Abstract

A polarization-independent narrow passband optical filter with a FWHM bandwidth of ~10 MHz based on stimulated Brillouin scattering (SBS) effect is proposed and experimentally demonstrated. By optimizing the parameters of a depolarizer consisting of a power-splitting Mach-Zehnder interferometer (MZI) structure, degree of polarization (DOP) of the pump source can be reduced to less than 5%. Consequently frequency response of the SBS-based filter remains almost unchanged when the state of polarization (SOP) of the input signal varies and the corresponding polarization-dependent gain (PDG) is less than 1 dB. And the experimental results also indicate that the proposed filter can realize the wavelength-independent operation over a range of ~30 nm. Furthermore, high resolution optical spectrum measurement utilizing this novel filter is investigated. For an input signal with a frequency interval of 30 MHz in arbitrary SOP, spectral details can be clearly observed and the power stability of the measured spectra can be improved from 3~5 dB to less than 0.5 dB, which benefitting from the polarization independent operation of the forementioned filter. Moreover, considering the resolution degradation of the measured spectra induced by the frequency shift in the depolarizer, a sweep speed of 5 nm/s for the pump source and a delayed fiber length of 2000 m in the MZI should be used to guarantee the desired high spectral resolution of ~10 MHz.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering

Assaf Wise, Moshe Tur, and Avi Zadok
Opt. Express 19(22) 21945-21955 (2011)

Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling

Stefan Preussler, Avi Zadok, Andrzej Wiatrek, Moshe Tur, and Thomas Schneider
Opt. Express 20(13) 14734-14745 (2012)

Investigation and development of a high spectral resolution coherent optical spectrum analysis system

Kunpeng Feng, Jiwen Cui, Hong Dang, Shiyuan Zhao, Weidong Wu, and Jiubin Tan
Opt. Express 24(22) 25389-25402 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, X. Bao, and Z. Lu, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Opt. Lett. 39(10), 2967–2970 (2014).
    [Crossref] [PubMed]
  2. V. L. Iezzi, S. Loranger, M. Marois, and R. Kashyap, “High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber,” Opt. Lett. 39(4), 857–860 (2014).
    [Crossref] [PubMed]
  3. Y. Sano, M. Kobayashi, and T. Yoshino, “Sideband-suppressed narrow bandpass fibre Fabry-Pérot filter composed of fibre Bragg grating and dielectric mirror,” Electron. Lett. 49(21), 1350–1351 (2013).
    [Crossref]
  4. Y. Long and J. Wang, “Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator,” Opt. Express 23(14), 17739–17750 (2015).
    [Crossref] [PubMed]
  5. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19(5), 4566–4576 (2011).
    [Crossref] [PubMed]
  6. H. Zhang, M. Tang, Y. Xie, S. Fu, D. Liu, and P. P. Shum, “Programmable all-fiber structured waveshaper based on linearly chirped fiber Bragg grating and digital thermal controller,” Appl. Phys. B 12(4), 479–484 (2013).
    [Crossref]
  7. A. G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
    [Crossref]
  8. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [Crossref] [PubMed]
  9. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
    [Crossref]
  10. H. P. Bazargani, M. R. Fernández-Ruiz, and J. Azaña, “Tunable, nondispersive optical filter using photonic Hilbert transformation,” Opt. Lett. 39(17), 5232–5235 (2014).
    [Crossref] [PubMed]
  11. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
    [Crossref] [PubMed]
  12. Y. Dong, T. Jiang, L. Teng, H. Zhang, L. Chen, X. Bao, and Z. Lu, “Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings,” Opt. Lett. 39(10), 2967–2970 (2014).
    [Crossref] [PubMed]
  13. S. Preussler and T. Schneider, “Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection,” Opt. Express 23(20), 26879–26887 (2015).
    [Crossref] [PubMed]
  14. Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
    [Crossref]
  15. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
    [Crossref]
  16. A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
    [Crossref] [PubMed]
  17. R. W. Boyd, Nonlinear optics, (Academic, 2003), Chap. 9.
  18. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
    [Crossref] [PubMed]
  19. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
    [Crossref]
  20. Y. Dong, L. Chen, and X. Bao, “Characterization of the brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express 18(18), 18960–18967 (2010).
    [Crossref] [PubMed]
  21. B. Hillerich and E. Weidel, “Polarization noise in single mode fibers and its reduction by depolarizers,” Opt. Quantum Electron. 15(4), 281–287 (1983).
    [Crossref]
  22. K. Zhang, C. Ke, D. Pan, and D. Liu, “High Resolution and Selectivity SBS-based Filter Utilizing a Dual-stage Scheme,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), paper W3E. 5.
    [Crossref]
  23. S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20(13), 14734–14745 (2012).
    [Crossref] [PubMed]
  24. C. Xiong, M. Tang, C. Ke, Z. Feng, and Q. Wu, “Experimental Demonstration of Ultra-Dense WDM-PON With 7-core MCF Enabled Self-Homodyne Coherent Detection,” IEEE Photonics J. 9(2), 1 (2017).
    [Crossref]
  25. D. Pan, C. Ke, S. Fu, and D. Liu, “A Noise Suppression Method for Optical Spectrum Measurement Utilizing SBS-based Filter,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), paper W3I. 1.
    [Crossref]
  26. L. Wang, B. Zhou, C. Shu, and S. He, “Distributed Temperature Sensing Using Stimulated-Brillouin-Scattering-Based Slow Light,” IEEE Photonics J. 5(6), 6801808 (2013).
    [Crossref]
  27. A. Lopez-Gil, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simple Method for the Elimination of Polarization Noise in BOTDA Using Balanced Detection and Orthogonal Probe Sidebands,” J. Lightwave Technol. 33(12), 2605–2610 (2015).
    [Crossref]
  28. L. Yi, W. Wei, Y. Jaouen, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-Independent Rectangular Microwave Photonic Filter Based on Stimulated Brillouin Scattering,” J. Lightwave Technol. 34(2), 669–675 (2016).
    [Crossref]
  29. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
    [Crossref]
  30. K. Takada, K. Okamoto, and J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4(2), 213–219 (1986).
    [Crossref]
  31. W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. 1(3), 475–479 (1983).
    [Crossref]

2017 (1)

C. Xiong, M. Tang, C. Ke, Z. Feng, and Q. Wu, “Experimental Demonstration of Ultra-Dense WDM-PON With 7-core MCF Enabled Self-Homodyne Coherent Detection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

2016 (2)

2015 (3)

2014 (5)

2013 (3)

L. Wang, B. Zhou, C. Shu, and S. He, “Distributed Temperature Sensing Using Stimulated-Brillouin-Scattering-Based Slow Light,” IEEE Photonics J. 5(6), 6801808 (2013).
[Crossref]

Y. Sano, M. Kobayashi, and T. Yoshino, “Sideband-suppressed narrow bandpass fibre Fabry-Pérot filter composed of fibre Bragg grating and dielectric mirror,” Electron. Lett. 49(21), 1350–1351 (2013).
[Crossref]

H. Zhang, M. Tang, Y. Xie, S. Fu, D. Liu, and P. P. Shum, “Programmable all-fiber structured waveshaper based on linearly chirped fiber Bragg grating and digital thermal controller,” Appl. Phys. B 12(4), 479–484 (2013).
[Crossref]

2012 (2)

2011 (5)

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19(5), 4566–4576 (2011).
[Crossref] [PubMed]

A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
[Crossref] [PubMed]

A. G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
[Crossref]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

2010 (2)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Y. Dong, L. Chen, and X. Bao, “Characterization of the brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express 18(18), 18960–18967 (2010).
[Crossref] [PubMed]

2009 (1)

1994 (1)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

1986 (1)

K. Takada, K. Okamoto, and J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4(2), 213–219 (1986).
[Crossref]

1983 (2)

W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. 1(3), 475–479 (1983).
[Crossref]

B. Hillerich and E. Weidel, “Polarization noise in single mode fibers and its reduction by depolarizers,” Opt. Quantum Electron. 15(4), 281–287 (1983).
[Crossref]

Antman, Y.

Aryanfar, I.

Azaña, J.

Bao, X.

Bazargani, H. P.

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ben-Ezra, Y.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Bolea, M.

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Boot, A. J.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Burns, W. K.

W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. 1(3), 475–479 (1983).
[Crossref]

Cao, T.

A. G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
[Crossref]

Capmany, J.

Chen, L.

Chen, S.

A. G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
[Crossref]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
[Crossref] [PubMed]

Chin, S.

Choudhary, A.

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Dominguez-Lopez, A.

Dong, Y.

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Eggleton, B. J.

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Feng, Z.

C. Xiong, M. Tang, C. Ke, Z. Feng, and Q. Wu, “Experimental Demonstration of Ultra-Dense WDM-PON With 7-core MCF Enabled Self-Homodyne Coherent Detection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Fernández-Ruiz, M. R.

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Fu, S.

H. Zhang, M. Tang, Y. Xie, S. Fu, D. Liu, and P. P. Shum, “Programmable all-fiber structured waveshaper based on linearly chirped fiber Bragg grating and digital thermal controller,” Appl. Phys. B 12(4), 479–484 (2013).
[Crossref]

Gonzalez-Herraez, M.

Han, B.

He, S.

L. Wang, B. Zhou, C. Shu, and S. He, “Distributed Temperature Sensing Using Stimulated-Brillouin-Scattering-Based Slow Light,” IEEE Photonics J. 5(6), 6801808 (2013).
[Crossref]

Hillerich, B.

B. Hillerich and E. Weidel, “Polarization noise in single mode fibers and its reduction by depolarizers,” Opt. Quantum Electron. 15(4), 281–287 (1983).
[Crossref]

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hu, W.

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Iezzi, V. L.

Jaouen, Y.

Jiang, T.

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kashyap, R.

Ke, C.

C. Xiong, M. Tang, C. Ke, Z. Feng, and Q. Wu, “Experimental Demonstration of Ultra-Dense WDM-PON With 7-core MCF Enabled Self-Homodyne Coherent Detection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kobayashi, M.

Y. Sano, M. Kobayashi, and T. Yoshino, “Sideband-suppressed narrow bandpass fibre Fabry-Pérot filter composed of fibre Bragg grating and dielectric mirror,” Electron. Lett. 49(21), 1350–1351 (2013).
[Crossref]

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Li, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Liu, D.

H. Zhang, M. Tang, Y. Xie, S. Fu, D. Liu, and P. P. Shum, “Programmable all-fiber structured waveshaper based on linearly chirped fiber Bragg grating and digital thermal controller,” Appl. Phys. B 12(4), 479–484 (2013).
[Crossref]

Long, Y.

Lopez-Gil, A.

Loranger, S.

Lu, Z.

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Luther-Davies, B.

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ma, Y.

Madden, S.

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Marois, M.

Marpaung, D.

Martin-Lopez, S.

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Minasian, R. A.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Mora, J.

Morrison, B.

Morvan, M.

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Noda, J.

K. Takada, K. Okamoto, and J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4(2), 213–219 (1986).
[Crossref]

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Okamoto, K.

K. Takada, K. Okamoto, and J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4(2), 213–219 (1986).
[Crossref]

Ortega, B.

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Petropoulos, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Preussler, S.

Primerov, N.

Ren, A. G.

A. G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
[Crossref]

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Sales, S.

Sancho, J.

Sano, Y.

Y. Sano, M. Kobayashi, and T. Yoshino, “Sideband-suppressed narrow bandpass fibre Fabry-Pérot filter composed of fibre Bragg grating and dielectric mirror,” Electron. Lett. 49(21), 1350–1351 (2013).
[Crossref]

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Schneider, T.

Shahnia, S.

Shi, M.

Shieh, W.

Shu, C.

L. Wang, B. Zhou, C. Shu, and S. He, “Distributed Temperature Sensing Using Stimulated-Brillouin-Scattering-Based Slow Light,” IEEE Photonics J. 5(6), 6801808 (2013).
[Crossref]

Shum, P. P.

H. Zhang, M. Tang, Y. Xie, S. Fu, D. Liu, and P. P. Shum, “Programmable all-fiber structured waveshaper based on linearly chirped fiber Bragg grating and digital thermal controller,” Appl. Phys. B 12(4), 479–484 (2013).
[Crossref]

Stern, Y.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Takada, K.

K. Takada, K. Okamoto, and J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4(2), 213–219 (1986).
[Crossref]

Tang, M.

C. Xiong, M. Tang, C. Ke, Z. Feng, and Q. Wu, “Experimental Demonstration of Ultra-Dense WDM-PON With 7-core MCF Enabled Self-Homodyne Coherent Detection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

H. Zhang, M. Tang, Y. Xie, S. Fu, D. Liu, and P. P. Shum, “Programmable all-fiber structured waveshaper based on linearly chirped fiber Bragg grating and digital thermal controller,” Appl. Phys. B 12(4), 479–484 (2013).
[Crossref]

Tang, Y.

Teng, L.

Thévenaz, L.

Tur, M.

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Vu, K.

Wang, J.

Wang, L.

L. Wang, B. Zhou, C. Shu, and S. He, “Distributed Temperature Sensing Using Stimulated-Brillouin-Scattering-Based Slow Light,” IEEE Photonics J. 5(6), 6801808 (2013).
[Crossref]

Wei, W.

Weidel, E.

B. Hillerich and E. Weidel, “Polarization noise in single mode fibers and its reduction by depolarizers,” Opt. Quantum Electron. 15(4), 281–287 (1983).
[Crossref]

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Wiatrek, A.

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Wise, A.

Wu, Q.

C. Xiong, M. Tang, C. Ke, Z. Feng, and Q. Wu, “Experimental Demonstration of Ultra-Dense WDM-PON With 7-core MCF Enabled Self-Homodyne Coherent Detection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Xie, Y.

H. Zhang, M. Tang, Y. Xie, S. Fu, D. Liu, and P. P. Shum, “Programmable all-fiber structured waveshaper based on linearly chirped fiber Bragg grating and digital thermal controller,” Appl. Phys. B 12(4), 479–484 (2013).
[Crossref]

Xiong, C.

C. Xiong, M. Tang, C. Ke, Z. Feng, and Q. Wu, “Experimental Demonstration of Ultra-Dense WDM-PON With 7-core MCF Enabled Self-Homodyne Coherent Detection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Yang, Q.

Yi, L.

Yoshino, T.

Y. Sano, M. Kobayashi, and T. Yoshino, “Sideband-suppressed narrow bandpass fibre Fabry-Pérot filter composed of fibre Bragg grating and dielectric mirror,” Electron. Lett. 49(21), 1350–1351 (2013).
[Crossref]

Zadok, A.

Zhang, H.

Zhang, R.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Zhang, W.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Zhong, K.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Zhou, B.

L. Wang, B. Zhou, C. Shu, and S. He, “Distributed Temperature Sensing Using Stimulated-Brillouin-Scattering-Based Slow Light,” IEEE Photonics J. 5(6), 6801808 (2013).
[Crossref]

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Appl. Phys. B (1)

H. Zhang, M. Tang, Y. Xie, S. Fu, D. Liu, and P. P. Shum, “Programmable all-fiber structured waveshaper based on linearly chirped fiber Bragg grating and digital thermal controller,” Appl. Phys. B 12(4), 479–484 (2013).
[Crossref]

Electron. Lett. (1)

Y. Sano, M. Kobayashi, and T. Yoshino, “Sideband-suppressed narrow bandpass fibre Fabry-Pérot filter composed of fibre Bragg grating and dielectric mirror,” Electron. Lett. 49(21), 1350–1351 (2013).
[Crossref]

IEEE Photonics J. (2)

C. Xiong, M. Tang, C. Ke, Z. Feng, and Q. Wu, “Experimental Demonstration of Ultra-Dense WDM-PON With 7-core MCF Enabled Self-Homodyne Coherent Detection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

L. Wang, B. Zhou, C. Shu, and S. He, “Distributed Temperature Sensing Using Stimulated-Brillouin-Scattering-Based Slow Light,” IEEE Photonics J. 5(6), 6801808 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

J. Lightwave Technol. (5)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

K. Takada, K. Okamoto, and J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4(2), 213–219 (1986).
[Crossref]

W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. 1(3), 475–479 (1983).
[Crossref]

A. Lopez-Gil, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simple Method for the Elimination of Polarization Noise in BOTDA Using Balanced Detection and Orthogonal Probe Sidebands,” J. Lightwave Technol. 33(12), 2605–2610 (2015).
[Crossref]

L. Yi, W. Wei, Y. Jaouen, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-Independent Rectangular Microwave Photonic Filter Based on Stimulated Brillouin Scattering,” J. Lightwave Technol. 34(2), 669–675 (2016).
[Crossref]

Nat. Photonics (1)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Opt. Eng. (1)

A. G. Ren, T. Cao, and S. Chen, “Design and analysis of a cascaded microring resonator-based thermo-optical tunable filter with ultralarge free spectrum range and low power consumption,” Opt. Eng. 50(7), 074601 (2011).
[Crossref]

Opt. Express (8)

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Characterization of the brillouin grating spectra in a polarization-maintaining fiber,” Opt. Express 18(18), 18960–18967 (2010).
[Crossref] [PubMed]

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19(5), 4566–4576 (2011).
[Crossref] [PubMed]

A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
[Crossref] [PubMed]

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
[Crossref] [PubMed]

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20(13), 14734–14745 (2012).
[Crossref] [PubMed]

Y. Long and J. Wang, “Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator,” Opt. Express 23(14), 17739–17750 (2015).
[Crossref] [PubMed]

S. Preussler and T. Schneider, “Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection,” Opt. Express 23(20), 26879–26887 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

B. Hillerich and E. Weidel, “Polarization noise in single mode fibers and its reduction by depolarizers,” Opt. Quantum Electron. 15(4), 281–287 (1983).
[Crossref]

Photonics Res. (1)

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Other (3)

R. W. Boyd, Nonlinear optics, (Academic, 2003), Chap. 9.

K. Zhang, C. Ke, D. Pan, and D. Liu, “High Resolution and Selectivity SBS-based Filter Utilizing a Dual-stage Scheme,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), paper W3E. 5.
[Crossref]

D. Pan, C. Ke, S. Fu, and D. Liu, “A Noise Suppression Method for Optical Spectrum Measurement Utilizing SBS-based Filter,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), paper W3I. 1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic diagram of depolarization for frequency-sweeping pump
Fig. 2
Fig. 2 Calculated DOP and offset frequency at the output of the depolarizer as a function of the delay fiber length under various operation wavelengths, optical power differences between two arms and sweeping speeds of the pump.
Fig. 3
Fig. 3 Calculated DOP at the output of the depolarizer with different polarization states of the PC when the input light is (a) linearly polarized (b) circularly polarized and (c) elliptically polarized, respectively.
Fig. 4
Fig. 4 Experimental setup for DOP measurement of the depolarizer.
Fig. 5
Fig. 5 Measured DOP at the output of the depolarizer with different delay-fiber lengths when the input SOP is scrambled.
Fig. 6
Fig. 6 Measured DOP at the output of the depolarizer with different delay-fiber lengths under different wavelengths.
Fig. 7
Fig. 7 Experimental setup for a polarization-independent SBS-based filter.
Fig. 8
Fig. 8 Measured amplitude-frequency response of SBS-based filter with and without depolarizing the pumping source. The input optical power is (a) −60dBm and (b) −20dBm, respectively.
Fig. 9
Fig. 9 Measured PDG of the proposed polarization-independent SBS-based filter as a function of input optical power under different operation wavelengths.
Fig. 10
Fig. 10 Experimental setup for high-resolution spectroscopy by utilizing the polarization-independent SBS-based filter.
Fig. 11
Fig. 11 Measured spectra of a SUT with 30MHz frequency interval by utilizing the (a) polarization-dependent SBS-based filter and (b) polarization-independent SBS-based filter when the SOP of the SUT varies.
Fig. 12
Fig. 12 Measured peak power fluctuations of the SUT by utilizing the polarization-independent and -dependent SBS-based filter when the input optical power of the SUT varies.
Fig. 13
Fig. 13 Measured noise floors of the SUT by utilizing the polarization-independent and polarization -dependent SBS-based filter.
Fig. 14
Fig. 14 Measured spectra of the SUT by utilizing the polarization-independent SBS-based filter with different delay fiber lengths in the depolarizer.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

dP P dz =- γ m L( υ ) P P P S -α P P
dP S dz =- γ m L( υ ) P P P S +α P P
γ m = g m A m K( 1+ ω las ω m )
Δf=vΔT=w L c/n
E( t )= E 0 e( t ) e 0 t = E 0 2 0 v( ω ) e i( ω-ω 0 )t e 0 t
E 0 ( t )=[ E 0x ( t ) E 0y ( t ) ]=[ cos θe sin θe i( δ+Δδ ) ] E 0 e( t ) e 0 t
E 1 ( t )=[ E 1x ( t ) E 1y ( t ) ]= 1 2 [ cos θe sin θe i( δ+Δδ ) ] E 0 e( t ) e 0 t
E 2 ( t )=[ E 2x ( t ) E 2y ( t ) ]= i 2 [ cos θe sin θe i( δ+Δδ ) ] E 0 e( t ) e 0 t = 1 2 [ cos θe sin θe i( δ+Δδ ) ] E 0 e( t ) e i( ω 0 t+π/2 )
E 1 '( t )=[ E 1x' ( t ) E 1y' ( t ) ]= 1 2 [ cos θe sin θe i( δ+Δδ ) ] α 1 E 0 e( t ) e 0 t e -iβL
E 1 '( t )=[ E 1x' ( t ) E 1y' ( t ) ]= 1 2 [ cos θe sin θe i( δ+Δδ ) ] α 1 E 0 e( t ) e 0 t e -iβL = 1 2 [ cos θe sin θe i( δ+Δδ ) ] α 1 E 0 e 0 t 2 0 v( ω ) e i[ ( ω-ω 0 )t-β( ω )L ]
E 1 '( t )=[ E 1x' ( t ) E 1y' ( t ) ]= 1 2 [ cos θe sin θe i( δ+Δδ ) ] α 1 E 0 e 0 t 2 0 v( ω ) e i{ ( ω-ω 0 )t-[ β 0 +( ω-ω 0 )β'( ω 0 ) ]L } = 1 2 [ cos θe sin θe i( δ+Δδ ) ] α 1 E 0 e 0 t 2 0 v( ω ) e i( ω-ω 0 )t e -iβ 0 L e -i( ω-ω 0 )β'( ω 0 )L = 1 2 [ cos θe sin θe i( δ+Δδ ) ] α 1 E 0 e 0 t e -iβ 0 L 2 0 v( ω ) e i( ω-ω 0 )[ tβ'( ω 0 )L ] = 1 2 [ cos θe sin θe i( δ+Δδ ) ] α 1 E 0 e i( ω 0 t β 0 L ) e[ tβ'( ω 0 )L ]
E 2 '( t )=[ E 2x' ( t ) E 2y' ( t ) ]= 1 2 [ cos θ'e iδ' sin θ'e i( δ'+Δδ' ) ] α 2 E 0 e( t ) e i( ω 0 t+π/2 )
E 1x' ( t ) E 2x' ( t )+ E 1y' ( t ) E 2y' ( t )=0
E 3 ( t )=[ E 3x ( t ) E 3y ( t ) ]= 1 2 [ cos θe sin θe i( δ+Δδ ) ] α 1 E 0 e i( ω 0 t β 0 L ) e[ tβ'( ω 0 )L ] + 1 2 [ cos θ'e iδ' sin θ'e i( δ'+Δδ' ) ] α 2 E 0 e( t ) e i( ω 0 t+π/2 )
J=[ J xx J xy J yx J yy ], J xx = E 3x E 3x , J xy = E 3x E 3y =J yx , J yy = E 3y E 3y
J xx = E 0 2 4 { α 1 2 cos 2 θe[ t-β'( ω 0 )L ] e [ t-β'( ω 0 )L ] + α 1 α 2 cosθcos θ'e i( δ-δ' ) e -i( π/2+ β 0 L ) e[ t-β'( ω 0 )L ] e ( t ) + α 1 α 2 cosθcos θ'e i( δ'δ ) e i( π/2+ β 0 L ) e( t ) e [ t-β'( ω 0 )L ] + α 2 2 cos 2 θ'e( t ) e ( t )}
J yy = E 0 2 4 { α 1 2 sin 2 θe[ t-β'( ω 0 )L ] e [ t-β'( ω 0 )L ] + α 1 α 2 sinθsin θ'e i( δδ'+ΔδΔδ' ) e -i( π/2+ β 0 L ) e[ t-β'( ω 0 )L ] e ( t ) + α 1 α 2 sinθsin θ'e i( δ'δ+Δδ'Δδ ) e i( π/2+ β 0 L ) e( t ) e [ t-β'( ω 0 )L ] + α 2 2 sin 2 θ'e( t ) e ( t )}
J xy =J yx = E 0 2 4 { α 1 2 sinθcos θe iΔδ e[ t-β'( ω 0 )L ] e [ t-β'( ω 0 )L ] + α 1 α 2 sinθ'cos θe i( δδ'Δδ' ) e -i( π/2+ β 0 L ) e[ t-β'( ω 0 )L ] e ( t ) + α 1 α 2 sinθcos θ'e i( δ'δΔδ ) e i( π/2+ β 0 L ) e( t ) e [ t-β'( ω 0 )L ] + α 2 2 sinθ'cosθ'e( t ) e ( t )}
DOP= 1 4| J | ( J xx +J yy ) 2

Metrics