. Ulrici, L. Däweritz, and K. H. Ploog, “Optical properties of low-temperature grown GaAs on bragg reflectors,” J. Appl. Phys. 92(6), 2974–2976 (2002).
[Crossref]

K. M. Yu, M. Kaminska, and Z. Liliental Weber, “Characterization of GaAs layers grown by low temperature molecular beam epitaxy using ion beam techniques,” J. Appl. Phys. 72(7), 2850–2856 (1992).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown gaas photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[Crossref]

J. Biomed. Opt. (1)

M. H. Arbab, D. P. Winebrenner, T. C. Dickey, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz spectroscopy for the assessment of burn injuries in vivo,” J. Biomed. Opt. 18(7), 077004 (2013).
[Crossref] [PubMed]

J. Chem. Phys. (1)

N. Q. Vinh, M. S. Sherwin, S. J. Allen, D. K. George, A. J. Rahmani, and K. W. Plaxco, “High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water,” J. Chem. Phys. 142(16), 164502 (2015).
[Crossref] [PubMed]

J. Infrared Millim. Terahertz Waves (3)

S. F. Busch, G. E. Town, M. Scheller, and M. Koch, “Focus free terahertz reflection imaging and tomography with bessel beams,” J. Infrared Millim. Terahertz Waves 36(3), 318–326 (2015).
[Crossref]

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Millim. Terahertz Waves 32(2), 225–232 (2011).
[Crossref]

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared Millim. Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

J. Mod. Opt. (1)

H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt, and K. A. Nelson, “A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses,” J. Mod. Opt. 62(18), 1447–1479 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. A (1)

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular‐beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A 6(3), 1327–1332 (1988).
[Crossref]

J. Vac. Sci. Technol. B (1)

D. E. Wohlert, K. L. Chang, H. C. Lin, K. C. Hsieh, and K. Y. Cheng, “Improvement of AlAs-GaAs interface roughness grown with high as overpressures,” J. Vac. Sci. Technol. B 18(3), 1590 (2000).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Meas. Sci. Technol. (1)

P. Y. Han and X. C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12(11), 1747–1756 (2001).
[Crossref]

Nano Lett. (1)

A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, “Plasmon-enhanced below bandgap photoconductive terahertz generation and detection,” Nano Lett. 15(12), 8306–8310 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

M. Mittendorff, M. Xu, R. J. Dietz, H. Kunzel, B. Sartorius, H. Schneider, M. Helm, and S. Winnerl, “Large area photoconductive terahertz emitter for 1.55 mum excitation based on an InGaAs heterostructure,” Nanotechnology 24(21), 214007 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

N. Horiuchi, “Terahertz technology: Endless applications,” Nat. Photonics 4(3), 140 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Med. Biol. (1)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[Crossref] [PubMed]

Phys. Rev. (1)

M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 ev,” Phys. Rev. 127(3), 768–773 (1962).
[Crossref]

Phys. Rev. B (1)

J. Orenstein and J. S. Dodge, “Terahertz time-domain spectroscopy of transient metallic and superconducting states,” Phys. Rev. B 92(13), 134507 (2015).
[Crossref]

Other (2)

F. A. Hegmann, “Nanoscale imaging with terahertz scanning tunneling microscopy,” Advanced Photonics 2016, SeTu3E.2 (2016).
[Crossref]

N. N. Zinov'ev, A. F. Fitzgerald, S. M. Strafford, D. J. Wood, F. A. Carmichael, R. E. Miles, M. A. Smith, and J. M. Chamberlain, “Identification of tooth decay using terahertz imaging and spectroscopy,” Infrared and Millimeter Waves, 13–14 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Free-space THz time-domain experimental setup. PPLN is Periodically Poled Lithium Niobate crystal and Bias VAC is a square wave signal generator at 1kHz. (b) Schematic side view of a PCA with LT-GaAs/AlAs material. (c) SEM image of a PE-LT-GaAs with 490 nm periodicity slit plasmonic array.
Fig. 2
Fig. 2 (a) XRD peaks separation measurement for annealed LT-GaAs samples at different temperatures. (b) Photocurrent, dark current (with 5 VDC bias), and THz current (with 20 VAC bias) of simple dipoles fabricated on a 1 µm thick LT-GaAs substrate.
Fig. 3
Fig. 3 Absorption percentage of as-grown LT-GaAs/AlAs and LT-GaAs substrates with high, medium and low As concentrations and respective thicknesses. Substrates were exposed to 1570 nm wavelength and transmitted power was normalized to the power recorded from a reference SI-GaAs.
Fig. 4
Fig. 4 THz received current (biased at 20 VDC), photocurrent and dark current (biased at 5 VDC) of PCAs with excess As of low (0.5%), med (0.58%) and high (0.66%) As concentrations. Samples with * were annealed at 550 °C for 1 minute.
Fig. 5
Fig. 5 THz spectrum response of the optimized PE-LT-GaAs/AlAs and InGaAs commercial samples. PE-LT-GaAs and PE-LT-GaAs/AlAs samples have an identical plasmonic structure whereas the commercial sample uses antireflection coating to maximize light coupling. Data obtained by averaging Fourier transforms for time domain THz pulses shown in the inset (40 scans – 90 seconds each with 30 ms integration time). Dashed lines are HITRAN water absorption lines.

Metrics