C. Liang, C. Mi, F. Wang, C. Zhao, Y. Cai, and S. A. Ponomarenko, “Vector optical coherence lattices generating controllable far-field beam profiles,” Opt. Express 25(9), 9872–9885 (2017).
[Crossref]
[PubMed]
S. K. Pal, Ruchi, and P. Senthilkumaran, “C-point and V-point singularity lattice formation and index sign conversion methods,” Opt. Commun. 393, 156–168 (2017).
[Crossref]
S. K. Pal, Ruchi, and P. Senthilkumaran, “Polarization singularity index sign inversion by a half waveplate,” Appl. Opt. 56, 6181–6190 (2017).
[Crossref]
P. Kurzynowski, W.A. Woźniak, M. Zdunek, and M. Borwińska, “Singularities of interference of three waves with different polarization states,” Opt. Express 20, 26755–26765 (2012).
[Crossref]
[PubMed]
J. Xavier, S. Vyas, P. Senthilkumaran, and J. Joseph, “Tailored complex 3D vortex lattice structures by perturbed multiples of three plane waves,” Appl. Opt. 51, 1872–1878 (2012).
[Crossref]
[PubMed]
I. Freund, “Optical Möbius strips in three dimensional ellipse fields: II. Lines of linear polarization,” Opt. Commun. 283, 16–28 (2010).
[Crossref]
A. I. Mokhun, M. S. Soskin, and I. Freund, “Elliptic critical points: C-points, α-lines, and the sign rule,” Opt. Lett. 27, 995–997 (2002).
[Crossref]
I. Freund, “Polarization singularity indices in Gaussian laser beams,” Opt. Commun. 201, 251–270 (2002).
[Crossref]
I. Freund, M. Soskin, and A. I. Mokhun, “Elliptic critical points in paraxial optical fields,” Opt. Commun. 208, 223–253 (2002).
[Crossref]
M. R. Dennis, “Polarization Singularities in paraxial vector fields:morphology and statisics,” Opt. Commun. 213, 201–221 (2002).
[Crossref]
J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198, 21–27 (2001).
[Crossref]
P. Senthilkumaran and R. S. Sirohi, “Michelson interferometers in tandem for array generation,” Opt. Commun. 105(3–4), 158–160 (1994).
[Crossref]
J. F. Nye, “Lines of circular polarization in electromagnetic fields,” Proc. Roy. Soc. A 389, 279–290 (1983).
[Crossref]
D. Ye, X. Peng, Q. Zhao, and Y. Chen, “Numerical generation of a polarization singularity array with modulated amplitude and phase,” J. Opt. Soc. Am. A 33, 1705–1709 (2016).
[Crossref]
R. Yu, Y. Xin, Q. Zhao, Y. Chen, and Q. Song, “Array of polarization singularities in interference of three waves,” J. Opt. Soc. Am. A 30, 2556–2560 (2013).
[Crossref]
M. R. Dennis, “Polarization Singularities in paraxial vector fields:morphology and statisics,” Opt. Commun. 213, 201–221 (2002).
[Crossref]
J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198, 21–27 (2001).
[Crossref]
I. Freund, “Optical Möbius strips in three dimensional ellipse fields: II. Lines of linear polarization,” Opt. Commun. 283, 16–28 (2010).
[Crossref]
I. Freund, “Polarization Singularities in optical lattices,” Opt. Lett. 29, 875–877 (2004).
[Crossref]
[PubMed]
A. I. Mokhun, M. S. Soskin, and I. Freund, “Elliptic critical points: C-points, α-lines, and the sign rule,” Opt. Lett. 27, 995–997 (2002).
[Crossref]
I. Freund, “Polarization singularity indices in Gaussian laser beams,” Opt. Commun. 201, 251–270 (2002).
[Crossref]
I. Freund, M. Soskin, and A. I. Mokhun, “Elliptic critical points in paraxial optical fields,” Opt. Commun. 208, 223–253 (2002).
[Crossref]
J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198, 21–27 (2001).
[Crossref]
I. Freund, M. Soskin, and A. I. Mokhun, “Elliptic critical points in paraxial optical fields,” Opt. Commun. 208, 223–253 (2002).
[Crossref]
A. I. Mokhun, M. S. Soskin, and I. Freund, “Elliptic critical points: C-points, α-lines, and the sign rule,” Opt. Lett. 27, 995–997 (2002).
[Crossref]
J. F. Nye, “Lines of circular polarization in electromagnetic fields,” Proc. Roy. Soc. A 389, 279–290 (1983).
[Crossref]
G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E 75,066613 (2007).
[Crossref]
S. K. Pal, Ruchi, and P. Senthilkumaran, “C-point and V-point singularity lattice formation and index sign conversion methods,” Opt. Commun. 393, 156–168 (2017).
[Crossref]
S. K. Pal, Ruchi, and P. Senthilkumaran, “Polarization singularity index sign inversion by a half waveplate,” Appl. Opt. 56, 6181–6190 (2017).
[Crossref]
S. K. Pal and P. Senthilkumaran, “Cultivation of lemon fields,” Opt. Express 24, 28008–28013 (2016).
[Crossref]
[PubMed]
G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E 75,066613 (2007).
[Crossref]
S. K. Pal, Ruchi, and P. Senthilkumaran, “C-point and V-point singularity lattice formation and index sign conversion methods,” Opt. Commun. 393, 156–168 (2017).
[Crossref]
S. K. Pal, Ruchi, and P. Senthilkumaran, “Polarization singularity index sign inversion by a half waveplate,” Appl. Opt. 56, 6181–6190 (2017).
[Crossref]
R. W. Schoonover and T. D. Visser, “Creating polarization singularities with N pinhole interferometer,” Phys. Rev. A 79, 043809(1–7) (2009).
[Crossref]
S. K. Pal, Ruchi, and P. Senthilkumaran, “C-point and V-point singularity lattice formation and index sign conversion methods,” Opt. Commun. 393, 156–168 (2017).
[Crossref]
S. K. Pal, Ruchi, and P. Senthilkumaran, “Polarization singularity index sign inversion by a half waveplate,” Appl. Opt. 56, 6181–6190 (2017).
[Crossref]
S. K. Pal and P. Senthilkumaran, “Cultivation of lemon fields,” Opt. Express 24, 28008–28013 (2016).
[Crossref]
[PubMed]
J. Xavier, S. Vyas, P. Senthilkumaran, and J. Joseph, “Tailored complex 3D vortex lattice structures by perturbed multiples of three plane waves,” Appl. Opt. 51, 1872–1878 (2012).
[Crossref]
[PubMed]
S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46, 2893–2898 (2007).
[Crossref]
[PubMed]
P. Senthilkumaran and R. S. Sirohi, “Michelson interferometers in tandem for array generation,” Opt. Commun. 105(3–4), 158–160 (1994).
[Crossref]
P. Senthilkumaran and R. S. Sirohi, “Michelson interferometers in tandem for array generation,” Opt. Commun. 105(3–4), 158–160 (1994).
[Crossref]
I. Freund, M. Soskin, and A. I. Mokhun, “Elliptic critical points in paraxial optical fields,” Opt. Commun. 208, 223–253 (2002).
[Crossref]
D. Ye, X. Peng, Q. Zhao, and Y. Chen, “Numerical generation of a polarization singularity array with modulated amplitude and phase,” J. Opt. Soc. Am. A 33, 1705–1709 (2016).
[Crossref]
R. Yu, Y. Xin, Q. Zhao, Y. Chen, and Q. Song, “Array of polarization singularities in interference of three waves,” J. Opt. Soc. Am. A 30, 2556–2560 (2013).
[Crossref]
S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46, 2893–2898 (2007).
[Crossref]
[PubMed]
J. Xavier, S. Vyas, P. Senthilkumaran, and J. Joseph, “Tailored complex 3D vortex lattice structures by perturbed multiples of three plane waves,” Appl. Opt. 51, 1872–1878 (2012).
[Crossref]
[PubMed]
S. K. Pal, Ruchi, and P. Senthilkumaran, “Polarization singularity index sign inversion by a half waveplate,” Appl. Opt. 56, 6181–6190 (2017).
[Crossref]
D. Ye, X. Peng, Q. Zhao, and Y. Chen, “Numerical generation of a polarization singularity array with modulated amplitude and phase,” J. Opt. Soc. Am. A 33, 1705–1709 (2016).
[Crossref]
R. Yu, Y. Xin, Q. Zhao, Y. Chen, and Q. Song, “Array of polarization singularities in interference of three waves,” J. Opt. Soc. Am. A 30, 2556–2560 (2013).
[Crossref]
M. R. Dennis, “Polarization Singularities in paraxial vector fields:morphology and statisics,” Opt. Commun. 213, 201–221 (2002).
[Crossref]
I. Freund, “Polarization singularity indices in Gaussian laser beams,” Opt. Commun. 201, 251–270 (2002).
[Crossref]
I. Freund, M. Soskin, and A. I. Mokhun, “Elliptic critical points in paraxial optical fields,” Opt. Commun. 208, 223–253 (2002).
[Crossref]
P. Senthilkumaran and R. S. Sirohi, “Michelson interferometers in tandem for array generation,” Opt. Commun. 105(3–4), 158–160 (1994).
[Crossref]
J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198, 21–27 (2001).
[Crossref]
I. Freund, “Optical Möbius strips in three dimensional ellipse fields: II. Lines of linear polarization,” Opt. Commun. 283, 16–28 (2010).
[Crossref]
S. K. Pal, Ruchi, and P. Senthilkumaran, “C-point and V-point singularity lattice formation and index sign conversion methods,” Opt. Commun. 393, 156–168 (2017).
[Crossref]
S. K. Pal and P. Senthilkumaran, “Cultivation of lemon fields,” Opt. Express 24, 28008–28013 (2016).
[Crossref]
[PubMed]
C. Liang, C. Mi, F. Wang, C. Zhao, Y. Cai, and S. A. Ponomarenko, “Vector optical coherence lattices generating controllable far-field beam profiles,” Opt. Express 25(9), 9872–9885 (2017).
[Crossref]
[PubMed]
X. Pang, G. Gbur, and T. D. Visser, “Cycle of phase, coherence and polarization singularities in Young’s three-pinhole experiment,” Opt. Express 23, 34093–34108 (2015).
[Crossref]
J. F. Wheeldon and H. Schriemer, “Wyckoff positions and the expression of polarization singularities in photonic crystals,” Opt. Express 17, 2111–2121 (2009).
[Crossref]
[PubMed]
P. Kurzynowski, W.A. Woźniak, M. Zdunek, and M. Borwińska, “Singularities of interference of three waves with different polarization states,” Opt. Express 20, 26755–26765 (2012).
[Crossref]
[PubMed]
A. I. Mokhun, M. S. Soskin, and I. Freund, “Elliptic critical points: C-points, α-lines, and the sign rule,” Opt. Lett. 27, 995–997 (2002).
[Crossref]
I. Freund, “Polarization Singularities in optical lattices,” Opt. Lett. 29, 875–877 (2004).
[Crossref]
[PubMed]
R. W. Schoonover and T. D. Visser, “Creating polarization singularities with N pinhole interferometer,” Phys. Rev. A 79, 043809(1–7) (2009).
[Crossref]
G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E 75,066613 (2007).
[Crossref]
J. F. Nye, “Lines of circular polarization in electromagnetic fields,” Proc. Roy. Soc. A 389, 279–290 (1983).
[Crossref]