Abstract

Organic microcavity lasers based on liquid crystals have attracted substantial attention due to their easy processing, compact volume and excellent tunable properties. However, the threshold of traditional holographic polymer dispersed liquid crystals (H-PDLCs) laser doped with dye is usually as high as several tens of μJ/pulse, which hinders its broad applications. Herein, we demonstrate a low-threshold lasing from quasicrystal based on H-PDLCs. An conjugated polymer poly (2-methoxy-5-(2’-ethyl-hexyloxy)-p-phenylenevinylene (MEH-PPV) film is coated on the inner surface of glass substrate to dramatically reduce the lasing threshold, which is 20 times lower than that of dye-doped microcavity laser. A low threshold, single-mode, linearly polarized lasing is achieved when the thickness of MEH-PPV film is optimized at 80 nm. Due to its easy fabrication, excellent performance and bio-compatibility, this compact coherent light source may be useful in lab-on-chip applications such as detection, sensing and analyzing, as well as display, optical communications, and other photonic fields.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lasing from organic quasicrystal fabricated by seven- and nine-beam interference

D. Luo, Y. Li, X. W. Xu, and Q. G. Du
Opt. Express 24(11) 12330-12335 (2016)

Low threshold optically pumped lasing from MEH-PPV quasi-periodic photonic crystal microcavity

Yuanyuan Cai, Xiaoyan Jiao, Xiao Chen, Xiaoqing Wang, Shuai Feng, Zhi Wang, and Yiquan Wang
Appl. Opt. 58(18) 4853-4857 (2019)

Tunable surface-emitting dual-wavelength laser from a blended gain layer with an external holographic grating feedback structure

Guiyang Zhang, Lijuan Liu, Minghuan Liu, Yonggang Liu, Zenghui Peng, Lishuang Yao, Qidong Wang, Shaoxin Wang, Zhaoliang Cao, Ji Ma, and Li Xuan
Opt. Mater. Express 6(10) 3320-3329 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  2. R. Sutherland, V. Tondiglia, L. Natarajan, S. Chandra, D. Tomlin, and T. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10(20), 1074–1082 (2002).
    [Crossref] [PubMed]
  3. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [Crossref] [PubMed]
  4. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye - doped ferroelectric liquid crystal,” Adv. Mater. 14(4), 306–309 (2002).
    [Crossref]
  5. H. Takezoe, K. Kondo, A. Fukuda, and E. Kuze, “Determination of helical pitch in homeotropic cell of chiral smectic C liquid crystal using F-center laser,” Jpn. J. Appl. Phys. 21(2), L627–L629 (1982).
    [Crossref]
  6. D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 2059 (2009).
    [Crossref]
  7. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
    [Crossref] [PubMed]
  8. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phasewith long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
    [Crossref]
  9. S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
    [Crossref]
  10. J. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  11. C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
    [Crossref]
  12. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
    [Crossref]
  13. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
    [Crossref] [PubMed]
  14. D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Ji, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals,” Sci. Rep. 2(1), 627 (2012).
    [Crossref] [PubMed]
  15. D. Luo, Y. Li, X. W. Xu, and Q. G. Du, “Lasing from organic quasicrystal fabricated by seven- and nine-beam interference,” Opt. Express 24(11), 12330–12335 (2016).
    [Crossref] [PubMed]
  16. Z. Liu, D. Luo, Q. Du, Y. Li, and H. Dai, “Emission characteristics of lasing from all organic mirrorless quasicrystal,” IEEE Photonics J. 8(6), 1–6 (2016).
    [Crossref]
  17. D. Luo, Q. G. Du, H. T. Dai, X. H. Zhang, and X. W. Sun, “Temperature effect on lasing from Penrose photonic quasicrystal,” Opt. Mater. Express 4(6), 1172–1177 (2014).
    [Crossref]
  18. T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1), 47–51 (2010).
    [Crossref]
  19. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Sensitive explosive vapor detection with polyfluorene lasers,” Adv. Funct. Mater. 20(13), 2093–2097 (2010).
    [Crossref] [PubMed]
  20. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4 (7), 438 –446 (2010).
    [Crossref]
  21. M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22(40), 4473–4478 (2010).
    [Crossref] [PubMed]
  22. K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, and S. W. Choi, “A well-aligned simple cubic blue phase for a liquid crystal laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5383–5388 (2015).
    [Crossref]
  23. L. Wang, Y. Wan, L. Shi, H. Zhong, and L. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles,” Opt. Express 24(16), 17593–17602 (2016).
    [Crossref] [PubMed]
  24. E. Perju, E. Paslaru, and L. Marin, “Polymer-dispersed liquid crystal composites for bio-applications: thermotropic, surface and optical properties,” Liq. Cryst. 42(3), 370–382 (2015).
    [Crossref]
  25. D. Ailincai, C. Farcau, E. Paslaru, and L. Marin, “PDLC composites based on polyvinyl boric acid matrix - a promising pathway towards biomedical engineering,” Liq. Cryst. 43(13–15), 1973–1985 (2016).
    [Crossref]
  26. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [Crossref] [PubMed]
  27. Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, “Tunable fly’s-eye lens made of patterned polymer-dispersed liquid crystal,” Opt. Express 14(12), 5634–5640 (2006).
    [Crossref] [PubMed]
  28. W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
    [Crossref]
  29. W. Huang, L. Chen, and L. Xuan, “Efficient laser emission from organic semiconductor activated holographic polymer dispersed liquid crystal transmission gratings,” RSC Adv. 4(73), 38606–38613 (2014).
    [Crossref]
  30. M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D Appl. Phys. 49(46), 465102 (2016).
    [Crossref]
  31. M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

2016 (6)

D. Luo, Y. Li, X. W. Xu, and Q. G. Du, “Lasing from organic quasicrystal fabricated by seven- and nine-beam interference,” Opt. Express 24(11), 12330–12335 (2016).
[Crossref] [PubMed]

Z. Liu, D. Luo, Q. Du, Y. Li, and H. Dai, “Emission characteristics of lasing from all organic mirrorless quasicrystal,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

L. Wang, Y. Wan, L. Shi, H. Zhong, and L. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles,” Opt. Express 24(16), 17593–17602 (2016).
[Crossref] [PubMed]

D. Ailincai, C. Farcau, E. Paslaru, and L. Marin, “PDLC composites based on polyvinyl boric acid matrix - a promising pathway towards biomedical engineering,” Liq. Cryst. 43(13–15), 1973–1985 (2016).
[Crossref]

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D Appl. Phys. 49(46), 465102 (2016).
[Crossref]

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

2015 (2)

K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, and S. W. Choi, “A well-aligned simple cubic blue phase for a liquid crystal laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5383–5388 (2015).
[Crossref]

E. Perju, E. Paslaru, and L. Marin, “Polymer-dispersed liquid crystal composites for bio-applications: thermotropic, surface and optical properties,” Liq. Cryst. 42(3), 370–382 (2015).
[Crossref]

2014 (2)

D. Luo, Q. G. Du, H. T. Dai, X. H. Zhang, and X. W. Sun, “Temperature effect on lasing from Penrose photonic quasicrystal,” Opt. Mater. Express 4(6), 1172–1177 (2014).
[Crossref]

W. Huang, L. Chen, and L. Xuan, “Efficient laser emission from organic semiconductor activated holographic polymer dispersed liquid crystal transmission gratings,” RSC Adv. 4(73), 38606–38613 (2014).
[Crossref]

2012 (2)

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Ji, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals,” Sci. Rep. 2(1), 627 (2012).
[Crossref] [PubMed]

2010 (5)

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1), 47–51 (2010).
[Crossref]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Sensitive explosive vapor detection with polyfluorene lasers,” Adv. Funct. Mater. 20(13), 2093–2097 (2010).
[Crossref] [PubMed]

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4 (7), 438 –446 (2010).
[Crossref]

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22(40), 4473–4478 (2010).
[Crossref] [PubMed]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

2009 (1)

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 2059 (2009).
[Crossref]

2007 (1)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

2006 (2)

2004 (1)

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

2002 (3)

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

R. Sutherland, V. Tondiglia, L. Natarajan, S. Chandra, D. Tomlin, and T. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10(20), 1074–1082 (2002).
[Crossref] [PubMed]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye - doped ferroelectric liquid crystal,” Adv. Mater. 14(4), 306–309 (2002).
[Crossref]

1999 (1)

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

1998 (2)

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
[Crossref] [PubMed]

1984 (1)

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phasewith long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

1982 (1)

H. Takezoe, K. Kondo, A. Fukuda, and E. Kuze, “Determination of helical pitch in homeotropic cell of chiral smectic C liquid crystal using F-center laser,” Jpn. J. Appl. Phys. 21(2), L627–L629 (1982).
[Crossref]

Ailincai, D.

D. Ailincai, C. Farcau, E. Paslaru, and L. Marin, “PDLC composites based on polyvinyl boric acid matrix - a promising pathway towards biomedical engineering,” Liq. Cryst. 43(13–15), 1973–1985 (2016).
[Crossref]

Araoka, F.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22(40), 4473–4478 (2010).
[Crossref] [PubMed]

Ban, S.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Blech, I.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phasewith long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Bunning, T.

Cahn, J. W.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phasewith long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Cao, W.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Chan, C. T.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

Chan, Y. S.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

Chandra, S.

Chen, L.

W. Huang, L. Chen, and L. Xuan, “Efficient laser emission from organic semiconductor activated holographic polymer dispersed liquid crystal transmission gratings,” RSC Adv. 4(73), 38606–38613 (2014).
[Crossref]

Cheng, B.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Choi, S. W.

K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, and S. W. Choi, “A well-aligned simple cubic blue phase for a liquid crystal laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5383–5388 (2015).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4 (7), 438 –446 (2010).
[Crossref]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
[Crossref]

Dai, H.

Z. Liu, D. Luo, Q. Du, Y. Li, and H. Dai, “Emission characteristics of lasing from all organic mirrorless quasicrystal,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Dai, H. T.

D. Luo, Q. G. Du, H. T. Dai, X. H. Zhang, and X. W. Sun, “Temperature effect on lasing from Penrose photonic quasicrystal,” Opt. Mater. Express 4(6), 1172–1177 (2014).
[Crossref]

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Ji, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals,” Sci. Rep. 2(1), 627 (2012).
[Crossref] [PubMed]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 2059 (2009).
[Crossref]

Demir, H. V.

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Ji, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals,” Sci. Rep. 2(1), 627 (2012).
[Crossref] [PubMed]

Deng, L.

Diao, Z.

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Du, Q.

Z. Liu, D. Luo, Q. Du, Y. Li, and H. Dai, “Emission characteristics of lasing from all organic mirrorless quasicrystal,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Du, Q. G.

Edagawa, K.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

Fan, B.

Farcau, C.

D. Ailincai, C. Farcau, E. Paslaru, and L. Marin, “PDLC composites based on polyvinyl boric acid matrix - a promising pathway towards biomedical engineering,” Liq. Cryst. 43(13–15), 1973–1985 (2016).
[Crossref]

Fukuda, A.

H. Takezoe, K. Kondo, A. Fukuda, and E. Kuze, “Determination of helical pitch in homeotropic cell of chiral smectic C liquid crystal using F-center laser,” Jpn. J. Appl. Phys. 21(2), L627–L629 (1982).
[Crossref]

Ganzke, D.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye - doped ferroelectric liquid crystal,” Adv. Mater. 14(4), 306–309 (2002).
[Crossref]

Genack, A. Z.

Gorkhali, S. P.

Gratias, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phasewith long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Haase, W.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye - doped ferroelectric liquid crystal,” Adv. Mater. 14(4), 306–309 (2002).
[Crossref]

Huang, W.

W. Huang, L. Chen, and L. Xuan, “Efficient laser emission from organic semiconductor activated holographic polymer dispersed liquid crystal transmission gratings,” RSC Adv. 4(73), 38606–38613 (2014).
[Crossref]

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Hur, S. T.

K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, and S. W. Choi, “A well-aligned simple cubic blue phase for a liquid crystal laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5383–5388 (2015).
[Crossref]

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Ji, W.

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Ji, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals,” Sci. Rep. 2(1), 627 (2012).
[Crossref] [PubMed]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 2059 (2009).
[Crossref]

Jin, C.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Jo, S. Y.

K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, and S. W. Choi, “A well-aligned simple cubic blue phase for a liquid crystal laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5383–5388 (2015).
[Crossref]

Kasano, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye - doped ferroelectric liquid crystal,” Adv. Mater. 14(4), 306–309 (2002).
[Crossref]

Kim, K.

K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, and S. W. Choi, “A well-aligned simple cubic blue phase for a liquid crystal laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5383–5388 (2015).
[Crossref]

Kim, S.

K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, and S. W. Choi, “A well-aligned simple cubic blue phase for a liquid crystal laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5383–5388 (2015).
[Crossref]

Klinkhammer, S.

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1), 47–51 (2010).
[Crossref]

Kondo, K.

H. Takezoe, K. Kondo, A. Fukuda, and E. Kuze, “Determination of helical pitch in homeotropic cell of chiral smectic C liquid crystal using F-center laser,” Jpn. J. Appl. Phys. 21(2), L627–L629 (1982).
[Crossref]

Konishi, G.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22(40), 4473–4478 (2010).
[Crossref] [PubMed]

Kopp, V. I.

Kuze, E.

H. Takezoe, K. Kondo, A. Fukuda, and E. Kuze, “Determination of helical pitch in homeotropic cell of chiral smectic C liquid crystal using F-center laser,” Jpn. J. Appl. Phys. 21(2), L627–L629 (1982).
[Crossref]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4 (7), 438 –446 (2010).
[Crossref]

Lee, B. R.

K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, and S. W. Choi, “A well-aligned simple cubic blue phase for a liquid crystal laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5383–5388 (2015).
[Crossref]

Lemmer, U.

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1), 47–51 (2010).
[Crossref]

Li, D.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Li, Y.

D. Luo, Y. Li, X. W. Xu, and Q. G. Du, “Lasing from organic quasicrystal fabricated by seven- and nine-beam interference,” Opt. Express 24(11), 12330–12335 (2016).
[Crossref] [PubMed]

Z. Liu, D. Luo, Q. Du, Y. Li, and H. Dai, “Emission characteristics of lasing from all organic mirrorless quasicrystal,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Li, Z.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Liu, L.

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

Liu, M.

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Liu, Y.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D Appl. Phys. 49(46), 465102 (2016).
[Crossref]

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Liu, Y. J.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 2059 (2009).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, “Tunable fly’s-eye lens made of patterned polymer-dispersed liquid crystal,” Opt. Express 14(12), 5634–5640 (2006).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, D. Luo, Q. Du, Y. Li, and H. Dai, “Emission characteristics of lasing from all organic mirrorless quasicrystal,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Liu, Z. Y.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

Luo, D.

Z. Liu, D. Luo, Q. Du, Y. Li, and H. Dai, “Emission characteristics of lasing from all organic mirrorless quasicrystal,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

D. Luo, Y. Li, X. W. Xu, and Q. G. Du, “Lasing from organic quasicrystal fabricated by seven- and nine-beam interference,” Opt. Express 24(11), 12330–12335 (2016).
[Crossref] [PubMed]

D. Luo, Q. G. Du, H. T. Dai, X. H. Zhang, and X. W. Sun, “Temperature effect on lasing from Penrose photonic quasicrystal,” Opt. Mater. Express 4(6), 1172–1177 (2014).
[Crossref]

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Ji, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals,” Sci. Rep. 2(1), 627 (2012).
[Crossref] [PubMed]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 2059 (2009).
[Crossref]

Ma, J.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D Appl. Phys. 49(46), 465102 (2016).
[Crossref]

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Man, B.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Marin, L.

D. Ailincai, C. Farcau, E. Paslaru, and L. Marin, “PDLC composites based on polyvinyl boric acid matrix - a promising pathway towards biomedical engineering,” Liq. Cryst. 43(13–15), 1973–1985 (2016).
[Crossref]

E. Perju, E. Paslaru, and L. Marin, “Polymer-dispersed liquid crystal composites for bio-applications: thermotropic, surface and optical properties,” Liq. Cryst. 42(3), 370–382 (2015).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Muñoz, A.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Natarajan, L.

Notomi, M.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

Ozaki, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye - doped ferroelectric liquid crystal,” Adv. Mater. 14(4), 306–309 (2002).
[Crossref]

Palffy-Muhoray, P.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Paslaru, E.

D. Ailincai, C. Farcau, E. Paslaru, and L. Marin, “PDLC composites based on polyvinyl boric acid matrix - a promising pathway towards biomedical engineering,” Liq. Cryst. 43(13–15), 1973–1985 (2016).
[Crossref]

E. Perju, E. Paslaru, and L. Marin, “Polymer-dispersed liquid crystal composites for bio-applications: thermotropic, surface and optical properties,” Liq. Cryst. 42(3), 370–382 (2015).
[Crossref]

Peng, Z.

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D Appl. Phys. 49(46), 465102 (2016).
[Crossref]

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Perju, E.

E. Perju, E. Paslaru, and L. Marin, “Polymer-dispersed liquid crystal composites for bio-applications: thermotropic, surface and optical properties,” Liq. Cryst. 42(3), 370–382 (2015).
[Crossref]

Qi, J.

Samuel, I. D. W.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Sensitive explosive vapor detection with polyfluorene lasers,” Adv. Funct. Mater. 20(13), 2093–2097 (2010).
[Crossref] [PubMed]

Shechtman, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phasewith long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Shi, L.

Shum, P.

Song, M. H.

K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, and S. W. Choi, “A well-aligned simple cubic blue phase for a liquid crystal laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5383–5388 (2015).
[Crossref]

Sun, B.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Sun, X. W.

D. Luo, Q. G. Du, H. T. Dai, X. H. Zhang, and X. W. Sun, “Temperature effect on lasing from Penrose photonic quasicrystal,” Opt. Mater. Express 4(6), 1172–1177 (2014).
[Crossref]

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Ji, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals,” Sci. Rep. 2(1), 627 (2012).
[Crossref] [PubMed]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 2059 (2009).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, “Tunable fly’s-eye lens made of patterned polymer-dispersed liquid crystal,” Opt. Express 14(12), 5634–5640 (2006).
[Crossref] [PubMed]

Sutherland, R.

Suzuki, H.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

Taheri, B.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Takezoe, H.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22(40), 4473–4478 (2010).
[Crossref] [PubMed]

H. Takezoe, K. Kondo, A. Fukuda, and E. Kuze, “Determination of helical pitch in homeotropic cell of chiral smectic C liquid crystal using F-center laser,” Jpn. J. Appl. Phys. 21(2), L627–L629 (1982).
[Crossref]

Tamamura, T.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

Tomlin, D.

Tondiglia, V.

Turnbull, G. A.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Sensitive explosive vapor detection with polyfluorene lasers,” Adv. Funct. Mater. 20(13), 2093–2097 (2010).
[Crossref] [PubMed]

Uchimura, M.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22(40), 4473–4478 (2010).
[Crossref] [PubMed]

Vithana, H. K. M.

Wan, Y.

Wang, L.

Watanabe, J.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22(40), 4473–4478 (2010).
[Crossref] [PubMed]

Watanabe, Y.

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22(40), 4473–4478 (2010).
[Crossref] [PubMed]

Woggon, T.

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1), 47–51 (2010).
[Crossref]

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Xu, X. W.

Xuan, L.

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D Appl. Phys. 49(46), 465102 (2016).
[Crossref]

W. Huang, L. Chen, and L. Xuan, “Efficient laser emission from organic semiconductor activated holographic polymer dispersed liquid crystal transmission gratings,” RSC Adv. 4(73), 38606–38613 (2014).
[Crossref]

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Yang, C.

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Yang, H. Z.

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Ji, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals,” Sci. Rep. 2(1), 627 (2012).
[Crossref] [PubMed]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 2059 (2009).
[Crossref]

Yang, Y.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Sensitive explosive vapor detection with polyfluorene lasers,” Adv. Funct. Mater. 20(13), 2093–2097 (2010).
[Crossref] [PubMed]

Yao, L.

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

Yin, X. J.

Yoshino, K.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye - doped ferroelectric liquid crystal,” Adv. Mater. 14(4), 306–309 (2002).
[Crossref]

Zhang, D.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Zhang, G.

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Zhang, X. H.

Zhong, H.

Adv. Funct. Mater. (1)

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Sensitive explosive vapor detection with polyfluorene lasers,” Adv. Funct. Mater. 20(13), 2093–2097 (2010).
[Crossref] [PubMed]

Adv. Mater. (2)

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers,” Adv. Mater. 22(40), 4473–4478 (2010).
[Crossref] [PubMed]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye - doped ferroelectric liquid crystal,” Adv. Mater. 14(4), 306–309 (2002).
[Crossref]

Appl. Phys. B (1)

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1), 47–51 (2010).
[Crossref]

Appl. Phys. Lett. (2)

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 2059 (2009).
[Crossref]

IEEE Photonics J. (1)

Z. Liu, D. Luo, Q. Du, Y. Li, and H. Dai, “Emission characteristics of lasing from all organic mirrorless quasicrystal,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

K. Kim, S. T. Hur, S. Kim, S. Y. Jo, B. R. Lee, M. H. Song, and S. W. Choi, “A well-aligned simple cubic blue phase for a liquid crystal laser,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5383–5388 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

M. Liu, Y. Liu, G. Zhang, Z. Peng, D. Li, J. Ma, and L. Xuan, “Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders,” J. Phys. D Appl. Phys. 49(46), 465102 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Takezoe, K. Kondo, A. Fukuda, and E. Kuze, “Determination of helical pitch in homeotropic cell of chiral smectic C liquid crystal using F-center laser,” Jpn. J. Appl. Phys. 21(2), L627–L629 (1982).
[Crossref]

Liq. Cryst. (3)

M. Liu, Y. Liu, G. Zhang, L. Liu, Z. Diao, C. Yang, Z. Peng, L. Yao, J. Ma, and L. Xuan, “Improving the conversion efficiency of an organic distributed feedback laser by varying solvents of the laser gain layer,” Liq. Cryst. 43(3), 417–426 (2016).

E. Perju, E. Paslaru, and L. Marin, “Polymer-dispersed liquid crystal composites for bio-applications: thermotropic, surface and optical properties,” Liq. Cryst. 42(3), 370–382 (2015).
[Crossref]

D. Ailincai, C. Farcau, E. Paslaru, and L. Marin, “PDLC composites based on polyvinyl boric acid matrix - a promising pathway towards biomedical engineering,” Liq. Cryst. 43(13–15), 1973–1985 (2016).
[Crossref]

Nat. Mater. (2)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Nat. Photonics (2)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4 (7), 438 –446 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Org. Electron. (1)

W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, “Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique,” Org. Electron. 13(11), 2307–2311 (2012).
[Crossref]

Phys. Rev. Lett. (3)

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[Crossref] [PubMed]

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phasewith long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

RSC Adv. (1)

W. Huang, L. Chen, and L. Xuan, “Efficient laser emission from organic semiconductor activated holographic polymer dispersed liquid crystal transmission gratings,” RSC Adv. 4(73), 38606–38613 (2014).
[Crossref]

Sci. Rep. (1)

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Ji, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals,” Sci. Rep. 2(1), 627 (2012).
[Crossref] [PubMed]

Other (1)

J. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The fabrication process of the cell. (a) Optical setup used for seven-beam interference. kn is the wave vector, θ represents the angle between the beam and vertical z axis, Φ represents the angle between the side and bottom plane. A laser beam was split into seven beams through the prism and interfered with each other. The interfered pattern was recorded by the cell filled with LC/monomer mixture. (b) Quasicrystal structure formed.
Fig. 2
Fig. 2 (a) The optical setup of lasing generation. A Q-switched frequency-doubled Nd:YAG pulsed laser with 532 nm lasing was used to pump the quasicrystal structure. The pump beam was focused by a cylindrical lens, and then impinged on the surface of the sample in the shape of a narrow line. (b) The photo of generated lasing spot.
Fig. 3
Fig. 3 (a) The simulated pattern of aperiodic quasicrystal formed by 7-beam interference. After light induced polymerization, phase separation of polymer and LC occurred. The green- and yellow-area represents relatively high- and low-intensity region, corresponding to polymer-rich and LC-rich region, respectively. Pumping line (OO’) is at the center of quasicrystal structure. (b) The AFM image of surface of seven-beam interference pattern. White region in the circle represents polymer region with 2N (N = 7) symmetry locations.
Fig. 4
Fig. 4 The output intensity and line width verse pumping energy. (a) Lasing peak at 632 nm for DCM doped quasicrystal, where the threshold was 48.0 μJ/pulse. (b) Lasing peak at 629 nm for MEH-PPV film coated quasicrystal, where the threshold was dramatically reduced to 2.12 μJ/pulse.
Fig. 5
Fig. 5 (a) Lasing at different polarization direction from 0° to 180°. Black dots present the measured data and the red line is the fitted sine curve. (b) Schematic of LC droplets with bipolar configuration, where the directors in H-PDLC structure is random oriented in y-z plane.
Fig. 6
Fig. 6 Lasing emission spectra with different thickness of MEH-PPV films at 14 μJ/pulse. (a) For 60 nm thickness film, the peak is at 632 nm andthe threshold is 5.94 μJ/pulse. (b) For 80 nm thickness film, the peak is at 629 nm and the threshold is 2.12 μJ/pulse. The lasing is operated at single-mode. (c) For 100 nm thickness film, the peak is at 633 nm, and no lasing is achieved.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k n =k( cos 2(n1)π 7 sinθ,sin 2(n1)π 7 sinθ,cosθ ),
I(r)=( l,m=1 7 E l E m exp[i( k l k m )r] ),

Metrics