Abstract

The self-pulsing phenomenon in kilowatt level narrow-linewidth fiber amplifiers with white noise source (WNS) phase-modulation is observed experimentally. It possesses the obvious threshold of the pump power and prevents the narrow-linewidth fiber lasers from further power scaling. The experimental study shows that known explanations are not applicable here and indicates that occurrence of self-pulsing is closely related to Stimulated Brillouin Scattering (SBS) process. The theoretical discussion reveals that the spikes in the modulated spectrum are the critical factor that SBS threshold is lower than the theoretical estimation. The 1+1 dimensional SBS model analysis predicts that self-pulsing originates from forward second order Stokes pulses, which is in good qualitative agreement with the experimental data.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers

Angel Flores, Craig Robin, Ann Lanari, and Iyad Dajani
Opt. Express 22(15) 17735-17744 (2014)

1.5  kW polarization-maintained Yb-doped amplifier with 13  GHz linewidth by suppressing the self-pulsing and stimulated Brillouin scattering

Zhe Chang, Yanshan Wang, Yinhong Sun, Wanjing Peng, Weiwei Ke, Yi Ma, Rihong Zhu, and Chun Tang
Appl. Opt. 58(23) 6419-6425 (2019)

Comparison of phase modulation schemes for coherently combined fiber amplifiers

Brian Anderson, Angel Flores, Roger Holten, and Iyad Dajani
Opt. Express 23(21) 27046-27060 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, “Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers,” Proc. SPIE 9728, 972801 (2016).
    [Crossref]
  2. E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
    [Crossref]
  3. Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).
    [Crossref] [PubMed]
  4. F. Sanchez, P. Le Boudec, P.-L. François, and G. Stephan, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48, 2220 (1993).
    [Crossref] [PubMed]
  5. Y.-H. Liao and H. G. Winful, “Dynamics of distributed-feedback fiber lasers: Effect of nonlinear refraction,” Opt. Lett. 21, 471–473 (1996).
    [Crossref] [PubMed]
  6. B. Upadhyaya, U. Chakravarty, A. Kuruvilla, S. Oak, M. Shenoy, and K. Thyagarajan, “Self-pulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser,” Opt. Commun. 283, 2206–2213 (2010).
    [Crossref]
  7. A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381–389 (2002).
    [Crossref]
  8. Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
    [Crossref]
  9. S. Chernikov, Y. Zhu, J. Taylor, and V. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
    [Crossref] [PubMed]
  10. Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38, 5474–5477 (2013).
    [Crossref] [PubMed]
  11. T. Stacewicz and G. Topulos, “Ionization of sodium vapour by nanosecond resonant laser pulses,” Physica Scripta 38, 560 (1988).
    [Crossref]
  12. X. Wang, Y. Yang, M. Liu, and Y. Yao, “Experimental observation of fundamental and harmonic self pulse generation of single high-order Stokes in Brillouin Erbium fiber laser,” Opt. Commun. 371, 100–104 (2016).
    [Crossref]
  13. Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).
  14. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2, 1–59 (2010).
    [Crossref]
  15. W. Koechner, Solid-state Laser Engineering (Springer, 2013).
  16. M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
    [Crossref]
  17. M. Damzen, V. Vlad, A. Mocofanescu, and V. Babin, Stimulated Brillouin scattering: fundamentals and applications (Chemical Rubber Company, 2003).
    [Crossref]
  18. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008).
    [Crossref] [PubMed]
  19. C. Liu, J. Liu, Y. Zhang, Y. Hou, S. Qi, X. Feng, and P. Wang, “Stimulated Brillouin scattering suppression of thulium-doped fiber amplifier with fiber superfluorescent seed source,” Opt. Express 25, 9569–9578 (2017).
    [Crossref] [PubMed]
  20. V. Supradeepa, “Stimulated brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise,” Opt. Express 21, 4677–4687 (2013).
    [Crossref] [PubMed]
  21. B. Anderson, A. Flores, R. Holten, and I. Dajani, “Comparison of phase modulation schemes for coherently combined fiber amplifiers,” Opt. Express 23, 27046–27060 (2015).
    [Crossref] [PubMed]
  22. R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
    [Crossref]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  24. R. W. Boyd, K. RzaÌğewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514 (1990).
    [Crossref] [PubMed]

2017 (2)

2016 (3)

X. Wang, Y. Yang, M. Liu, and Y. Yao, “Experimental observation of fundamental and harmonic self pulse generation of single high-order Stokes in Brillouin Erbium fiber laser,” Opt. Commun. 371, 100–104 (2016).
[Crossref]

I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, “Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers,” Proc. SPIE 9728, 972801 (2016).
[Crossref]

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

2015 (1)

2014 (2)

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

2013 (2)

2011 (1)

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[Crossref]

2010 (2)

B. Upadhyaya, U. Chakravarty, A. Kuruvilla, S. Oak, M. Shenoy, and K. Thyagarajan, “Self-pulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser,” Opt. Commun. 283, 2206–2213 (2010).
[Crossref]

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2, 1–59 (2010).
[Crossref]

2008 (1)

2002 (1)

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381–389 (2002).
[Crossref]

1997 (1)

1996 (1)

1993 (1)

F. Sanchez, P. Le Boudec, P.-L. François, and G. Stephan, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48, 2220 (1993).
[Crossref] [PubMed]

1990 (1)

R. W. Boyd, K. RzaÌğewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514 (1990).
[Crossref] [PubMed]

1988 (1)

T. Stacewicz and G. Topulos, “Ionization of sodium vapour by nanosecond resonant laser pulses,” Physica Scripta 38, 560 (1988).
[Crossref]

Afzal, R. S.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Anderson, B.

I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, “Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers,” Proc. SPIE 9728, 972801 (2016).
[Crossref]

B. Anderson, A. Flores, R. Holten, and I. Dajani, “Comparison of phase modulation schemes for coherently combined fiber amplifiers,” Opt. Express 23, 27046–27060 (2015).
[Crossref] [PubMed]

Babin, V.

M. Damzen, V. Vlad, A. Mocofanescu, and V. Babin, Stimulated Brillouin scattering: fundamentals and applications (Chemical Rubber Company, 2003).
[Crossref]

Barty, C.

Beach, R. J.

Boudec, P. Le

F. Sanchez, P. Le Boudec, P.-L. François, and G. Stephan, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48, 2220 (1993).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd, K. RzaÌğewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514 (1990).
[Crossref] [PubMed]

Brar, K.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Chakravarty, U.

B. Upadhyaya, U. Chakravarty, A. Kuruvilla, S. Oak, M. Shenoy, and K. Thyagarajan, “Self-pulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser,” Opt. Commun. 283, 2206–2213 (2010).
[Crossref]

Chernikov, S.

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2, 1–59 (2010).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

Dajani, I.

I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, “Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers,” Proc. SPIE 9728, 972801 (2016).
[Crossref]

B. Anderson, A. Flores, R. Holten, and I. Dajani, “Comparison of phase modulation schemes for coherently combined fiber amplifiers,” Opt. Express 23, 27046–27060 (2015).
[Crossref] [PubMed]

Damzen, M.

M. Damzen, V. Vlad, A. Mocofanescu, and V. Babin, Stimulated Brillouin scattering: fundamentals and applications (Chemical Rubber Company, 2003).
[Crossref]

Dawson, J. W.

Ehrenreich, T.

I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, “Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers,” Proc. SPIE 9728, 972801 (2016).
[Crossref]

El-Sherif, A. F.

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381–389 (2002).
[Crossref]

Feng, X.

Feng, Y.

Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).
[Crossref] [PubMed]

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Flores, A.

I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, “Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers,” Proc. SPIE 9728, 972801 (2016).
[Crossref]

B. Anderson, A. Flores, R. Holten, and I. Dajani, “Comparison of phase modulation schemes for coherently combined fiber amplifiers,” Opt. Express 23, 27046–27060 (2015).
[Crossref] [PubMed]

François, P.-L.

F. Sanchez, P. Le Boudec, P.-L. François, and G. Stephan, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48, 2220 (1993).
[Crossref] [PubMed]

Gapontsev, V.

Gitkind, N.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Heebner, J. E.

Henrie, J.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Holten, R.

I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, “Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers,” Proc. SPIE 9728, 972801 (2016).
[Crossref]

B. Anderson, A. Flores, R. Holten, and I. Dajani, “Comparison of phase modulation schemes for coherently combined fiber amplifiers,” Opt. Express 23, 27046–27060 (2015).
[Crossref] [PubMed]

Honea, E.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Hou, Y.

Hu, D.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Jander, D.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Ke, W.

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

King, T. A.

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381–389 (2002).
[Crossref]

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2, 1–59 (2010).
[Crossref]

Koechner, W.

W. Koechner, Solid-state Laser Engineering (Springer, 2013).

Kuruvilla, A.

B. Upadhyaya, U. Chakravarty, A. Kuruvilla, S. Oak, M. Shenoy, and K. Thyagarajan, “Self-pulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser,” Opt. Commun. 283, 2206–2213 (2010).
[Crossref]

Kurz, N.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Li, T.

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Li, X.

Liang, X.

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Liao, Y.-H.

Liu, C.

Liu, J.

Liu, M.

X. Wang, Y. Yang, M. Liu, and Y. Yao, “Experimental observation of fundamental and harmonic self pulse generation of single high-order Stokes in Brillouin Erbium fiber laser,” Opt. Commun. 371, 100–104 (2016).
[Crossref]

Lü, H.

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

Ma, Y.

Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).
[Crossref] [PubMed]

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Messerly, M. J.

Mocofanescu, A.

M. Damzen, V. Vlad, A. Mocofanescu, and V. Babin, Stimulated Brillouin scattering: fundamentals and applications (Chemical Rubber Company, 2003).
[Crossref]

Narum, P.

R. W. Boyd, K. RzaÌğewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514 (1990).
[Crossref] [PubMed]

Oak, S.

B. Upadhyaya, U. Chakravarty, A. Kuruvilla, S. Oak, M. Shenoy, and K. Thyagarajan, “Self-pulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser,” Opt. Commun. 283, 2206–2213 (2010).
[Crossref]

Pax, P. H.

Peng, J.

Peng, W.

Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).
[Crossref] [PubMed]

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Pulford, B.

I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, “Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers,” Proc. SPIE 9728, 972801 (2016).
[Crossref]

Qi, S.

Ran, H.

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Robin, C.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

RzaÌgewski, K.

R. W. Boyd, K. RzaÌğewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514 (1990).
[Crossref] [PubMed]

Sanchez, F.

F. Sanchez, P. Le Boudec, P.-L. François, and G. Stephan, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48, 2220 (1993).
[Crossref] [PubMed]

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2, 1–59 (2010).
[Crossref]

Savage-Leuchs, M.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Shenoy, M.

B. Upadhyaya, U. Chakravarty, A. Kuruvilla, S. Oak, M. Shenoy, and K. Thyagarajan, “Self-pulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser,” Opt. Commun. 283, 2206–2213 (2010).
[Crossref]

Shverdin, M. Y.

Siders, C. W.

Sridharan, A. K.

Stacewicz, T.

T. Stacewicz and G. Topulos, “Ionization of sodium vapour by nanosecond resonant laser pulses,” Physica Scripta 38, 560 (1988).
[Crossref]

Stappaerts, E. A.

Stephan, G.

F. Sanchez, P. Le Boudec, P.-L. François, and G. Stephan, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48, 2220 (1993).
[Crossref] [PubMed]

Su, R.

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

Sun, Y.

Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).
[Crossref] [PubMed]

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Supradeepa, V.

Tang, C.

Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).
[Crossref] [PubMed]

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Tang, Y.

Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38, 5474–5477 (2013).
[Crossref] [PubMed]

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[Crossref]

Taylor, J.

Thyagarajan, K.

B. Upadhyaya, U. Chakravarty, A. Kuruvilla, S. Oak, M. Shenoy, and K. Thyagarajan, “Self-pulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser,” Opt. Commun. 283, 2206–2213 (2010).
[Crossref]

Tian, F.

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Topulos, G.

T. Stacewicz and G. Topulos, “Ionization of sodium vapour by nanosecond resonant laser pulses,” Physica Scripta 38, 560 (1988).
[Crossref]

Upadhyaya, B.

B. Upadhyaya, U. Chakravarty, A. Kuruvilla, S. Oak, M. Shenoy, and K. Thyagarajan, “Self-pulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser,” Opt. Commun. 283, 2206–2213 (2010).
[Crossref]

Vlad, V.

M. Damzen, V. Vlad, A. Mocofanescu, and V. Babin, Stimulated Brillouin scattering: fundamentals and applications (Chemical Rubber Company, 2003).
[Crossref]

Wang, P.

Wang, Q. J.

Wang, S.

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Wang, X.

Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).
[Crossref] [PubMed]

X. Wang, Y. Yang, M. Liu, and Y. Yao, “Experimental observation of fundamental and harmonic self pulse generation of single high-order Stokes in Brillouin Erbium fiber laser,” Opt. Commun. 371, 100–104 (2016).
[Crossref]

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Wang, Y.

Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).
[Crossref] [PubMed]

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Winful, H. G.

Xu, J.

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[Crossref]

Xu, X.

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

Yan, H.

Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, “6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control,” Appl. Opt. 56, 2760–2765 (2017).
[Crossref] [PubMed]

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Yang, Y.

X. Wang, Y. Yang, M. Liu, and Y. Yao, “Experimental observation of fundamental and harmonic self pulse generation of single high-order Stokes in Brillouin Erbium fiber laser,” Opt. Commun. 371, 100–104 (2016).
[Crossref]

Yao, Y.

X. Wang, Y. Yang, M. Liu, and Y. Yao, “Experimental observation of fundamental and harmonic self pulse generation of single high-order Stokes in Brillouin Erbium fiber laser,” Opt. Commun. 371, 100–104 (2016).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

Zhang, K.

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Zhang, Y.

Zhao, L.

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

Zhou, P.

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

Zhu, Y.

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2, 1–59 (2010).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

Opt. Commun. (3)

X. Wang, Y. Yang, M. Liu, and Y. Yao, “Experimental observation of fundamental and harmonic self pulse generation of single high-order Stokes in Brillouin Erbium fiber laser,” Opt. Commun. 371, 100–104 (2016).
[Crossref]

B. Upadhyaya, U. Chakravarty, A. Kuruvilla, S. Oak, M. Shenoy, and K. Thyagarajan, “Self-pulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser,” Opt. Commun. 283, 2206–2213 (2010).
[Crossref]

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381–389 (2002).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

R. Su, P. Zhou, X. Wang, H. Lü, and X. Xu, “Proposal of interaction length for stimulated Brillouin scattering threshold of nanosecond laser in optical fiber,” Opt. Laser Technol. 57, 1–4 (2014).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (2)

F. Sanchez, P. Le Boudec, P.-L. François, and G. Stephan, “Effects of ion pairs on the dynamics of erbium-doped fiber lasers,” Phys. Rev. A 48, 2220 (1993).
[Crossref] [PubMed]

R. W. Boyd, K. RzaÌğewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514 (1990).
[Crossref] [PubMed]

Physica Scripta (1)

T. Stacewicz and G. Topulos, “Ionization of sodium vapour by nanosecond resonant laser pulses,” Physica Scripta 38, 560 (1988).
[Crossref]

Proc. SPIE (2)

I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, “Multi-kilowatt power scaling and coherent beam combining of narrow linewidth fiber lasers,” Proc. SPIE 9728, 972801 (2016).
[Crossref]

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, and et al., “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Other (4)

Y. Ma, H. Yan, W. Peng, X. Wang, F. Tian, Y. Sun, L. Zhao, S. Wang, T. Li, X. Liang, Y. Wang, H. Ran, W. Ke, Y. Feng, C. Tang, and K. Zhang, “9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers,” Zhongguo Jiguang/Chinese J. Lasers43 (2016).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

M. Damzen, V. Vlad, A. Mocofanescu, and V. Babin, Stimulated Brillouin scattering: fundamentals and applications (Chemical Rubber Company, 2003).
[Crossref]

W. Koechner, Solid-state Laser Engineering (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Experimental kilowatt level, narrow-linewidth amplifier setup for fiber characterization. DFBL: distributed feedback laser. ISO: isolator. MFA: mode field adapter. TFB: tapered fiber bundle. DL: diode laser. PA: preamplifier
Fig. 2
Fig. 2 The main amplifier output under (a) 910W, (b) 1192W, (c) 1155w pump power. (d) Detail of one of the pulses measured under 1155 W pump power by a 1.2 GHz PD. In order to demonstrate the relative peak power of pulses, we normalize the data of each graph, respectively.
Fig. 3
Fig. 3 (a) Output power as a function of the pump power for the forward light and backward light. Pulses of backward light emerge earlier than toward light. (b) The spectrum of the injecting signal. Central wavelength and FWHM width of the spectrum from P4 is 1064.389 nm, 0.0494nm (about 13.1 GHz).
Fig. 4
Fig. 4 Time domain of input signal light under (a) 910W, (b) 1192W, (c) 1155w pump power. (d) Detail of one of the ‘power notches’.
Fig. 5
Fig. 5 Time domain characteristics of backward light at pump power of (a) 910W, (b) 1092W, (c) 1155W. (d) Detail of one of the backward pulses.
Fig. 6
Fig. 6 Synchronization measurement. (a) injecting signal from P4 and (b) the main amplifier output from P5, (c) injecting signal from P4 and (d) backward light from P3, are measured at the same time, respectively.
Fig. 7
Fig. 7 (a) Compare with backward lights of single seed and dual seeds injecting, (b) The amplifier output spectrum under pump power of 0W, 630W, 990W, 1890W.
Fig. 8
Fig. 8 Spectrum measured from P3 at different pump power levels.
Fig. 9
Fig. 9 (a) Measured WNS signal sample. (b) Fine spectrum calculated. (c) Distribution curve of ρ(f)
Fig. 10
Fig. 10 Apparatus and operating principle of the general setup. Four different waves propagate and are amplified along with the fiber. The spectral spike wave, 1st-order Stokes wave and 2nd-order Stokes wave interact with each other by SBS process. The input power without the spectral spike is amplified without SBS process during propagation.
Fig. 11
Fig. 11 Theoretical results in time main of (a) backward light at P3, (b) injecting signal recorded at P4, and (c) output at P5.

Tables (1)

Tables Icon

Table 1 Parameters used in the equations [23].

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

P O u t S B S 21 A e f f ( 1 + Δ υ s Δ υ B ) g S B S L e f f ln ( G )
A ( t ) = A 0 exp [ j 2 π f 0 t + j π V 1 ( t ) V π ]
R A ( τ ) = lim T 1 T 0 T A ( t ) A ( t + π ) d t = A ( t ) A ( t + τ )
S A ( f ) = R A ( τ ) exp [ j 2 π f τ ] d τ
ρ ( f ) = ( S A ( f ) S ^ A ( f ) ) / S ^ A ( 0 )
1 υ A o t h e r t + A o t h e r z = 1 2 ( g p i ξ ) A o t h e r
1 υ A 0 t + A 0 z = 1 2 ( g p i ξ ) A 0 + i γ ( | A 0 | 2 + 2 | A 1 | 2 + 2 | A 2 | 2 ) A 0 + i κ 1 A 1 Q 1
1 υ A 1 t A 1 z = 1 2 ( g p i ξ ) A 1 + i γ ( | A 1 | 2 + 2 | A 0 | 2 + 2 | A 2 | 2 ) A 1 + i κ 1 A 0 Q 1 * + i κ 1 A 2 Q 2
1 υ A 2 t + A 2 z = 1 2 ( g p i ξ ) A 2 + i γ ( | A 2 | 2 + 2 | A 0 | 2 + 2 | A 1 | 2 ) A 2 + i κ 1 A 1 Q 2 *
Q 1 t + v A Q 1 z = 1 2 Γ B Q 1 + i κ 2 A 0 A 1 * + f ( z , t )
Q 2 t v A Q 2 z = 1 2 Γ B Q 2 + i κ 2 A 1 A 2 * + f ( z , t )
f ( z , t ) = 0
f ( z , t ) f * ( z , t ) = Y δ ( t t )
Y = 2 k T ρ 0 Γ B υ 2 A e f f
κ 1 = ω p γ e 2 n c ρ 0
κ 2 = ω p γ e 2 c 2 υ A A e f f
α = n 0 σ α A c o / A e f f
β = n 0 σ e A c o / A e f f
g p i ( z , t ) = ( α + β ) N 2 ( z , t ) α

Metrics