Abstract

We experimentally show an all-optical wavelength conversion of 8 × 32-GBd single-polarization 16QAM signals using a silicon nano-rib waveguide. The application of reverse biasing of the p-i-n junction of the waveguide allows a conversion efficiency of −8.5 dB with a measured 3-dB optical bandwidth of about 40 nm. Using digital coherent reception, it is shown that the receiver optical signal-to-noise ratio penalty, at a bit-error ratio of 1 × 10−3, of the wavelength-converted signals over all eight channels was less than 0.6 dB with reference to their respective back-to-back signal channels.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase regeneration of DPSK signals in a silicon waveguide with reverse-biased p-i-n junction

Francesco Da Ros, Dragana Vukovic, Andrzej Gajda, Kjeld Dalgaard, Lars Zimmermann, Bernd Tillack, Michael Galili, Klaus Petermann, and Christophe Peucheret
Opt. Express 22(5) 5029-5036 (2014)

High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides

Haisheng Rong, Ying-Hao Kuo, Ansheng Liu, Mario Paniccia, and Oded Cohen
Opt. Express 14(3) 1182-1188 (2006)

Integrated wavelength conversion for adaptively modulated WDM-OFDM signals in a silicon waveguide

Xiaoyan Wang, Xianglian Feng, Lingchen Hunag, Changjian Guo, Xuezhi Hong, and Shiming Gao
Opt. Express 25(25) 31417-31422 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Drawing, J. Evangelista, and B. Zhu, “Generation and 1200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. European Conference on Optical Communication (ECOC, 2010), paper PD.2.2.
  2. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  3. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [Crossref]
  4. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” J. Sel. Areas Comm. 8(6), 948–964 (1990).
    [Crossref]
  5. S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
    [Crossref]
  6. N. Chi, J. Zhang, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation,” IEEE Photonics Technol. Lett. 15(5), 760–762 (2003).
    [Crossref]
  7. H. Sotobayashi and W. Chujo, “Inter-wavelength-band conversions and demultiplexings of 640 Gb/s OTDM signals,” in Proc. Optical Fiber Communication. Conference (OFC, 2002), paper WM2.
  8. T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single-and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
    [Crossref]
  9. T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Sel. Top. Quantum Electron. 46(8), 1206–1213 (2010).
    [Crossref]
  10. H. Hu, H. Suche, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, R. Nouroozi, W. Sohler, and C. Schubert, “Polarization insensitive all-optical wavelength, conversion of 320 Gb/s RZ-DQPSK data signals,” in Proc. Optical Fiber Communication. Conference (OFC, 2009), paper OThS6.
  11. M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
    [Crossref]
  12. M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using highly nonlinear chalcogenide glass chip,” IEEE Photonics Technol. Lett. 22(1), 3–5 (2010).
    [Crossref]
  13. C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22(5), 5291–5298 (2014).
    [Crossref] [PubMed]
  14. F. Da Ros, M. P. Yankov, E. P. da Silva, M. Pu, L. Ottaviano, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenlowe, “Characterization and optimization of a high-efficiency AlGaAs-on-insulator-based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
    [Crossref]
  15. C. J. Krückel, V. Torres-Company, P. A. Andrekson, D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Continuous wave-pumped wavelength conversion in low-loss silicon nitride waveguides,” Opt. Lett. 40(6), 875–878 (2015).
    [Crossref] [PubMed]
  16. M. A. Ettabib, C. Lacava, Z. Liu, A. Bogris, A. Kapsalis, M. Brun, P. Labeye, S. Nicoletti, D. Syvridis, D. J. Richardson, and P. Petropoulos, “Wavelength conversion of complex modulation formats in a compact SiGe waveguide,” Opt. Express 25(4), 3252–3258 (2017).
    [Crossref] [PubMed]
  17. R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator” Proc. Optical Fiber Communication. Conference (OFC), Th3J.1, (2016).
  18. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
    [Crossref] [PubMed]
  19. D. Vukovic, J. Schroeder, Y. Ding, M. D. Pelusi, L. B. Du, H. Ou, and C. Peucheret, “Wavelength conversion of DP-QPSK signals in a silicon polarization diversity circuit,” IEEE Photonics Technol. Lett. 27(4), 411–414 (2015).
    [Crossref]
  20. R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
    [Crossref] [PubMed]
  21. A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, R. Elschner, T. Richter, C. Schubert, B. Tillack, and K. Petermann, “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction,” Opt. Express 20(12), 13100–13107 (2012).
    [Crossref] [PubMed]
  22. E. Liebig, I. Sackey, T. Richter, A. Gajda, A. Peczek, L. Zimmermann, K. Petermann, and C. Schubert, “Performance evaluation of a silicon waveguide for phase regeneration of a QPSK signal,” J. Lightwave Technol. 35(6), 1149–1156 (2017).
    [Crossref]
  23. F. Da Ros, D. Vukovic, A. Gajda, K. Dalgaard, L. Zimmermann, B. Tillack, M. Galili, K. Petermann, and C. Peucheret, “Phase regeneration of DPSK signals in a silicon waveguide with reverse-biased p-i-n junction,” Opt. Express 22(5), 5029–5036 (2014).
    [Crossref] [PubMed]
  24. I. Sackey, E. Liebig, T. Richter, A. Gajda, L. Zimmermann, K. Petermann, and C. Schubert, “QPSK phase-regeneration in a silicon waveguide using phase-sensitive processing,” in Proc. European Conference on Optical Communication (ECOC, 2016), paper W.3.C.2.
  25. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
    [Crossref] [PubMed]
  26. J. N. Damask, “Polarization optics in telecommunications,” Springer, 120−122 (2005).
  27. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
    [Crossref]
  28. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” J. Lightwave Technol. 16, 200–215 (2010).
  29. I. Sackey, R. Elschner, M. Nölle, T. Richter, L. Molle, C. Meuer, M. Jazayerifar, S. Warm, K. Petermann, and C. Schubert, “Characterization of a fiber-optical parametric amplifier in a 5×28-GBd 16-QAM DWDM system” Proc. Optical Fiber Communication. Conference (OFC), W3E.3, (2014).
  30. M. Jazayerifar, S. Warm, R. Elschner, D. Kroushkov, I. Sackey, C. Meuer, C. Schubert, and K. Petermann, “Performance evaluation of DWDM communication systems with fiber optical parametric amplifier,” J. Lightwave Technol. 31(9), 1454–1461 (2013).
    [Crossref]

2017 (3)

2015 (2)

C. J. Krückel, V. Torres-Company, P. A. Andrekson, D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Continuous wave-pumped wavelength conversion in low-loss silicon nitride waveguides,” Opt. Lett. 40(6), 875–878 (2015).
[Crossref] [PubMed]

D. Vukovic, J. Schroeder, Y. Ding, M. D. Pelusi, L. B. Du, H. Ou, and C. Peucheret, “Wavelength conversion of DP-QPSK signals in a silicon polarization diversity circuit,” IEEE Photonics Technol. Lett. 27(4), 411–414 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (2)

A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, R. Elschner, T. Richter, C. Schubert, B. Tillack, and K. Petermann, “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction,” Opt. Express 20(12), 13100–13107 (2012).
[Crossref] [PubMed]

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single-and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
[Crossref]

2011 (1)

2010 (5)

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using highly nonlinear chalcogenide glass chip,” IEEE Photonics Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” J. Lightwave Technol. 16, 200–215 (2010).

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[Crossref] [PubMed]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Sel. Top. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

2009 (2)

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
[Crossref]

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

2003 (1)

N. Chi, J. Zhang, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation,” IEEE Photonics Technol. Lett. 15(5), 760–762 (2003).
[Crossref]

1996 (2)

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

1990 (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” J. Sel. Areas Comm. 8(6), 948–964 (1990).
[Crossref]

Adams, R.

Agrawal, G. P.

Andrekson, P. A.

Asobe, M.

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Sel. Top. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

Bauters, J. F.

Bogris, A.

Bowers, J. E.

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” J. Sel. Areas Comm. 8(6), 948–964 (1990).
[Crossref]

Brun, M.

Bulla, D. A.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using highly nonlinear chalcogenide glass chip,” IEEE Photonics Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

Chagnon, M.

Chen, L. R.

Chen, X.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

Chi, N.

N. Chi, J. Zhang, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation,” IEEE Photonics Technol. Lett. 15(5), 760–762 (2003).
[Crossref]

Choi, D.-Y.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using highly nonlinear chalcogenide glass chip,” IEEE Photonics Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

Cristiani, I.

Da Ros, F.

da Silva, E. P.

Dadap, J. I.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

Dalgaard, K.

Ding, Y.

D. Vukovic, J. Schroeder, Y. Ding, M. D. Pelusi, L. B. Du, H. Ou, and C. Peucheret, “Wavelength conversion of DP-QPSK signals in a silicon polarization diversity circuit,” IEEE Photonics Technol. Lett. 27(4), 411–414 (2015).
[Crossref]

Drummond, M. V.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
[Crossref]

Du, L. B.

D. Vukovic, J. Schroeder, Y. Ding, M. D. Pelusi, L. B. Du, H. Ou, and C. Peucheret, “Wavelength conversion of DP-QPSK signals in a silicon polarization diversity circuit,” IEEE Photonics Technol. Lett. 27(4), 411–414 (2015).
[Crossref]

Dulkeith, E.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

Eggleton, B. J.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using highly nonlinear chalcogenide glass chip,” IEEE Photonics Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

Elschner, R.

Essiambre, R.-J.

Ettabib, M. A.

Forchhammer, S.

Foschini, G. J.

Foster, M. A.

Gaeta, A. L.

Gajda, A.

Galili, M.

Gandhe, A.

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single-and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
[Crossref]

Goebel, B.

Green, W. M.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

Heck, M. J. R.

Holm-Nielsen, P. V.

N. Chi, J. Zhang, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation,” IEEE Photonics Technol. Lett. 15(5), 760–762 (2003).
[Crossref]

Hsieh, I.-W.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

Hu, H.

Hvam, J. M.

Ito, H.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
[Crossref]

Jazayerifar, M.

Jeppesen, P.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[Crossref] [PubMed]

N. Chi, J. Zhang, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation,” IEEE Photonics Technol. Lett. 15(5), 760–762 (2003).
[Crossref]

Ji, H.

Kapsalis, A.

Kramer, G.

Kroushkov, D.

Krückel, C. J.

Labeye, P.

Lacava, C.

Li, J.

Liebig, E.

Lipson, M.

Liu, X.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

Liu, Z.

Luan, F.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using highly nonlinear chalcogenide glass chip,” IEEE Photonics Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

Luther-Davies, B.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using highly nonlinear chalcogenide glass chip,” IEEE Photonics Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

Madden, S.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using highly nonlinear chalcogenide glass chip,” IEEE Photonics Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

Malekiha, M.

Meuer, C.

Minzioni, P.

Monteiro, P. P.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
[Crossref]

Mulvad, H. C. H.

Nicoletti, S.

Nogueira, R. N.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
[Crossref]

Osgood, R. M.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

Ottaviano, L.

Ou, H.

D. Vukovic, J. Schroeder, Y. Ding, M. D. Pelusi, L. B. Du, H. Ou, and C. Peucheret, “Wavelength conversion of DP-QPSK signals in a silicon polarization diversity circuit,” IEEE Photonics Technol. Lett. 27(4), 411–414 (2015).
[Crossref]

Oxenlowe, L. K.

Oxenløwe, L. K.

Panoiu, N. C.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

Peczek, A.

Pelusi, M. D.

D. Vukovic, J. Schroeder, Y. Ding, M. D. Pelusi, L. B. Du, H. Ou, and C. Peucheret, “Wavelength conversion of DP-QPSK signals in a silicon polarization diversity circuit,” IEEE Photonics Technol. Lett. 27(4), 411–414 (2015).
[Crossref]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using highly nonlinear chalcogenide glass chip,” IEEE Photonics Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

Petermann, K.

Petropoulos, P.

Peucheret, C.

D. Vukovic, J. Schroeder, Y. Ding, M. D. Pelusi, L. B. Du, H. Ou, and C. Peucheret, “Wavelength conversion of DP-QPSK signals in a silicon polarization diversity circuit,” IEEE Photonics Technol. Lett. 27(4), 411–414 (2015).
[Crossref]

F. Da Ros, D. Vukovic, A. Gajda, K. Dalgaard, L. Zimmermann, B. Tillack, M. Galili, K. Petermann, and C. Peucheret, “Phase regeneration of DPSK signals in a silicon waveguide with reverse-biased p-i-n junction,” Opt. Express 22(5), 5029–5036 (2014).
[Crossref] [PubMed]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[Crossref] [PubMed]

N. Chi, J. Zhang, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation,” IEEE Photonics Technol. Lett. 15(5), 760–762 (2003).
[Crossref]

Plant, D. V.

Premaratne, M.

Pu, M.

Pusino, V.

Reis, J. D.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
[Crossref]

Richardson, D. J.

Richter, T.

Rukhlenko, I. D.

Sackey, I.

Salem, R.

Schroeder, J.

D. Vukovic, J. Schroeder, Y. Ding, M. D. Pelusi, L. B. Du, H. Ou, and C. Peucheret, “Wavelength conversion of DP-QPSK signals in a silicon polarization diversity circuit,” IEEE Photonics Technol. Lett. 27(4), 411–414 (2015).
[Crossref]

Schubert, C.

Semenova, E.

Shinada, S.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
[Crossref]

Shirasaki, M.

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

Sorel, M.

Spasojevic, M.

Spencer, D. T.

Syvridis, D.

Tadanaga, O.

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Sel. Top. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

Teixeira, A. L.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
[Crossref]

Tian, H.

Tillack, B.

Torres-Company, V.

Turner-Foster, A. C.

Umeki, T.

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Sel. Top. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

Vlasov, Y. A.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

Vukovic, D.

D. Vukovic, J. Schroeder, Y. Ding, M. D. Pelusi, L. B. Du, H. Ou, and C. Peucheret, “Wavelength conversion of DP-QPSK signals in a silicon polarization diversity circuit,” IEEE Photonics Technol. Lett. 27(4), 411–414 (2015).
[Crossref]

F. Da Ros, D. Vukovic, A. Gajda, K. Dalgaard, L. Zimmermann, B. Tillack, M. Galili, K. Petermann, and C. Peucheret, “Phase regeneration of DPSK signals in a silicon waveguide with reverse-biased p-i-n junction,” Opt. Express 22(5), 5029–5036 (2014).
[Crossref] [PubMed]

Wada, N.

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
[Crossref]

Warm, S.

Watanabe, S.

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

Winzer, G.

Winzer, P. J.

Yankov, M. P.

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

Yvind, K.

Zhang, J.

N. Chi, J. Zhang, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation,” IEEE Photonics Technol. Lett. 15(5), 760–762 (2003).
[Crossref]

Zibar, D.

Zimmermann, L.

Adv. Opt. (1)

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. 1(1), 162–235 (2009).
[Crossref]

Electron. Lett. (1)

M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gb/s in PPLN waveguide at room temperature,” Electron. Lett. 45(22), 1135–1137 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Richter, R. Elschner, A. Gandhe, K. Petermann, and C. Schubert, “Parametric amplification and wavelength conversion of single-and dual-polarization DQPSK signals,” IEEE J. Sel. Top. Quantum Electron. 18(2), 988–995 (2012).
[Crossref]

T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Sel. Top. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

D. Vukovic, J. Schroeder, Y. Ding, M. D. Pelusi, L. B. Du, H. Ou, and C. Peucheret, “Wavelength conversion of DP-QPSK signals in a silicon polarization diversity circuit,” IEEE Photonics Technol. Lett. 27(4), 411–414 (2015).
[Crossref]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using highly nonlinear chalcogenide glass chip,” IEEE Photonics Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

N. Chi, J. Zhang, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation,” IEEE Photonics Technol. Lett. 15(5), 760–762 (2003).
[Crossref]

J. Lightwave Technol. (7)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” J. Lightwave Technol. 16, 200–215 (2010).

M. Jazayerifar, S. Warm, R. Elschner, D. Kroushkov, I. Sackey, C. Meuer, C. Schubert, and K. Petermann, “Performance evaluation of DWDM communication systems with fiber optical parametric amplifier,” J. Lightwave Technol. 31(9), 1454–1461 (2013).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” J. Lightwave Technol. 14(3), 243–248 (1996).
[Crossref]

E. Liebig, I. Sackey, T. Richter, A. Gajda, A. Peczek, L. Zimmermann, K. Petermann, and C. Schubert, “Performance evaluation of a silicon waveguide for phase regeneration of a QPSK signal,” J. Lightwave Technol. 35(6), 1149–1156 (2017).
[Crossref]

F. Da Ros, M. P. Yankov, E. P. da Silva, M. Pu, L. Ottaviano, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenlowe, “Characterization and optimization of a high-efficiency AlGaAs-on-insulator-based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
[Crossref]

J. Sel. Areas Comm. (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” J. Sel. Areas Comm. 8(6), 948–964 (1990).
[Crossref]

Opt. Express (7)

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[Crossref] [PubMed]

M. A. Ettabib, C. Lacava, Z. Liu, A. Bogris, A. Kapsalis, M. Brun, P. Labeye, S. Nicoletti, D. Syvridis, D. J. Richardson, and P. Petropoulos, “Wavelength conversion of complex modulation formats in a compact SiGe waveguide,” Opt. Express 25(4), 3252–3258 (2017).
[Crossref] [PubMed]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[Crossref] [PubMed]

A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, R. Elschner, T. Richter, C. Schubert, B. Tillack, and K. Petermann, “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction,” Opt. Express 20(12), 13100–13107 (2012).
[Crossref] [PubMed]

R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
[Crossref] [PubMed]

F. Da Ros, D. Vukovic, A. Gajda, K. Dalgaard, L. Zimmermann, B. Tillack, M. Galili, K. Petermann, and C. Peucheret, “Phase regeneration of DPSK signals in a silicon waveguide with reverse-biased p-i-n junction,” Opt. Express 22(5), 5029–5036 (2014).
[Crossref] [PubMed]

C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22(5), 5291–5298 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (7)

I. Sackey, R. Elschner, M. Nölle, T. Richter, L. Molle, C. Meuer, M. Jazayerifar, S. Warm, K. Petermann, and C. Schubert, “Characterization of a fiber-optical parametric amplifier in a 5×28-GBd 16-QAM DWDM system” Proc. Optical Fiber Communication. Conference (OFC), W3E.3, (2014).

I. Sackey, E. Liebig, T. Richter, A. Gajda, L. Zimmermann, K. Petermann, and C. Schubert, “QPSK phase-regeneration in a silicon waveguide using phase-sensitive processing,” in Proc. European Conference on Optical Communication (ECOC, 2016), paper W.3.C.2.

J. N. Damask, “Polarization optics in telecommunications,” Springer, 120−122 (2005).

H. Hu, H. Suche, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, R. Nouroozi, W. Sohler, and C. Schubert, “Polarization insensitive all-optical wavelength, conversion of 320 Gb/s RZ-DQPSK data signals,” in Proc. Optical Fiber Communication. Conference (OFC, 2009), paper OThS6.

H. Sotobayashi and W. Chujo, “Inter-wavelength-band conversions and demultiplexings of 640 Gb/s OTDM signals,” in Proc. Optical Fiber Communication. Conference (OFC, 2002), paper WM2.

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Drawing, J. Evangelista, and B. Zhu, “Generation and 1200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. European Conference on Optical Communication (ECOC, 2010), paper PD.2.2.

R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, and S. Severi, “Silicon photonics: silicon nitride versus silicon-on-insulator” Proc. Optical Fiber Communication. Conference (OFC), Th3J.1, (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic representation of the experimental setup for characterization of the silicon waveguide using continuous wave signal, (b) Cross section of the 3-cm long nano-rib silicon waveguide showing its dimensions.
Fig. 2
Fig. 2 Group velocity dispersion parameter as a function of wavelength for silicon waveguides with 500-nm width and rib height (H) of: 220 nm (red line) and 400 nm (green line).
Fig. 3
Fig. 3 Linear transmission (linear loss) of the Silicon waveguide, using continuous wave (CW) for three different p-i-n junction reverse bias voltages of 0V, 20V, and 40V.
Fig. 4
Fig. 4 Idler conversion efficiency of the Silicon waveguide for three different p-i-n junction reverse bias voltages of 0V, 20V, and 40V at a pump power of + 26.6 dBm.
Fig. 5
Fig. 5 Experimental setup showing the 8 × 32 GBd single-polarization 16QAM transmitter, the black-box Silicon-based wavelength converter, and a single-polarization digital coherent receiver.
Fig. 6
Fig. 6 Input and output optical spectra of the 3 cm nano-rib silicon waveguide showing the idler conversion efficiency of the 8 × 32-GBd single-polarization 16QAM data. OSA resolution bandwidth of 0.1 nm.
Fig. 7
Fig. 7 Transmission of all 8-channels: (a) Received BER curves of channel 5 for different total input signal power over the measured receiver OSNR, (b) OSNR penalty (at a BER = 1 × 10−3) and maximum receiver OSNR as a function of total signal power into the waveguide.
Fig. 8
Fig. 8 (a) BER-vs.-OSNR measurements of the 8 × 32-GBd single-polarization 16QAM data showing the BER performances of the back-to-back signals (i.e. without the wavelength converter) and the wavelength-converted idlers of all the eight channels, (b) OSNR penalties at a BER of 1 × 10−3 of all the eight-wavelength-converted idlers with reference to their corresponding logical signal channels.
Fig. 9
Fig. 9 (a) Maximum receiver OSNR as a function of the logical channels for the data signal and the conjugated idlers, (b) Constellation plots of all 8-channels of the 32-GBd single-polarization 16QAM data signals (top constellation plot) and conjugated idlers (bottom constellation plot) at maximum receiver OSNR

Metrics