Abstract

This work proposes a novel approach to perform optical cancellation of RF interference with any constant phase change, based on polarization-modulator-based microwave photonic phase shifters. Preliminary results validate the proposed scheme and achieve a 30-dB cancellation depth over 9.5 GHz. The frequency independent microwave photonic phase shifters also allow for wide frequency range tunability towards 30 GHz, and recovery of a signal from a wideband interferer. The experimental results are limited by the imperfection of the electrical components. The proposed cancellation scheme might not only be applicable for WLANs based on standards such as IEEE 802.11ad and 802.11aj, but also provide a straight forward solution to the multipath effect.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration

Yinghong Yu, Yunhao Zhang, Lin Huang, and Shilin Xiao
Appl. Opt. 57(6) 1284-1291 (2018)

Experimental study of wideband in-band full-duplex communication based on optical self-interference cancellation

Yunhao Zhang, Shilin Xiao, Yinghong Yu, Cao Chen, Meihua Bi, Ling Liu, Lu Zhang, and Weisheng Hu
Opt. Express 24(26) 30139-30148 (2016)

Microwave photonic RF front-end for co-frequency co-time full duplex 5G communication with integrated RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion

Linbojie Huang, Yucheng Zhang, Xiaolei Li, Lei Deng, Mengfan Cheng, Songnian Fu, Ming Tang, and Deming Liu
Opt. Express 27(22) 32147-32157 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
    [Crossref]
  2. J. G. Kim, S. Ko, S. Jeon, J. W. Park, and S. Hong, “Balanced topology to cancel Tx leakage in CW radar,” IEEE Microw. Wirel. Compon. Lett. 14(9), 443–445 (2004).
    [Crossref]
  3. B. Yang, Y. Dong, Z. Yu, and J. Zhou, “An RF self-interference cancellation circuit for the full-duplex wireless communications,” in Proceedings of IEEE Conference on International Symposium on Antennas & Propagation (IEEE, 2013), pp. 1048–1051.
  4. M. P. Chang, C. L. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(2), 1018–1021 (2015).
    [Crossref]
  5. S. Zhang, S. Xiao, Y. Zhang, H. Feng, L. Zhang, and Z. Zhou, “Directly modulated laser-based optical radio frequency self-interference cancellation system,” Opt. Eng. 55(9), 026116 (2016).
    [Crossref]
  6. W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband Optical Multipath Interference Cancellation Based on a Dispersive Element,” IEEE Photonics Technol. Lett. 28(8), 849–851 (2016).
    [Crossref]
  7. V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).
    [Crossref]
  8. C. H. Cox and E. I. Ackerman, “TIPRx: A Transmit-Isolating Photonic Receiver,” J. Lightwave Technol. 32(20), 3630–3636 (2014).
    [Crossref]
  9. J. Qi, X. Qu, and Z. Ren, “Development of a 3 cm band reflected power canceller,” in Proceedings of International Conference on Radar (IEEE, 2001), pp. 1098–1102.
  10. S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett. 37(21), 4483–4485 (2012).
    [Crossref] [PubMed]

2016 (2)

S. Zhang, S. Xiao, Y. Zhang, H. Feng, L. Zhang, and Z. Zhou, “Directly modulated laser-based optical radio frequency self-interference cancellation system,” Opt. Eng. 55(9), 026116 (2016).
[Crossref]

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband Optical Multipath Interference Cancellation Based on a Dispersive Element,” IEEE Photonics Technol. Lett. 28(8), 849–851 (2016).
[Crossref]

2015 (2)

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).
[Crossref]

M. P. Chang, C. L. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(2), 1018–1021 (2015).
[Crossref]

2014 (2)

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
[Crossref]

C. H. Cox and E. I. Ackerman, “TIPRx: A Transmit-Isolating Photonic Receiver,” J. Lightwave Technol. 32(20), 3630–3636 (2014).
[Crossref]

2012 (1)

2004 (1)

J. G. Kim, S. Ko, S. Jeon, J. W. Park, and S. Hong, “Balanced topology to cancel Tx leakage in CW radar,” IEEE Microw. Wirel. Compon. Lett. 14(9), 443–445 (2004).
[Crossref]

Ackerman, E. I.

Brand, J.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
[Crossref]

Chang, M. P.

M. P. Chang, C. L. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(2), 1018–1021 (2015).
[Crossref]

Choi, J.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
[Crossref]

Cox, C. H.

Diehl, J. F.

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).
[Crossref]

Dong, Y.

B. Yang, Y. Dong, Z. Yu, and J. Zhou, “An RF self-interference cancellation circuit for the full-duplex wireless communications,” in Proceedings of IEEE Conference on International Symposium on Antennas & Propagation (IEEE, 2013), pp. 1048–1051.

Feng, H.

S. Zhang, S. Xiao, Y. Zhang, H. Feng, L. Zhang, and Z. Zhou, “Directly modulated laser-based optical radio frequency self-interference cancellation system,” Opt. Eng. 55(9), 026116 (2016).
[Crossref]

Hong, S.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
[Crossref]

J. G. Kim, S. Ko, S. Jeon, J. W. Park, and S. Hong, “Balanced topology to cancel Tx leakage in CW radar,” IEEE Microw. Wirel. Compon. Lett. 14(9), 443–445 (2004).
[Crossref]

Jain, M.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
[Crossref]

Jeon, S.

J. G. Kim, S. Ko, S. Jeon, J. W. Park, and S. Hong, “Balanced topology to cancel Tx leakage in CW radar,” IEEE Microw. Wirel. Compon. Lett. 14(9), 443–445 (2004).
[Crossref]

Katti, S.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
[Crossref]

Kim, J. G.

J. G. Kim, S. Ko, S. Jeon, J. W. Park, and S. Hong, “Balanced topology to cancel Tx leakage in CW radar,” IEEE Microw. Wirel. Compon. Lett. 14(9), 443–445 (2004).
[Crossref]

Ko, S.

J. G. Kim, S. Ko, S. Jeon, J. W. Park, and S. Hong, “Balanced topology to cancel Tx leakage in CW radar,” IEEE Microw. Wirel. Compon. Lett. 14(9), 443–445 (2004).
[Crossref]

Lee, C. L.

M. P. Chang, C. L. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(2), 1018–1021 (2015).
[Crossref]

Levis, P.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
[Crossref]

McKinney, J. D.

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).
[Crossref]

Mehlman, J.

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
[Crossref]

Niu, Z.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband Optical Multipath Interference Cancellation Based on a Dispersive Element,” IEEE Photonics Technol. Lett. 28(8), 849–851 (2016).
[Crossref]

Pan, S.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband Optical Multipath Interference Cancellation Based on a Dispersive Element,” IEEE Photonics Technol. Lett. 28(8), 849–851 (2016).
[Crossref]

S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett. 37(21), 4483–4485 (2012).
[Crossref] [PubMed]

Park, J. W.

J. G. Kim, S. Ko, S. Jeon, J. W. Park, and S. Hong, “Balanced topology to cancel Tx leakage in CW radar,” IEEE Microw. Wirel. Compon. Lett. 14(9), 443–445 (2004).
[Crossref]

Prucnal, P. R.

M. P. Chang, C. L. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(2), 1018–1021 (2015).
[Crossref]

Qi, J.

J. Qi, X. Qu, and Z. Ren, “Development of a 3 cm band reflected power canceller,” in Proceedings of International Conference on Radar (IEEE, 2001), pp. 1098–1102.

Qu, X.

J. Qi, X. Qu, and Z. Ren, “Development of a 3 cm band reflected power canceller,” in Proceedings of International Conference on Radar (IEEE, 2001), pp. 1098–1102.

Ren, Z.

J. Qi, X. Qu, and Z. Ren, “Development of a 3 cm band reflected power canceller,” in Proceedings of International Conference on Radar (IEEE, 2001), pp. 1098–1102.

Sunderman, C. E.

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).
[Crossref]

Urick, V. J.

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).
[Crossref]

Wang, M.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband Optical Multipath Interference Cancellation Based on a Dispersive Element,” IEEE Photonics Technol. Lett. 28(8), 849–851 (2016).
[Crossref]

Williams, K. J.

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).
[Crossref]

Wu, B.

M. P. Chang, C. L. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(2), 1018–1021 (2015).
[Crossref]

Xiang, P.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband Optical Multipath Interference Cancellation Based on a Dispersive Element,” IEEE Photonics Technol. Lett. 28(8), 849–851 (2016).
[Crossref]

Xiao, S.

S. Zhang, S. Xiao, Y. Zhang, H. Feng, L. Zhang, and Z. Zhou, “Directly modulated laser-based optical radio frequency self-interference cancellation system,” Opt. Eng. 55(9), 026116 (2016).
[Crossref]

Yang, B.

B. Yang, Y. Dong, Z. Yu, and J. Zhou, “An RF self-interference cancellation circuit for the full-duplex wireless communications,” in Proceedings of IEEE Conference on International Symposium on Antennas & Propagation (IEEE, 2013), pp. 1048–1051.

Yu, Z.

B. Yang, Y. Dong, Z. Yu, and J. Zhou, “An RF self-interference cancellation circuit for the full-duplex wireless communications,” in Proceedings of IEEE Conference on International Symposium on Antennas & Propagation (IEEE, 2013), pp. 1048–1051.

Zhang, L.

S. Zhang, S. Xiao, Y. Zhang, H. Feng, L. Zhang, and Z. Zhou, “Directly modulated laser-based optical radio frequency self-interference cancellation system,” Opt. Eng. 55(9), 026116 (2016).
[Crossref]

Zhang, S.

S. Zhang, S. Xiao, Y. Zhang, H. Feng, L. Zhang, and Z. Zhou, “Directly modulated laser-based optical radio frequency self-interference cancellation system,” Opt. Eng. 55(9), 026116 (2016).
[Crossref]

Zhang, Y.

S. Zhang, S. Xiao, Y. Zhang, H. Feng, L. Zhang, and Z. Zhou, “Directly modulated laser-based optical radio frequency self-interference cancellation system,” Opt. Eng. 55(9), 026116 (2016).
[Crossref]

S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett. 37(21), 4483–4485 (2012).
[Crossref] [PubMed]

Zhou, J.

B. Yang, Y. Dong, Z. Yu, and J. Zhou, “An RF self-interference cancellation circuit for the full-duplex wireless communications,” in Proceedings of IEEE Conference on International Symposium on Antennas & Propagation (IEEE, 2013), pp. 1048–1051.

Zhou, W.

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband Optical Multipath Interference Cancellation Based on a Dispersive Element,” IEEE Photonics Technol. Lett. 28(8), 849–851 (2016).
[Crossref]

Zhou, Z.

S. Zhang, S. Xiao, Y. Zhang, H. Feng, L. Zhang, and Z. Zhou, “Directly modulated laser-based optical radio frequency self-interference cancellation system,” Opt. Eng. 55(9), 026116 (2016).
[Crossref]

IEEE Commun. Mag. (1)

S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag. 52(2), 114–121 (2014).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

J. G. Kim, S. Ko, S. Jeon, J. W. Park, and S. Hong, “Balanced topology to cancel Tx leakage in CW radar,” IEEE Microw. Wirel. Compon. Lett. 14(9), 443–445 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. P. Chang, C. L. Lee, B. Wu, and P. R. Prucnal, “Adaptive optical self-interference cancellation using a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 27(2), 1018–1021 (2015).
[Crossref]

W. Zhou, P. Xiang, Z. Niu, M. Wang, and S. Pan, “Wideband Optical Multipath Interference Cancellation Based on a Dispersive Element,” IEEE Photonics Technol. Lett. 28(8), 849–851 (2016).
[Crossref]

V. J. Urick, J. F. Diehl, C. E. Sunderman, J. D. McKinney, and K. J. Williams, “An optical technique for radio frequency interference mitigation,” IEEE Photonics Technol. Lett. 27(12), 1333–1336 (2015).
[Crossref]

J. Lightwave Technol. (1)

Opt. Eng. (1)

S. Zhang, S. Xiao, Y. Zhang, H. Feng, L. Zhang, and Z. Zhou, “Directly modulated laser-based optical radio frequency self-interference cancellation system,” Opt. Eng. 55(9), 026116 (2016).
[Crossref]

Opt. Lett. (1)

Other (2)

B. Yang, Y. Dong, Z. Yu, and J. Zhou, “An RF self-interference cancellation circuit for the full-duplex wireless communications,” in Proceedings of IEEE Conference on International Symposium on Antennas & Propagation (IEEE, 2013), pp. 1048–1051.

J. Qi, X. Qu, and Z. Ren, “Development of a 3 cm band reflected power canceller,” in Proceedings of International Conference on Radar (IEEE, 2001), pp. 1098–1102.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the proposed photonics-based RF cancellation system. LD: laser diode; PC: polarization controller; PolM: polarization modulator; EPS: electrical phase shifter; OBPF: optical bandpass filter; Pol: polarizer; OTDL: optical tunable delay line; OVA: optical variable attenuator; PD: photodetector.
Fig. 2
Fig. 2 The measured wideband cancellation based on microwave photonic phase shifter. The lines with arrows mark the 20-dB and 30-dB cancellation bandwidth.
Fig. 3
Fig. 3 The measured amplitude and phase mismatches between interference branch and the compensation branch. Inset shows the phase response of the 90° electrical hybrid which is used to imitate the environment introduced phase change.
Fig. 4
Fig. 4 RF cancellation at different central frequencies, manipulated by the microwave photonic phase shifter.
Fig. 5
Fig. 5 Measured RF spectra of the received signal (a) before cancellation, (b) after amplitude and delay-controlled cancellation and (c) after complete cancellation including phase control.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = 10 lg ( 1 + 10 Δ α 10 2 10 Δ α 20 cos Δ φ )

Metrics