Abstract

We have inserted into an unbiased semiconductor optical amplifier (SOA) a powerful control beam, with photon energy slightly smaller than that of the band-gap of its active region, for exciting two-photon absorption and the quadratic Stark effect. For the available SOA, we estimated these phenomena generated a nonlinear absorption coefficient β= −865 cm/GW and induced an appreciable birefringence inside the amplifier waveguide, which significantly modified the polarization-state of a probe beam. Based on these effects, we have experimentally demonstrated the operation of an all-optical buffer, using an 80 Gb/s optical pulse comb, as well as an unbiased SOA, which was therefore, devoid of amplified spontaneous emission and pattern effects.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental investigation of all-optical packet-level time slot assignment using two optical buffers cascaded

Xinzhi Sheng, Zhen Feng, and Bing Li
Appl. Opt. 52(12) 2917-2922 (2013)

All-optical buffer using nonlinear polarization rotation effect of gain-transparent semiconductor optical amplifier

Yongjun Wang, Xiangjun Xin, and Chao Shang
Appl. Opt. 53(8) 1512-1517 (2014)

New time–space–time optical packet switching node based on nonlinear polarization rotation of a semiconductor optical amplifier

Wang Yongjun, Tian Qinghua, Wang Zhi, Zhu Xiaoqing, Wu Chen, Shang Chao, and Xiangjun Xin
Appl. Opt. 55(8) 1987-1995 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Liu, B. Romeira, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A wavelength tunable optical buffer based on self-pulsation in an active microring resonator,” J. Lightwave Technol. 34(14), 3466–3472 (2016).
    [Crossref]
  2. P. Gavignet, J. L. Barbey, H. Nakajima, T. Guillossou, and A. Carer, “SOA-based label extractor for optical burst switching application,” IEEE Photonics Technol. Lett. 26(22), 2240–2243 (2014).
    [Crossref]
  3. M. K. Dutta and V. K. Chaubey, “Comparative analysis of wavelength conversion and segmentation based dropping method as a contention resolution scheme in optical burst switching (OBS) network,” Procedia Eng. 30, 1089–1096 (2012).
    [Crossref]
  4. L. Jinhu, Y. Xinghuo, C. Guanrong, and Y. Wenwu, Complex Systems and Networks (Springer-Verlag, 2016), Chap. 15.
  5. G. Berrettini, G. Meloni, L. Potì, and A. Bogoni, “All-optical variable buffer based on semiconductor optical amplifier,” IEEE J. Quantum Electron. 47(4), 510–516 (2011).
    [Crossref]
  6. A. V. Dmitriev, N. A. Toropov, and M. Sumetsky, “Miniature optical delay lines and buffers,” in Proc. 18th International Conference on Transparent Optical Networks (ICTON, 2016), paper Tu.B5.4.
  7. N. Beheshti, E. Burmeister, Y. Ganjali, J. E. Bowers, D. J. Blumenthal, and N. McKeown, “Optical packet buffers for backbone internet routers,” IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010).
    [Crossref]
  8. E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
    [Crossref]
  9. I. Tomkos, M. Spyropoulou, K. Ennser, M. Köhn, and B. Mikac, Towards Digital Optical Networks: COST Action 291 Final Report (Springer Berlin Heidelberg, 2009), Chap. 5.
  10. H. Furukawa, S. Shinada, T. Miyazawa, T. Hirayama, N. Wada, and H. Harai, “Demonstration and network scalability analysis of 8-fiber-delay-line SOA-based optical buffer embedded optical packet switching,” in Proc. Optical Fiber Communications Conference (OFC, 2014), paper W2A.19.
    [Crossref]
  11. Y. J. Wang, C. Q. Wu, X. J. Xin, K. L. Yu, and X. L. Zhang, “Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers,” Chin. Phys. B 19(9), 094210 (2010).
    [Crossref]
  12. C. Tian, C. Wu, Z. Li, and N. Guo, “Dual-wavelength packets buffering in dual-loop optical buffer,” IEEE Photonics Technol. Lett. 20(8), 578–580 (2008).
    [Crossref]
  13. S. Kaur and R. S. Kaler, “All-optical circular shift register based on semiconductor optical amplifiers,” Opt. Quantum Electron. 46(8), 991–998 (2014).
    [Crossref]
  14. F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “A regenerative variable optical buffer for NRZ and RZ packets,” J. Lightwave Technol. 30(9), 1366–1372 (2012).
    [Crossref]
  15. B. Pesala, Z. Chen, A. V. Uskov, and C. Chang-Hasnain, “Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers,” Opt. Express 14(26), 12968–12975 (2006).
    [Crossref] [PubMed]
  16. M. Cheng, C. Wu, J. Hiltunen, Y. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 21(24), 1885–1887 (2009).
    [Crossref]
  17. Y. Wang, X. Xin, and C. Shang, “All-optical buffer using nonlinear polarization rotation effect of gain-transparent semiconductor optical amplifier,” Appl. Opt. 53(8), 1512–1517 (2014).
    [Crossref] [PubMed]
  18. G. Serafino, F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “Regenerative optical buffer based on SOA-amplified recirculating loop,” IEEE Photonics Technol. Lett. 23(22), 1715–1717 (2011).
    [Crossref]
  19. M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
    [Crossref]
  20. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
    [Crossref] [PubMed]
  21. P. Zhao, M. Reichert, T. Ensley, D. J. Hagan, and E. W. Van Stryland, “Beam deflection measurements of nondegenerate nonlinear refractive indices in direct-gap semiconductors,” in Proc. Conference on Lasers and Electro-Optics 2015 (2015), paper FW3D.7.
    [Crossref]
  22. J. J. Baumberg, B. Huttner, R. A. Taylor, and J. F. Ryan, “Dynamic contributions to the optical Stark effect in semiconductors,” Phys. Rev. B Condens. Matter 48(7), 4695–4706 (1993).
    [Crossref] [PubMed]
  23. R. K. Willardson and E. R. Weber, Semiconductors and Semimetals, Volume 58 (Academic, 1999), Chap. 4.
  24. M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron. 30(2), 249–255 (1994).
    [Crossref]
  25. A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
    [Crossref]
  26. R. Maldonado, H. Soto-Ortiz, and K. Solis, “Simplified model for estimating the cross-polarization modulation in a bulk semiconductor optical amplifier,” IEEE J. Quantum Electron. 44(9), 850–857 (2008).
    [Crossref]
  27. E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photonics Technol. Lett. 18(1), 103–105 (2006).
    [Crossref]
  28. K. Bondarczuk, Y. G. Boucher, P. Besnard, D. Reid, and L. P. Barry, “Wavelength and bandwidth tunable TPA semiconductor microcavity detector for high-speed signal processing in WDM systems,” IEEE J. Quantum Electron. 46(11), 1518–1525 (2010).
    [Crossref]
  29. J. V. Moloney, Nonlinear Optical Materials (Springer Berlin Heidelberg, 1998), pp. 205–223.
  30. J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express 18(24), 25264–25270 (2010).
    [Crossref] [PubMed]

2016 (1)

2014 (3)

P. Gavignet, J. L. Barbey, H. Nakajima, T. Guillossou, and A. Carer, “SOA-based label extractor for optical burst switching application,” IEEE Photonics Technol. Lett. 26(22), 2240–2243 (2014).
[Crossref]

S. Kaur and R. S. Kaler, “All-optical circular shift register based on semiconductor optical amplifiers,” Opt. Quantum Electron. 46(8), 991–998 (2014).
[Crossref]

Y. Wang, X. Xin, and C. Shang, “All-optical buffer using nonlinear polarization rotation effect of gain-transparent semiconductor optical amplifier,” Appl. Opt. 53(8), 1512–1517 (2014).
[Crossref] [PubMed]

2012 (2)

F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “A regenerative variable optical buffer for NRZ and RZ packets,” J. Lightwave Technol. 30(9), 1366–1372 (2012).
[Crossref]

M. K. Dutta and V. K. Chaubey, “Comparative analysis of wavelength conversion and segmentation based dropping method as a contention resolution scheme in optical burst switching (OBS) network,” Procedia Eng. 30, 1089–1096 (2012).
[Crossref]

2011 (2)

G. Berrettini, G. Meloni, L. Potì, and A. Bogoni, “All-optical variable buffer based on semiconductor optical amplifier,” IEEE J. Quantum Electron. 47(4), 510–516 (2011).
[Crossref]

G. Serafino, F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “Regenerative optical buffer based on SOA-amplified recirculating loop,” IEEE Photonics Technol. Lett. 23(22), 1715–1717 (2011).
[Crossref]

2010 (4)

N. Beheshti, E. Burmeister, Y. Ganjali, J. E. Bowers, D. J. Blumenthal, and N. McKeown, “Optical packet buffers for backbone internet routers,” IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010).
[Crossref]

Y. J. Wang, C. Q. Wu, X. J. Xin, K. L. Yu, and X. L. Zhang, “Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers,” Chin. Phys. B 19(9), 094210 (2010).
[Crossref]

K. Bondarczuk, Y. G. Boucher, P. Besnard, D. Reid, and L. P. Barry, “Wavelength and bandwidth tunable TPA semiconductor microcavity detector for high-speed signal processing in WDM systems,” IEEE J. Quantum Electron. 46(11), 1518–1525 (2010).
[Crossref]

J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express 18(24), 25264–25270 (2010).
[Crossref] [PubMed]

2009 (1)

M. Cheng, C. Wu, J. Hiltunen, Y. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 21(24), 1885–1887 (2009).
[Crossref]

2008 (3)

C. Tian, C. Wu, Z. Li, and N. Guo, “Dual-wavelength packets buffering in dual-loop optical buffer,” IEEE Photonics Technol. Lett. 20(8), 578–580 (2008).
[Crossref]

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[Crossref]

R. Maldonado, H. Soto-Ortiz, and K. Solis, “Simplified model for estimating the cross-polarization modulation in a bulk semiconductor optical amplifier,” IEEE J. Quantum Electron. 44(9), 850–857 (2008).
[Crossref]

2006 (2)

E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photonics Technol. Lett. 18(1), 103–105 (2006).
[Crossref]

B. Pesala, Z. Chen, A. V. Uskov, and C. Chang-Hasnain, “Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers,” Opt. Express 14(26), 12968–12975 (2006).
[Crossref] [PubMed]

1994 (1)

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron. 30(2), 249–255 (1994).
[Crossref]

1993 (1)

J. J. Baumberg, B. Huttner, R. A. Taylor, and J. F. Ryan, “Dynamic contributions to the optical Stark effect in semiconductors,” Phys. Rev. B Condens. Matter 48(7), 4695–4706 (1993).
[Crossref] [PubMed]

1991 (1)

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

1990 (2)

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
[Crossref]

Barbey, J. L.

P. Gavignet, J. L. Barbey, H. Nakajima, T. Guillossou, and A. Carer, “SOA-based label extractor for optical burst switching application,” IEEE Photonics Technol. Lett. 26(22), 2240–2243 (2014).
[Crossref]

Barry, L. P.

K. Bondarczuk, Y. G. Boucher, P. Besnard, D. Reid, and L. P. Barry, “Wavelength and bandwidth tunable TPA semiconductor microcavity detector for high-speed signal processing in WDM systems,” IEEE J. Quantum Electron. 46(11), 1518–1525 (2010).
[Crossref]

Baumberg, J. J.

J. J. Baumberg, B. Huttner, R. A. Taylor, and J. F. Ryan, “Dynamic contributions to the optical Stark effect in semiconductors,” Phys. Rev. B Condens. Matter 48(7), 4695–4706 (1993).
[Crossref] [PubMed]

Beheshti, N.

N. Beheshti, E. Burmeister, Y. Ganjali, J. E. Bowers, D. J. Blumenthal, and N. McKeown, “Optical packet buffers for backbone internet routers,” IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010).
[Crossref]

Berrettini, G.

F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “A regenerative variable optical buffer for NRZ and RZ packets,” J. Lightwave Technol. 30(9), 1366–1372 (2012).
[Crossref]

G. Berrettini, G. Meloni, L. Potì, and A. Bogoni, “All-optical variable buffer based on semiconductor optical amplifier,” IEEE J. Quantum Electron. 47(4), 510–516 (2011).
[Crossref]

G. Serafino, F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “Regenerative optical buffer based on SOA-amplified recirculating loop,” IEEE Photonics Technol. Lett. 23(22), 1715–1717 (2011).
[Crossref]

Besnard, P.

K. Bondarczuk, Y. G. Boucher, P. Besnard, D. Reid, and L. P. Barry, “Wavelength and bandwidth tunable TPA semiconductor microcavity detector for high-speed signal processing in WDM systems,” IEEE J. Quantum Electron. 46(11), 1518–1525 (2010).
[Crossref]

Blumenthal, D. J.

N. Beheshti, E. Burmeister, Y. Ganjali, J. E. Bowers, D. J. Blumenthal, and N. McKeown, “Optical packet buffers for backbone internet routers,” IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010).
[Crossref]

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[Crossref]

Bogoni, A.

F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “A regenerative variable optical buffer for NRZ and RZ packets,” J. Lightwave Technol. 30(9), 1366–1372 (2012).
[Crossref]

G. Serafino, F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “Regenerative optical buffer based on SOA-amplified recirculating loop,” IEEE Photonics Technol. Lett. 23(22), 1715–1717 (2011).
[Crossref]

G. Berrettini, G. Meloni, L. Potì, and A. Bogoni, “All-optical variable buffer based on semiconductor optical amplifier,” IEEE J. Quantum Electron. 47(4), 510–516 (2011).
[Crossref]

Bondarczuk, K.

K. Bondarczuk, Y. G. Boucher, P. Besnard, D. Reid, and L. P. Barry, “Wavelength and bandwidth tunable TPA semiconductor microcavity detector for high-speed signal processing in WDM systems,” IEEE J. Quantum Electron. 46(11), 1518–1525 (2010).
[Crossref]

Boucher, Y. G.

K. Bondarczuk, Y. G. Boucher, P. Besnard, D. Reid, and L. P. Barry, “Wavelength and bandwidth tunable TPA semiconductor microcavity detector for high-speed signal processing in WDM systems,” IEEE J. Quantum Electron. 46(11), 1518–1525 (2010).
[Crossref]

Bowers, J. E.

N. Beheshti, E. Burmeister, Y. Ganjali, J. E. Bowers, D. J. Blumenthal, and N. McKeown, “Optical packet buffers for backbone internet routers,” IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010).
[Crossref]

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[Crossref]

E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photonics Technol. Lett. 18(1), 103–105 (2006).
[Crossref]

Burmeister, E.

N. Beheshti, E. Burmeister, Y. Ganjali, J. E. Bowers, D. J. Blumenthal, and N. McKeown, “Optical packet buffers for backbone internet routers,” IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010).
[Crossref]

Burmeister, E. F.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[Crossref]

E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photonics Technol. Lett. 18(1), 103–105 (2006).
[Crossref]

Calvani, R.

A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
[Crossref]

Carer, A.

P. Gavignet, J. L. Barbey, H. Nakajima, T. Guillossou, and A. Carer, “SOA-based label extractor for optical burst switching application,” IEEE Photonics Technol. Lett. 26(22), 2240–2243 (2014).
[Crossref]

Chang-Hasnain, C.

Chaubey, V. K.

M. K. Dutta and V. K. Chaubey, “Comparative analysis of wavelength conversion and segmentation based dropping method as a contention resolution scheme in optical burst switching (OBS) network,” Procedia Eng. 30, 1089–1096 (2012).
[Crossref]

Chen, Z.

Cheng, M.

M. Cheng, C. Wu, J. Hiltunen, Y. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 21(24), 1885–1887 (2009).
[Crossref]

Coldren, L. A.

Contestabile, G.

F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “A regenerative variable optical buffer for NRZ and RZ packets,” J. Lightwave Technol. 30(9), 1366–1372 (2012).
[Crossref]

G. Serafino, F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “Regenerative optical buffer based on SOA-amplified recirculating loop,” IEEE Photonics Technol. Lett. 23(22), 1715–1717 (2011).
[Crossref]

Crichton Hutchings, D.

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

De Bernardi, C.

A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
[Crossref]

Dutta, M. K.

M. K. Dutta and V. K. Chaubey, “Comparative analysis of wavelength conversion and segmentation based dropping method as a contention resolution scheme in optical burst switching (OBS) network,” Procedia Eng. 30, 1089–1096 (2012).
[Crossref]

Finlayson, N.

A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
[Crossref]

Ganjali, Y.

N. Beheshti, E. Burmeister, Y. Ganjali, J. E. Bowers, D. J. Blumenthal, and N. McKeown, “Optical packet buffers for backbone internet routers,” IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010).
[Crossref]

Gavignet, P.

P. Gavignet, J. L. Barbey, H. Nakajima, T. Guillossou, and A. Carer, “SOA-based label extractor for optical burst switching application,” IEEE Photonics Technol. Lett. 26(22), 2240–2243 (2014).
[Crossref]

Guillossou, T.

P. Gavignet, J. L. Barbey, H. Nakajima, T. Guillossou, and A. Carer, “SOA-based label extractor for optical burst switching application,” IEEE Photonics Technol. Lett. 26(22), 2240–2243 (2014).
[Crossref]

Guo, N.

C. Tian, C. Wu, Z. Li, and N. Guo, “Dual-wavelength packets buffering in dual-loop optical buffer,” IEEE Photonics Technol. Lett. 20(8), 578–580 (2008).
[Crossref]

Guzzon, R. S.

Hagan, D. J.

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Hiltunen, J.

M. Cheng, C. Wu, J. Hiltunen, Y. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 21(24), 1885–1887 (2009).
[Crossref]

Huttner, B.

J. J. Baumberg, B. Huttner, R. A. Taylor, and J. F. Ryan, “Dynamic contributions to the optical Stark effect in semiconductors,” Phys. Rev. B Condens. Matter 48(7), 4695–4706 (1993).
[Crossref] [PubMed]

Kaler, R. S.

S. Kaur and R. S. Kaler, “All-optical circular shift register based on semiconductor optical amplifiers,” Opt. Quantum Electron. 46(8), 991–998 (2014).
[Crossref]

Kaur, S.

S. Kaur and R. S. Kaler, “All-optical circular shift register based on semiconductor optical amplifiers,” Opt. Quantum Electron. 46(8), 991–998 (2014).
[Crossref]

Kwong, D. L.

Li, M.

Li, Z.

C. Tian, C. Wu, Z. Li, and N. Guo, “Dual-wavelength packets buffering in dual-loop optical buffer,” IEEE Photonics Technol. Lett. 20(8), 578–580 (2008).
[Crossref]

Liow, T. Y.

Liu, W.

Lo, G. Q.

Maldonado, R.

R. Maldonado, H. Soto-Ortiz, and K. Solis, “Simplified model for estimating the cross-polarization modulation in a bulk semiconductor optical amplifier,” IEEE J. Quantum Electron. 44(9), 850–857 (2008).
[Crossref]

McKeown, N.

N. Beheshti, E. Burmeister, Y. Ganjali, J. E. Bowers, D. J. Blumenthal, and N. McKeown, “Optical packet buffers for backbone internet routers,” IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010).
[Crossref]

Meloni, G.

G. Berrettini, G. Meloni, L. Potì, and A. Bogoni, “All-optical variable buffer based on semiconductor optical amplifier,” IEEE J. Quantum Electron. 47(4), 510–516 (2011).
[Crossref]

Morasca, S.

A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
[Crossref]

Myllylä, R.

M. Cheng, C. Wu, J. Hiltunen, Y. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 21(24), 1885–1887 (2009).
[Crossref]

Nakajima, H.

P. Gavignet, J. L. Barbey, H. Nakajima, T. Guillossou, and A. Carer, “SOA-based label extractor for optical burst switching application,” IEEE Photonics Technol. Lett. 26(22), 2240–2243 (2014).
[Crossref]

Norberg, E. J.

Parker, J. S.

Pesala, B.

Potì, L.

G. Berrettini, G. Meloni, L. Potì, and A. Bogoni, “All-optical variable buffer based on semiconductor optical amplifier,” IEEE J. Quantum Electron. 47(4), 510–516 (2011).
[Crossref]

Reid, D.

K. Bondarczuk, Y. G. Boucher, P. Besnard, D. Reid, and L. P. Barry, “Wavelength and bandwidth tunable TPA semiconductor microcavity detector for high-speed signal processing in WDM systems,” IEEE J. Quantum Electron. 46(11), 1518–1525 (2010).
[Crossref]

Rigo, C.

A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
[Crossref]

Romeira, B.

Ryan, J. F.

J. J. Baumberg, B. Huttner, R. A. Taylor, and J. F. Ryan, “Dynamic contributions to the optical Stark effect in semiconductors,” Phys. Rev. B Condens. Matter 48(7), 4695–4706 (1993).
[Crossref] [PubMed]

Scotti, F.

F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “A regenerative variable optical buffer for NRZ and RZ packets,” J. Lightwave Technol. 30(9), 1366–1372 (2012).
[Crossref]

G. Serafino, F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “Regenerative optical buffer based on SOA-amplified recirculating loop,” IEEE Photonics Technol. Lett. 23(22), 1715–1717 (2011).
[Crossref]

Serafino, G.

G. Serafino, F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “Regenerative optical buffer based on SOA-amplified recirculating loop,” IEEE Photonics Technol. Lett. 23(22), 1715–1717 (2011).
[Crossref]

Shang, C.

Sheik-Bahae, M.

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron. 30(2), 249–255 (1994).
[Crossref]

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Solis, K.

R. Maldonado, H. Soto-Ortiz, and K. Solis, “Simplified model for estimating the cross-polarization modulation in a bulk semiconductor optical amplifier,” IEEE J. Quantum Electron. 44(9), 850–857 (2008).
[Crossref]

Soto-Ortiz, H.

R. Maldonado, H. Soto-Ortiz, and K. Solis, “Simplified model for estimating the cross-polarization modulation in a bulk semiconductor optical amplifier,” IEEE J. Quantum Electron. 44(9), 850–857 (2008).
[Crossref]

Stegeman, G. I.

A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
[Crossref]

Sundheimer, M.

A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
[Crossref]

Taylor, R. A.

J. J. Baumberg, B. Huttner, R. A. Taylor, and J. F. Ryan, “Dynamic contributions to the optical Stark effect in semiconductors,” Phys. Rev. B Condens. Matter 48(7), 4695–4706 (1993).
[Crossref] [PubMed]

Tian, C.

C. Tian, C. Wu, Z. Li, and N. Guo, “Dual-wavelength packets buffering in dual-loop optical buffer,” IEEE Photonics Technol. Lett. 20(8), 578–580 (2008).
[Crossref]

Uskov, A. V.

Van Stryland, E. W.

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron. 30(2), 249–255 (1994).
[Crossref]

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Villeneuve, A.

A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
[Crossref]

Wang, J.

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron. 30(2), 249–255 (1994).
[Crossref]

Wang, Q.

M. Cheng, C. Wu, J. Hiltunen, Y. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 21(24), 1885–1887 (2009).
[Crossref]

Wang, Y.

Y. Wang, X. Xin, and C. Shang, “All-optical buffer using nonlinear polarization rotation effect of gain-transparent semiconductor optical amplifier,” Appl. Opt. 53(8), 1512–1517 (2014).
[Crossref] [PubMed]

M. Cheng, C. Wu, J. Hiltunen, Y. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 21(24), 1885–1887 (2009).
[Crossref]

Wang, Y. J.

Y. J. Wang, C. Q. Wu, X. J. Xin, K. L. Yu, and X. L. Zhang, “Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers,” Chin. Phys. B 19(9), 094210 (2010).
[Crossref]

Wu, C.

M. Cheng, C. Wu, J. Hiltunen, Y. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 21(24), 1885–1887 (2009).
[Crossref]

C. Tian, C. Wu, Z. Li, and N. Guo, “Dual-wavelength packets buffering in dual-loop optical buffer,” IEEE Photonics Technol. Lett. 20(8), 578–580 (2008).
[Crossref]

Wu, C. Q.

Y. J. Wang, C. Q. Wu, X. J. Xin, K. L. Yu, and X. L. Zhang, “Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers,” Chin. Phys. B 19(9), 094210 (2010).
[Crossref]

Xin, X.

Xin, X. J.

Y. J. Wang, C. Q. Wu, X. J. Xin, K. L. Yu, and X. L. Zhang, “Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers,” Chin. Phys. B 19(9), 094210 (2010).
[Crossref]

Yao, J.

Yu, K. L.

Y. J. Wang, C. Q. Wu, X. J. Xin, K. L. Yu, and X. L. Zhang, “Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers,” Chin. Phys. B 19(9), 094210 (2010).
[Crossref]

Yu, M.

Zhang, J.

Zhang, X. L.

Y. J. Wang, C. Q. Wu, X. J. Xin, K. L. Yu, and X. L. Zhang, “Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers,” Chin. Phys. B 19(9), 094210 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Villeneuve, M. Sundheimer, N. Finlayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. De Bernardi, “Two‐photon absorption in In 1− x − y Gax Aly As/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56(19), 1865–1867 (1990).
[Crossref]

Chin. Phys. B (1)

Y. J. Wang, C. Q. Wu, X. J. Xin, K. L. Yu, and X. L. Zhang, “Investigation on performance of all optical buffer with large dynamical delay time based on cascaded double loop optical buffers,” Chin. Phys. B 19(9), 094210 (2010).
[Crossref]

IEEE J. Quantum Electron. (5)

G. Berrettini, G. Meloni, L. Potì, and A. Bogoni, “All-optical variable buffer based on semiconductor optical amplifier,” IEEE J. Quantum Electron. 47(4), 510–516 (2011).
[Crossref]

R. Maldonado, H. Soto-Ortiz, and K. Solis, “Simplified model for estimating the cross-polarization modulation in a bulk semiconductor optical amplifier,” IEEE J. Quantum Electron. 44(9), 850–857 (2008).
[Crossref]

K. Bondarczuk, Y. G. Boucher, P. Besnard, D. Reid, and L. P. Barry, “Wavelength and bandwidth tunable TPA semiconductor microcavity detector for high-speed signal processing in WDM systems,” IEEE J. Quantum Electron. 46(11), 1518–1525 (2010).
[Crossref]

M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron. 30(2), 249–255 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (5)

E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photonics Technol. Lett. 18(1), 103–105 (2006).
[Crossref]

P. Gavignet, J. L. Barbey, H. Nakajima, T. Guillossou, and A. Carer, “SOA-based label extractor for optical burst switching application,” IEEE Photonics Technol. Lett. 26(22), 2240–2243 (2014).
[Crossref]

C. Tian, C. Wu, Z. Li, and N. Guo, “Dual-wavelength packets buffering in dual-loop optical buffer,” IEEE Photonics Technol. Lett. 20(8), 578–580 (2008).
[Crossref]

G. Serafino, F. Scotti, G. Berrettini, G. Contestabile, and A. Bogoni, “Regenerative optical buffer based on SOA-amplified recirculating loop,” IEEE Photonics Technol. Lett. 23(22), 1715–1717 (2011).
[Crossref]

M. Cheng, C. Wu, J. Hiltunen, Y. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 21(24), 1885–1887 (2009).
[Crossref]

IEEE/ACM Trans. Netw. (1)

N. Beheshti, E. Burmeister, Y. Ganjali, J. E. Bowers, D. J. Blumenthal, and N. McKeown, “Optical packet buffers for backbone internet routers,” IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Quantum Electron. (1)

S. Kaur and R. S. Kaler, “All-optical circular shift register based on semiconductor optical amplifiers,” Opt. Quantum Electron. 46(8), 991–998 (2014).
[Crossref]

Opt. Switching Networking (1)

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008).
[Crossref]

Phys. Rev. B Condens. Matter (1)

J. J. Baumberg, B. Huttner, R. A. Taylor, and J. F. Ryan, “Dynamic contributions to the optical Stark effect in semiconductors,” Phys. Rev. B Condens. Matter 48(7), 4695–4706 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65(1), 96–99 (1990).
[Crossref] [PubMed]

Procedia Eng. (1)

M. K. Dutta and V. K. Chaubey, “Comparative analysis of wavelength conversion and segmentation based dropping method as a contention resolution scheme in optical burst switching (OBS) network,” Procedia Eng. 30, 1089–1096 (2012).
[Crossref]

Other (7)

L. Jinhu, Y. Xinghuo, C. Guanrong, and Y. Wenwu, Complex Systems and Networks (Springer-Verlag, 2016), Chap. 15.

A. V. Dmitriev, N. A. Toropov, and M. Sumetsky, “Miniature optical delay lines and buffers,” in Proc. 18th International Conference on Transparent Optical Networks (ICTON, 2016), paper Tu.B5.4.

I. Tomkos, M. Spyropoulou, K. Ennser, M. Köhn, and B. Mikac, Towards Digital Optical Networks: COST Action 291 Final Report (Springer Berlin Heidelberg, 2009), Chap. 5.

H. Furukawa, S. Shinada, T. Miyazawa, T. Hirayama, N. Wada, and H. Harai, “Demonstration and network scalability analysis of 8-fiber-delay-line SOA-based optical buffer embedded optical packet switching,” in Proc. Optical Fiber Communications Conference (OFC, 2014), paper W2A.19.
[Crossref]

P. Zhao, M. Reichert, T. Ensley, D. J. Hagan, and E. W. Van Stryland, “Beam deflection measurements of nondegenerate nonlinear refractive indices in direct-gap semiconductors,” in Proc. Conference on Lasers and Electro-Optics 2015 (2015), paper FW3D.7.
[Crossref]

R. K. Willardson and E. R. Weber, Semiconductors and Semimetals, Volume 58 (Academic, 1999), Chap. 4.

J. V. Moloney, Nonlinear Optical Materials (Springer Berlin Heidelberg, 1998), pp. 205–223.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SOPs of the probe beam, at the SOA output, when the control beam is turned from OFF (SOP A) to ON (SOP B) and its angular separation (<AB) at the Poincare sphere.
Fig. 2
Fig. 2 Experimental setup. Solid lines: optical fibers. Dashed lines: electrical links. Pairs of parallel, convergent and divergent solid lines: free-space optical links. Zone within dashed-dotted lines: Proposed buffer scheme.
Fig. 3
Fig. 3 Oscilloscope traces showing an 80 Gb/s optical pulse comb gaited with a 5 Gb/s nonreturn-to-zero sequence with a time scale of 1 ns/div (right) and 30 ps/div (left).
Fig. 4
Fig. 4 Buffer output and control signal. Upper trace: Buffer output with control pulse turned off. Middle trace: Control signal. Lower trace: Buffer output with control pulse turned on.
Fig. 5
Fig. 5 Measured eye diagrams (insets) and linear fits for the BER versus optical receiver power for the buffer configured in back-to-back (triangles), to not delay the input PRBS (circles), and to delay the input PRBS (squares).
Fig. 6
Fig. 6 Experimental setup for testing the response time of the birefringence induced by the TPA and the QSE. Solid lines: optical fibers. Dashed line: electrical link. Pairs of parallel, convergent and divergent solid lines: free-space optical links.
Fig. 7
Fig. 7 Control pulse (upper trace) at the SOA input of Fig. 6 and probe signal (lower trace) at the output of the polarizer P1 of Fig. 6.

Tables (1)

Tables Icon

Table 1 Main parameters of the used SOA.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

dI dz =( α 0 + α s )Iβ I 2 ,
I(z)= αexp[ α( C 1 z) ] 1βexp[ α( C 1 z) ] ,
C 1 = 1 α ln[ I i η i Γ(1R) α+ I i η i Γ(1R)β ],
T= I t I i = I(L)(1R)Γ η t I(0)/ ( η i Γ(1R) ) = α η i η t Γ 2 (1R) 2 exp[αL] α+ I i η i Γ(1R)β(1exp[αL]) ,
β= [ α s η i η t Γ 2 (1R) 2 exp[ α s L]T α s ] Φ i T P i η i Γ(1R)(1exp[ α s L]) ,
n 2 = λ g 4π G 2 TPA + G 2 QSE F 2 TPA + F 2 QSE β,
F 2 TPA = ( x 1 + x 2 1) 3/2 2 7 x 1 x 2 2 ( 1 x 1 + 1 x 2 ) 2 ,
F 2 QSE = 1 2 10 x 1 x 2 2 ( x 1 1) 1/2 [ 1 x 1 x 2 + 1 x 1 + x 2 ],
G 2 TPA,QSE = 2 π 0 F 2 TPA,QSE d x 1 x 1 2 x 2 2 .
n l = n 0 + n 2 η i Γ(1R) P i Φ i ,
n TE,TM = ( ( n l 2π/ λ s ) 2 κ TE,TM 2 ) 1/2 2π/ λ s ,
κ TE,TM 2 = C TE,TM 2 [ 1+ [ 1+ ( 2π λ s C TE,TM ) 2 ( 2 n l 2 n c 2 n s 2 B TE,TM ) ] 1/2 ],
C TE 1.25 d and B TE =1,
C TM 1 3.9 d [ n l 2 ( n s 2 + n c 2 ) ( n s n c ) 2 ]and B TM =0.82.
Δ n TMTE = [ n TM n TE ] p [ n TM n TE ] np .
Δ θ T M T E = 2 π L λ s Δ n T M T E .
Δ θ TMTE = tan 1 ( s 3 B s 2 B ) tan 1 ( s 3 A s 2 A ).
Q= | u 1 u 0 | σ 1 + σ 0 ,
BER= 1 2 erfc( Q 2 ),

Metrics