Abstract

We propose a design for speckle reduction in a laser pico-projector adopting diffusers and deformable mirrors. This research focuses on speckle noise suppression by changing the angle of divergence of the diffuser. Moreover, the speckle contrast value can be further reduced by the addition of a deformable mirror. The speckle reduction ability obtained using diffusers with different divergence angles is compared. Three types of diffuser designs are compared in the experiments. For Type 1 which uses a circular symmetric diffuser the speckle contrast value can be decreased to 0.0264. For Type 2, the speckle contrast value can be reduced to 0.0267 because of the inclusion of an elliptical distribution diffuser. With Type 3 which includes a combination of the circular distribution diffuser and elliptical distribution diffuser, the speckle contrast value can be reduced to 0.0236. For all three types, the speckle contrast value is lower than 0.05. Under this speckle value, the speckle phenomenon is invisible to the human eye.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle reduction in laser projection using a dynamic deformable mirror

Thi-Kim-Trinh Tran, Xuyuan Chen, Øyvind Svensen, and Muhammad Nadeem Akram
Opt. Express 22(9) 11152-11166 (2014)

Speckle reduction in laser projection displays through angle and wavelength diversity

Trinh-Thi-Kim Tran, Øyvind Svensen, Xuyuan Chen, and Muhammad Nadeem Akram
Appl. Opt. 55(6) 1267-1274 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49(25), F79–F98 (2010).
    [Crossref] [PubMed]
  2. O. Svelto, Principles of Lasers, 4th ed. (Springer, 2009).
  3. H. J. Rabal and R. A. Braga, Dynamic Laser Speckle and Applications (CRC Press, 2008).
  4. M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49(17), 3297–3304 (2010).
    [Crossref] [PubMed]
  5. N. E. Yu, J. W. Choi, H. Kang, D. K. Ko, S. H. Fu, J. W. Liou, A. H. Kung, H. J. Choi, B. J. Kim, M. Cha, and L. H. Peng, “Speckle noise reduction on a laser projection display via a broadband green light source,” Opt. Express 22(3), 3547–3556 (2014).
    [Crossref] [PubMed]
  6. T. T. Tran, Ø. Svensen, X. Chen, and M. N. Akram, “Speckle reduction in laser projection displays through angle and wavelength diversity,” Appl. Opt. 55(6), 1267–1274 (2016).
    [Crossref] [PubMed]
  7. J. W. Pan and C. H. Shih, “Speckle reduction and maintaining contrast in a LASER pico-projector using a vibrating symmetric diffuser,” Opt. Express 22(6), 6464–6477 (2014).
    [Crossref] [PubMed]
  8. T.-K.-T. Tran, X. Chen, Ø. Svensen, and M. N. Akram, “Speckle reduction in laser projection using a dynamic deformable mirror,” Opt. Express 22(9), 11152–11166 (2014).
    [Crossref] [PubMed]
  9. F. Shevlin, “Optically Efficient Homogenization of Laser Illumination,” IDW, PRJ3 - 3 (2015).
  10. M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” Proc. SPIE 8252, 825207 (2012).
    [Crossref]
  11. Z. Cui, A. T. Wang, Z. Wang, S. L. Wang, C. Gu, H. Ming, and C. Q. Xu, “Speckle suppression by controlling the coherence in laser based projection systems,” J. Disp. Technol. 11(4), 330–335 (2015).
    [Crossref]
  12. Q. Ma, C. Q. Xu, A. Kitai, and D. Stadler, “Speckle reduction by optimized multimode fiber combined with dielectric elastomer actuator and lightpipe homogenizer,” J. Disp. Technol. 12(10), 1162–1167 (2016).
    [Crossref]
  13. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66(11), 1290–1294 (1976).
    [Crossref]
  14. F. Shevlin, “Speckle reduction for illumination with lasers and stationary, heat sinked, phosphors,” IDW, PRJ4 - 4 (2013).
  15. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw Hill, 2007).
  16. B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
    [Crossref] [PubMed]
  17. F. Riechert, G. Bastian, and U. Lemmer, “Laser speckle reduction via colloidal-dispersion-filled projection screens,” Appl. Opt. 48(19), 3742–3749 (2009).
    [Crossref] [PubMed]
  18. DYOPTYKA miniaturized phase-randomizing deformable mirror, http://www.dyoptyka.com/ .
  19. F. Shevlin, “Optically efficient directional illumination with homogenization of laser incidence on remote phosphor,” in LDC ’16 (2016).
  20. J. W. Pan and C. H. Shih, “Speckle noise reduction in the laser mini-projector by vibrating diffuser,” J. Opt. 19(4), 045606 (2017).
    [Crossref]
  21. D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
    [Crossref] [PubMed]

2017 (1)

J. W. Pan and C. H. Shih, “Speckle noise reduction in the laser mini-projector by vibrating diffuser,” J. Opt. 19(4), 045606 (2017).
[Crossref]

2016 (2)

Q. Ma, C. Q. Xu, A. Kitai, and D. Stadler, “Speckle reduction by optimized multimode fiber combined with dielectric elastomer actuator and lightpipe homogenizer,” J. Disp. Technol. 12(10), 1162–1167 (2016).
[Crossref]

T. T. Tran, Ø. Svensen, X. Chen, and M. N. Akram, “Speckle reduction in laser projection displays through angle and wavelength diversity,” Appl. Opt. 55(6), 1267–1274 (2016).
[Crossref] [PubMed]

2015 (1)

Z. Cui, A. T. Wang, Z. Wang, S. L. Wang, C. Gu, H. Ming, and C. Q. Xu, “Speckle suppression by controlling the coherence in laser based projection systems,” J. Disp. Technol. 11(4), 330–335 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (2)

D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
[Crossref] [PubMed]

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” Proc. SPIE 8252, 825207 (2012).
[Crossref]

2010 (2)

2009 (1)

1976 (1)

Akram, M. N.

Allen, G.

Aschwanden, M.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” Proc. SPIE 8252, 825207 (2012).
[Crossref]

Bastian, G.

Blum, M.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” Proc. SPIE 8252, 825207 (2012).
[Crossref]

Büeler, M.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” Proc. SPIE 8252, 825207 (2012).
[Crossref]

Cao, H.

Cha, M.

Chellappan, K. V.

Chen, X.

Choi, H. J.

Choi, J. W.

Cui, Z.

Z. Cui, A. T. Wang, Z. Wang, S. L. Wang, C. Gu, H. Ming, and C. Q. Xu, “Speckle suppression by controlling the coherence in laser based projection systems,” J. Disp. Technol. 11(4), 330–335 (2015).
[Crossref]

Dufresne, E. R.

Erden, E.

Fu, S. H.

Giger, J.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” Proc. SPIE 8252, 825207 (2012).
[Crossref]

Goodman, J. W.

Grätzel, C.

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” Proc. SPIE 8252, 825207 (2012).
[Crossref]

Gu, C.

Z. Cui, A. T. Wang, Z. Wang, S. L. Wang, C. Gu, H. Ming, and C. Q. Xu, “Speckle suppression by controlling the coherence in laser based projection systems,” J. Disp. Technol. 11(4), 330–335 (2015).
[Crossref]

Kang, H.

Kartashov, V.

Kim, B. J.

Kitai, A.

Q. Ma, C. Q. Xu, A. Kitai, and D. Stadler, “Speckle reduction by optimized multimode fiber combined with dielectric elastomer actuator and lightpipe homogenizer,” J. Disp. Technol. 12(10), 1162–1167 (2016).
[Crossref]

Ko, D. K.

Kung, A. H.

Lemmer, U.

Liou, J. W.

Ma, Q.

Q. Ma, C. Q. Xu, A. Kitai, and D. Stadler, “Speckle reduction by optimized multimode fiber combined with dielectric elastomer actuator and lightpipe homogenizer,” J. Disp. Technol. 12(10), 1162–1167 (2016).
[Crossref]

Mehta, D. S.

Ming, H.

Z. Cui, A. T. Wang, Z. Wang, S. L. Wang, C. Gu, H. Ming, and C. Q. Xu, “Speckle suppression by controlling the coherence in laser based projection systems,” J. Disp. Technol. 11(4), 330–335 (2015).
[Crossref]

Nafarrate, A. B.

Naik, D. N.

Norton, R. E.

Ouyang, G.

Pan, J. W.

J. W. Pan and C. H. Shih, “Speckle noise reduction in the laser mini-projector by vibrating diffuser,” J. Opt. 19(4), 045606 (2017).
[Crossref]

J. W. Pan and C. H. Shih, “Speckle reduction and maintaining contrast in a LASER pico-projector using a vibrating symmetric diffuser,” Opt. Express 22(6), 6464–6477 (2014).
[Crossref] [PubMed]

Peng, L. H.

Rawson, E. G.

Redding, B.

Riechert, F.

Shevlin, F.

F. Shevlin, “Speckle reduction for illumination with lasers and stationary, heat sinked, phosphors,” IDW, PRJ4 - 4 (2013).

F. Shevlin, “Optically efficient directional illumination with homogenization of laser incidence on remote phosphor,” in LDC ’16 (2016).

F. Shevlin, “Optically Efficient Homogenization of Laser Illumination,” IDW, PRJ3 - 3 (2015).

Shih, C. H.

J. W. Pan and C. H. Shih, “Speckle noise reduction in the laser mini-projector by vibrating diffuser,” J. Opt. 19(4), 045606 (2017).
[Crossref]

J. W. Pan and C. H. Shih, “Speckle reduction and maintaining contrast in a LASER pico-projector using a vibrating symmetric diffuser,” Opt. Express 22(6), 6464–6477 (2014).
[Crossref] [PubMed]

Singh, R. K.

Stadler, D.

Q. Ma, C. Q. Xu, A. Kitai, and D. Stadler, “Speckle reduction by optimized multimode fiber combined with dielectric elastomer actuator and lightpipe homogenizer,” J. Disp. Technol. 12(10), 1162–1167 (2016).
[Crossref]

Svensen, Ø.

Takeda, M.

Tong, Z.

Tran, T. T.

Tran, T.-K.-T.

Urey, H.

Wang, A. T.

Z. Cui, A. T. Wang, Z. Wang, S. L. Wang, C. Gu, H. Ming, and C. Q. Xu, “Speckle suppression by controlling the coherence in laser based projection systems,” J. Disp. Technol. 11(4), 330–335 (2015).
[Crossref]

Wang, S. L.

Z. Cui, A. T. Wang, Z. Wang, S. L. Wang, C. Gu, H. Ming, and C. Q. Xu, “Speckle suppression by controlling the coherence in laser based projection systems,” J. Disp. Technol. 11(4), 330–335 (2015).
[Crossref]

Wang, Z.

Z. Cui, A. T. Wang, Z. Wang, S. L. Wang, C. Gu, H. Ming, and C. Q. Xu, “Speckle suppression by controlling the coherence in laser based projection systems,” J. Disp. Technol. 11(4), 330–335 (2015).
[Crossref]

Xu, C. Q.

Q. Ma, C. Q. Xu, A. Kitai, and D. Stadler, “Speckle reduction by optimized multimode fiber combined with dielectric elastomer actuator and lightpipe homogenizer,” J. Disp. Technol. 12(10), 1162–1167 (2016).
[Crossref]

Z. Cui, A. T. Wang, Z. Wang, S. L. Wang, C. Gu, H. Ming, and C. Q. Xu, “Speckle suppression by controlling the coherence in laser based projection systems,” J. Disp. Technol. 11(4), 330–335 (2015).
[Crossref]

Yu, N. E.

Appl. Opt. (6)

J. Disp. Technol. (2)

Z. Cui, A. T. Wang, Z. Wang, S. L. Wang, C. Gu, H. Ming, and C. Q. Xu, “Speckle suppression by controlling the coherence in laser based projection systems,” J. Disp. Technol. 11(4), 330–335 (2015).
[Crossref]

Q. Ma, C. Q. Xu, A. Kitai, and D. Stadler, “Speckle reduction by optimized multimode fiber combined with dielectric elastomer actuator and lightpipe homogenizer,” J. Disp. Technol. 12(10), 1162–1167 (2016).
[Crossref]

J. Opt. (1)

J. W. Pan and C. H. Shih, “Speckle noise reduction in the laser mini-projector by vibrating diffuser,” J. Opt. 19(4), 045606 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (3)

Proc. SPIE (1)

M. Blum, M. Büeler, C. Grätzel, J. Giger, and M. Aschwanden, “Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers,” Proc. SPIE 8252, 825207 (2012).
[Crossref]

Other (7)

O. Svelto, Principles of Lasers, 4th ed. (Springer, 2009).

H. J. Rabal and R. A. Braga, Dynamic Laser Speckle and Applications (CRC Press, 2008).

F. Shevlin, “Optically Efficient Homogenization of Laser Illumination,” IDW, PRJ3 - 3 (2015).

F. Shevlin, “Speckle reduction for illumination with lasers and stationary, heat sinked, phosphors,” IDW, PRJ4 - 4 (2013).

W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw Hill, 2007).

DYOPTYKA miniaturized phase-randomizing deformable mirror, http://www.dyoptyka.com/ .

F. Shevlin, “Optically efficient directional illumination with homogenization of laser incidence on remote phosphor,” in LDC ’16 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Layout of pico-LASER projector.
Fig. 2
Fig. 2 Experimental setup.
Fig. 3
Fig. 3 DYOPTYKA miniaturized phase-randomizing deformable mirror (a) inactive (b) active state [18].
Fig. 4
Fig. 4 Relation between vibration frequency of the deformable mirror and divergence angle of the laser.
Fig. 5
Fig. 5 The laser beam produces an elliptical profile because of the deformable mirror. The light pipe arrangement can be divided into two modes: (a) LPL X_30°X30°; (b) LPL Y_30°X30°.
Fig. 6
Fig. 6 Dependence of the speckle contrast value on the applied frequency for a circular distribution diffuser.
Fig. 7
Fig. 7 Image quality of the first diffuser “30X30” with a speckle contrast value of (a) 0.1299 for an inactive mirror; (b) 0.0264 using a deformable mirror and a driving frequency of 350 KHz.
Fig. 8
Fig. 8 Arrangement of the elliptical distribution diffuser and light pipe which can be divided into four modes: (a) LPL X_80°X20°; (b) LPL X_20°X80°; (c) LPL Y_80°X20°; (d) LPL Y_20°X80°.
Fig. 9
Fig. 9 Dependence of the speckle contrast on the applied frequency for elliptical distribution diffuser diffusers.
Fig. 10
Fig. 10 System image quality obtained with a first diffuser of “80X20” with a speckle contrast value of (a) 0.170 for an inactive mirror; (b) 0.0267 for a deformable mirror and a driving frequency of 350 KHz.
Fig. 11
Fig. 11 The first diffuser is an elliptical distribution diffuser and the second diffuser is a circular distribution diffuser. The light pipe arrangement can be divided into four methods: (a) LPL X_80°X20°, 30°X30°; (b) LPL X_20°X80°, 30°X30°; (c) LPL Y_80°X20°, 30°X30°; (d) LPL Y_20°X80°, 30°X30°.
Fig. 12
Fig. 12 Dependence of the speckle contrast on the applied frequency using both a circular distribution diffuser “30X30” and an elliptical distribution diffuser “80X20”.
Fig. 13
Fig. 13 System image quality of the first diffuser “80X20” and the second diffuser “30X30” with a speckle contrast value of (a) 0.170 for an inactive mirror; and (b) 0.0267 for a deformable mirror with a driving frequency of 350 KHz.

Tables (1)

Tables Icon

Table 1 The lowest speckle value for three type conditions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C= < I 2 ><I > 2 <I> = σ I <I>

Metrics