Abstract

To create reliable high-capacity photonic networks, we propose a novel optical cross-connect (OXC) architecture that offers failure resiliency and port scalability, simultaneously. The proposed OXC employs the subsystem-modular structure to attain the port scalability, where the use of 1xM wavelength selective switches (WSSs) or MxM WSSs is considered. Furthermore, by introducing an intra-node protection mechanism suited to each OXC architecture, our proposed scheme offers high reliability while retaining the port scalability. Through computer simulations, we evaluate the total number of WSSs needed in a network and the annual path downtime due to WSS failures. The proposed OXC architecture can drastically decrease the annual path downtime with just a small number of WSSs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hardware Scale and Performance Evaluation of a Compact Subsystem Modular Optical Cross Connect That Adopts Tailored Add/Drop Architecture

Hiroto Ishida, Hiroshi Hasegawa, and Ken-ichi Sato
J. Opt. Commun. Netw. 7(6) 586-596 (2015)

Disruption-Free Expansion of Protected Optical Path Networks that Utilize Subsystem Modular OXC Nodes

Kosuke Sato, Hiroshi Hasegawa, and Ken-ichi Sato
J. Opt. Commun. Netw. 8(7) 476-485 (2016)

Criteria for Selecting Subsystem Configuration in Creating Large-Scale OXCs

Yasuhiro Tanaka, Hiroshi Hasegawa, and Ken-ichi Sato
J. Opt. Commun. Netw. 7(10) 1009-1017 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Sato, “Challenges and opportunities of photonic networking technologies,” in Proc. IEEE OECC/PS, 1–2 (2013).
  2. B. C. Collings, “Advanced ROADM Technologies and architectures,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper Tu3D.3 (2015).
    [Crossref]
  3. Y. Iwai, H. Hasegawa, and K. Sato, “A large-scale photonic node architecture that utilizes interconnected OXC subsystems,” Opt. Express 21(1), 478–487 (2013).
    [Crossref] [PubMed]
  4. Y. Tanaka, H. Hasegawa, and K. Sato, “Performance analysis of large-scale OXC that enables dynamic modular growth,” Opt. Express 23(5), 5994–6006 (2015).
    [Crossref] [PubMed]
  5. K. Sato, H. Hasegawa, and K. Sato, “Disruption-free expansion of protected optical path networks that utilize subsystem modular OXC nodes,” J. Opt. Commun. Netw. 8(7), 476–485 (2016).
    [Crossref]
  6. N. K. Fontaine, R. Ryf, and D. T. Neilson, “NxM wavelength selective crossconnect with flexible passbands,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper PDP5B2 (2012).
    [Crossref]
  7. L. Zong, H. Zhao, Z. Feng, and S. Cao, “Demonstration of ultra-compact contentionless-ROADM based on flexible wavelength router,” in Proceedings ofIEEE ECOC, 1–3 (2014).
    [Crossref]
  8. H. Uetsuka, M. Tachikura, H. Kawashima, K. Sorimoto, H. Tsuda, K. Sasaki, and Y. Yamashita, “5x5 wavelength cross-connect switch with densely integrated MEMS mirrors,” in Proceedings of Conference on Photonics in Switching, San Diego, CA, USA, Paper PW2B.2 (2014).
    [Crossref]
  9. K. Yamaguchi, M. Nakajima, J. Yamaguchi, T. Hashimoto, Y. Ikuma, and K. Suzuki, “MxN wavelength selective switches using beam splitting by space light modulator,” in Proc. IEEE OECC, 1–3 (2015).
    [Crossref]
  10. N. Nemoto, Y. Ikuma, K. Suzuki, O. Moriwaki, T. Watanabe, M. Itoh, and T. Takahashi, “8x8 wavelength cross connect with add/drop ports integrated in special and planar optical circuit,” J. Opt. Commun. Netw. 8(7), 476–485 (2016).
  11. M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly scalable and compact ROADM architecture that exploits MxN wavelength selective switches,” in Proc. IEEE Int. Conf. Photon. Switching, 127–129 (2015).
    [Crossref]
  12. M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Tipping point for the future scalable OXC: What size MxM WSS is needed?” J. Opt. Commun. Netw. 9(1), A18–A25 (2017).
  13. R. Hashimoto, Y. Mori, H. Hasegawa, and K. Sato, “First Demonstration of Subsystem-Modular Optical Cross-Connect Using Single-Module 6x6 WSS,” in Proceedings of IEEE ECOC (accepted).
  14. L. Zong, G. N. Liu, H. Zhao, T. Ma, and A. Lord, “Ultra-compact Contentionless ROADM Architecture with High Resilience Based on Flexible Wavelength Router,” in Optical Fiber Communication Conference, San Francisco, CA, USA, Paper W2A64 (2014).
    [Crossref]
  15. H. Ishida, H. Hasegawa, and K. Sato, “Highly Scalable subsystem modular OXC nodes that host tailored add/drop mechanism,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper, Th2A.47 (2015).
    [Crossref]
  16. M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Novel optical-node architecture utilizing asymmetric-multiport wavelength-selective switches,” IEEE Photonics J. 8(2), 0601210 (2016).
    [Crossref]
  17. S. Yamakami, M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly Reliable Large-Scale Optical Cross-Connect Architecture Utilizing MxM Wavelength-Selective Switches,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper Th3K.5 (2017).
    [Crossref]
  18. 249025-ICT OASE Project, D4.2.1, “Technical Assessment and Comparison of Next-Generation Optical Access System Concepts,” (2011).

2017 (1)

2016 (3)

2015 (1)

2013 (1)

Cao, S.

L. Zong, H. Zhao, Z. Feng, and S. Cao, “Demonstration of ultra-compact contentionless-ROADM based on flexible wavelength router,” in Proceedings ofIEEE ECOC, 1–3 (2014).
[Crossref]

Collings, B. C.

B. C. Collings, “Advanced ROADM Technologies and architectures,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper Tu3D.3 (2015).
[Crossref]

Feng, Z.

L. Zong, H. Zhao, Z. Feng, and S. Cao, “Demonstration of ultra-compact contentionless-ROADM based on flexible wavelength router,” in Proceedings ofIEEE ECOC, 1–3 (2014).
[Crossref]

Fontaine, N. K.

N. K. Fontaine, R. Ryf, and D. T. Neilson, “NxM wavelength selective crossconnect with flexible passbands,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper PDP5B2 (2012).
[Crossref]

Hasegawa, H.

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Tipping point for the future scalable OXC: What size MxM WSS is needed?” J. Opt. Commun. Netw. 9(1), A18–A25 (2017).

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Novel optical-node architecture utilizing asymmetric-multiport wavelength-selective switches,” IEEE Photonics J. 8(2), 0601210 (2016).
[Crossref]

K. Sato, H. Hasegawa, and K. Sato, “Disruption-free expansion of protected optical path networks that utilize subsystem modular OXC nodes,” J. Opt. Commun. Netw. 8(7), 476–485 (2016).
[Crossref]

Y. Tanaka, H. Hasegawa, and K. Sato, “Performance analysis of large-scale OXC that enables dynamic modular growth,” Opt. Express 23(5), 5994–6006 (2015).
[Crossref] [PubMed]

Y. Iwai, H. Hasegawa, and K. Sato, “A large-scale photonic node architecture that utilizes interconnected OXC subsystems,” Opt. Express 21(1), 478–487 (2013).
[Crossref] [PubMed]

S. Yamakami, M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly Reliable Large-Scale Optical Cross-Connect Architecture Utilizing MxM Wavelength-Selective Switches,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper Th3K.5 (2017).
[Crossref]

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly scalable and compact ROADM architecture that exploits MxN wavelength selective switches,” in Proc. IEEE Int. Conf. Photon. Switching, 127–129 (2015).
[Crossref]

R. Hashimoto, Y. Mori, H. Hasegawa, and K. Sato, “First Demonstration of Subsystem-Modular Optical Cross-Connect Using Single-Module 6x6 WSS,” in Proceedings of IEEE ECOC (accepted).

Hashimoto, R.

R. Hashimoto, Y. Mori, H. Hasegawa, and K. Sato, “First Demonstration of Subsystem-Modular Optical Cross-Connect Using Single-Module 6x6 WSS,” in Proceedings of IEEE ECOC (accepted).

Hashimoto, T.

K. Yamaguchi, M. Nakajima, J. Yamaguchi, T. Hashimoto, Y. Ikuma, and K. Suzuki, “MxN wavelength selective switches using beam splitting by space light modulator,” in Proc. IEEE OECC, 1–3 (2015).
[Crossref]

Ikuma, Y.

N. Nemoto, Y. Ikuma, K. Suzuki, O. Moriwaki, T. Watanabe, M. Itoh, and T. Takahashi, “8x8 wavelength cross connect with add/drop ports integrated in special and planar optical circuit,” J. Opt. Commun. Netw. 8(7), 476–485 (2016).

K. Yamaguchi, M. Nakajima, J. Yamaguchi, T. Hashimoto, Y. Ikuma, and K. Suzuki, “MxN wavelength selective switches using beam splitting by space light modulator,” in Proc. IEEE OECC, 1–3 (2015).
[Crossref]

Itoh, M.

Iwai, Y.

Kawashima, H.

H. Uetsuka, M. Tachikura, H. Kawashima, K. Sorimoto, H. Tsuda, K. Sasaki, and Y. Yamashita, “5x5 wavelength cross-connect switch with densely integrated MEMS mirrors,” in Proceedings of Conference on Photonics in Switching, San Diego, CA, USA, Paper PW2B.2 (2014).
[Crossref]

Liu, G. N.

L. Zong, G. N. Liu, H. Zhao, T. Ma, and A. Lord, “Ultra-compact Contentionless ROADM Architecture with High Resilience Based on Flexible Wavelength Router,” in Optical Fiber Communication Conference, San Francisco, CA, USA, Paper W2A64 (2014).
[Crossref]

Lord, A.

L. Zong, G. N. Liu, H. Zhao, T. Ma, and A. Lord, “Ultra-compact Contentionless ROADM Architecture with High Resilience Based on Flexible Wavelength Router,” in Optical Fiber Communication Conference, San Francisco, CA, USA, Paper W2A64 (2014).
[Crossref]

Ma, T.

L. Zong, G. N. Liu, H. Zhao, T. Ma, and A. Lord, “Ultra-compact Contentionless ROADM Architecture with High Resilience Based on Flexible Wavelength Router,” in Optical Fiber Communication Conference, San Francisco, CA, USA, Paper W2A64 (2014).
[Crossref]

Mori, Y.

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Tipping point for the future scalable OXC: What size MxM WSS is needed?” J. Opt. Commun. Netw. 9(1), A18–A25 (2017).

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Novel optical-node architecture utilizing asymmetric-multiport wavelength-selective switches,” IEEE Photonics J. 8(2), 0601210 (2016).
[Crossref]

S. Yamakami, M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly Reliable Large-Scale Optical Cross-Connect Architecture Utilizing MxM Wavelength-Selective Switches,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper Th3K.5 (2017).
[Crossref]

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly scalable and compact ROADM architecture that exploits MxN wavelength selective switches,” in Proc. IEEE Int. Conf. Photon. Switching, 127–129 (2015).
[Crossref]

R. Hashimoto, Y. Mori, H. Hasegawa, and K. Sato, “First Demonstration of Subsystem-Modular Optical Cross-Connect Using Single-Module 6x6 WSS,” in Proceedings of IEEE ECOC (accepted).

Moriwaki, O.

Nakajima, M.

K. Yamaguchi, M. Nakajima, J. Yamaguchi, T. Hashimoto, Y. Ikuma, and K. Suzuki, “MxN wavelength selective switches using beam splitting by space light modulator,” in Proc. IEEE OECC, 1–3 (2015).
[Crossref]

Neilson, D. T.

N. K. Fontaine, R. Ryf, and D. T. Neilson, “NxM wavelength selective crossconnect with flexible passbands,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper PDP5B2 (2012).
[Crossref]

Nemoto, N.

Niwa, M.

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Tipping point for the future scalable OXC: What size MxM WSS is needed?” J. Opt. Commun. Netw. 9(1), A18–A25 (2017).

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Novel optical-node architecture utilizing asymmetric-multiport wavelength-selective switches,” IEEE Photonics J. 8(2), 0601210 (2016).
[Crossref]

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly scalable and compact ROADM architecture that exploits MxN wavelength selective switches,” in Proc. IEEE Int. Conf. Photon. Switching, 127–129 (2015).
[Crossref]

S. Yamakami, M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly Reliable Large-Scale Optical Cross-Connect Architecture Utilizing MxM Wavelength-Selective Switches,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper Th3K.5 (2017).
[Crossref]

Ryf, R.

N. K. Fontaine, R. Ryf, and D. T. Neilson, “NxM wavelength selective crossconnect with flexible passbands,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper PDP5B2 (2012).
[Crossref]

Sasaki, K.

H. Uetsuka, M. Tachikura, H. Kawashima, K. Sorimoto, H. Tsuda, K. Sasaki, and Y. Yamashita, “5x5 wavelength cross-connect switch with densely integrated MEMS mirrors,” in Proceedings of Conference on Photonics in Switching, San Diego, CA, USA, Paper PW2B.2 (2014).
[Crossref]

Sato, K.

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Tipping point for the future scalable OXC: What size MxM WSS is needed?” J. Opt. Commun. Netw. 9(1), A18–A25 (2017).

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Novel optical-node architecture utilizing asymmetric-multiport wavelength-selective switches,” IEEE Photonics J. 8(2), 0601210 (2016).
[Crossref]

K. Sato, H. Hasegawa, and K. Sato, “Disruption-free expansion of protected optical path networks that utilize subsystem modular OXC nodes,” J. Opt. Commun. Netw. 8(7), 476–485 (2016).
[Crossref]

K. Sato, H. Hasegawa, and K. Sato, “Disruption-free expansion of protected optical path networks that utilize subsystem modular OXC nodes,” J. Opt. Commun. Netw. 8(7), 476–485 (2016).
[Crossref]

Y. Tanaka, H. Hasegawa, and K. Sato, “Performance analysis of large-scale OXC that enables dynamic modular growth,” Opt. Express 23(5), 5994–6006 (2015).
[Crossref] [PubMed]

Y. Iwai, H. Hasegawa, and K. Sato, “A large-scale photonic node architecture that utilizes interconnected OXC subsystems,” Opt. Express 21(1), 478–487 (2013).
[Crossref] [PubMed]

S. Yamakami, M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly Reliable Large-Scale Optical Cross-Connect Architecture Utilizing MxM Wavelength-Selective Switches,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper Th3K.5 (2017).
[Crossref]

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly scalable and compact ROADM architecture that exploits MxN wavelength selective switches,” in Proc. IEEE Int. Conf. Photon. Switching, 127–129 (2015).
[Crossref]

R. Hashimoto, Y. Mori, H. Hasegawa, and K. Sato, “First Demonstration of Subsystem-Modular Optical Cross-Connect Using Single-Module 6x6 WSS,” in Proceedings of IEEE ECOC (accepted).

Sorimoto, K.

H. Uetsuka, M. Tachikura, H. Kawashima, K. Sorimoto, H. Tsuda, K. Sasaki, and Y. Yamashita, “5x5 wavelength cross-connect switch with densely integrated MEMS mirrors,” in Proceedings of Conference on Photonics in Switching, San Diego, CA, USA, Paper PW2B.2 (2014).
[Crossref]

Suzuki, K.

N. Nemoto, Y. Ikuma, K. Suzuki, O. Moriwaki, T. Watanabe, M. Itoh, and T. Takahashi, “8x8 wavelength cross connect with add/drop ports integrated in special and planar optical circuit,” J. Opt. Commun. Netw. 8(7), 476–485 (2016).

K. Yamaguchi, M. Nakajima, J. Yamaguchi, T. Hashimoto, Y. Ikuma, and K. Suzuki, “MxN wavelength selective switches using beam splitting by space light modulator,” in Proc. IEEE OECC, 1–3 (2015).
[Crossref]

Tachikura, M.

H. Uetsuka, M. Tachikura, H. Kawashima, K. Sorimoto, H. Tsuda, K. Sasaki, and Y. Yamashita, “5x5 wavelength cross-connect switch with densely integrated MEMS mirrors,” in Proceedings of Conference on Photonics in Switching, San Diego, CA, USA, Paper PW2B.2 (2014).
[Crossref]

Takahashi, T.

Tanaka, Y.

Tsuda, H.

H. Uetsuka, M. Tachikura, H. Kawashima, K. Sorimoto, H. Tsuda, K. Sasaki, and Y. Yamashita, “5x5 wavelength cross-connect switch with densely integrated MEMS mirrors,” in Proceedings of Conference on Photonics in Switching, San Diego, CA, USA, Paper PW2B.2 (2014).
[Crossref]

Uetsuka, H.

H. Uetsuka, M. Tachikura, H. Kawashima, K. Sorimoto, H. Tsuda, K. Sasaki, and Y. Yamashita, “5x5 wavelength cross-connect switch with densely integrated MEMS mirrors,” in Proceedings of Conference on Photonics in Switching, San Diego, CA, USA, Paper PW2B.2 (2014).
[Crossref]

Watanabe, T.

Yamaguchi, J.

K. Yamaguchi, M. Nakajima, J. Yamaguchi, T. Hashimoto, Y. Ikuma, and K. Suzuki, “MxN wavelength selective switches using beam splitting by space light modulator,” in Proc. IEEE OECC, 1–3 (2015).
[Crossref]

Yamaguchi, K.

K. Yamaguchi, M. Nakajima, J. Yamaguchi, T. Hashimoto, Y. Ikuma, and K. Suzuki, “MxN wavelength selective switches using beam splitting by space light modulator,” in Proc. IEEE OECC, 1–3 (2015).
[Crossref]

Yamakami, S.

S. Yamakami, M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly Reliable Large-Scale Optical Cross-Connect Architecture Utilizing MxM Wavelength-Selective Switches,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper Th3K.5 (2017).
[Crossref]

Yamashita, Y.

H. Uetsuka, M. Tachikura, H. Kawashima, K. Sorimoto, H. Tsuda, K. Sasaki, and Y. Yamashita, “5x5 wavelength cross-connect switch with densely integrated MEMS mirrors,” in Proceedings of Conference on Photonics in Switching, San Diego, CA, USA, Paper PW2B.2 (2014).
[Crossref]

Zhao, H.

L. Zong, H. Zhao, Z. Feng, and S. Cao, “Demonstration of ultra-compact contentionless-ROADM based on flexible wavelength router,” in Proceedings ofIEEE ECOC, 1–3 (2014).
[Crossref]

L. Zong, G. N. Liu, H. Zhao, T. Ma, and A. Lord, “Ultra-compact Contentionless ROADM Architecture with High Resilience Based on Flexible Wavelength Router,” in Optical Fiber Communication Conference, San Francisco, CA, USA, Paper W2A64 (2014).
[Crossref]

Zong, L.

L. Zong, G. N. Liu, H. Zhao, T. Ma, and A. Lord, “Ultra-compact Contentionless ROADM Architecture with High Resilience Based on Flexible Wavelength Router,” in Optical Fiber Communication Conference, San Francisco, CA, USA, Paper W2A64 (2014).
[Crossref]

L. Zong, H. Zhao, Z. Feng, and S. Cao, “Demonstration of ultra-compact contentionless-ROADM based on flexible wavelength router,” in Proceedings ofIEEE ECOC, 1–3 (2014).
[Crossref]

IEEE Photonics J. (1)

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Novel optical-node architecture utilizing asymmetric-multiport wavelength-selective switches,” IEEE Photonics J. 8(2), 0601210 (2016).
[Crossref]

J. Opt. Commun. Netw. (3)

Opt. Express (2)

Other (12)

K. Sato, “Challenges and opportunities of photonic networking technologies,” in Proc. IEEE OECC/PS, 1–2 (2013).

B. C. Collings, “Advanced ROADM Technologies and architectures,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper Tu3D.3 (2015).
[Crossref]

N. K. Fontaine, R. Ryf, and D. T. Neilson, “NxM wavelength selective crossconnect with flexible passbands,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper PDP5B2 (2012).
[Crossref]

L. Zong, H. Zhao, Z. Feng, and S. Cao, “Demonstration of ultra-compact contentionless-ROADM based on flexible wavelength router,” in Proceedings ofIEEE ECOC, 1–3 (2014).
[Crossref]

H. Uetsuka, M. Tachikura, H. Kawashima, K. Sorimoto, H. Tsuda, K. Sasaki, and Y. Yamashita, “5x5 wavelength cross-connect switch with densely integrated MEMS mirrors,” in Proceedings of Conference on Photonics in Switching, San Diego, CA, USA, Paper PW2B.2 (2014).
[Crossref]

K. Yamaguchi, M. Nakajima, J. Yamaguchi, T. Hashimoto, Y. Ikuma, and K. Suzuki, “MxN wavelength selective switches using beam splitting by space light modulator,” in Proc. IEEE OECC, 1–3 (2015).
[Crossref]

R. Hashimoto, Y. Mori, H. Hasegawa, and K. Sato, “First Demonstration of Subsystem-Modular Optical Cross-Connect Using Single-Module 6x6 WSS,” in Proceedings of IEEE ECOC (accepted).

L. Zong, G. N. Liu, H. Zhao, T. Ma, and A. Lord, “Ultra-compact Contentionless ROADM Architecture with High Resilience Based on Flexible Wavelength Router,” in Optical Fiber Communication Conference, San Francisco, CA, USA, Paper W2A64 (2014).
[Crossref]

H. Ishida, H. Hasegawa, and K. Sato, “Highly Scalable subsystem modular OXC nodes that host tailored add/drop mechanism,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper, Th2A.47 (2015).
[Crossref]

M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly scalable and compact ROADM architecture that exploits MxN wavelength selective switches,” in Proc. IEEE Int. Conf. Photon. Switching, 127–129 (2015).
[Crossref]

S. Yamakami, M. Niwa, Y. Mori, H. Hasegawa, and K. Sato, “Highly Reliable Large-Scale Optical Cross-Connect Architecture Utilizing MxM Wavelength-Selective Switches,” in Optical Fiber Communication Conference, Los Angeles, CA, USA, Paper Th3K.5 (2017).
[Crossref]

249025-ICT OASE Project, D4.2.1, “Technical Assessment and Comparison of Next-Generation Optical Access System Concepts,” (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Conventional single OXC (a) without intra-node protection, (b) with route-type intra-node protection, and (c) with broadcast-type intra-node protection.
Fig. 2
Fig. 2 Protection process for route-type intra-node protection configuration: (a) before WSS failure and (b) after WSS failure. The purple arrows denote signal flows and the red marker depicts the failed WSS.
Fig. 3
Fig. 3 Protection process for broadcast-type intra-node protection configuration: (a) before WSS failure and (b) after WSS failure. The purple arrows denote signal flows and the red marker indicates the failed WSS.
Fig. 4
Fig. 4 Subsystem-modular OXC utilizing 1xm WSSs (a) without intra-node protection and (b) with intra-node protection.
Fig. 5
Fig. 5 Protection process for a subsystem-modular OXC utilizing 1xm WSS: (a) before WSS failure and (b) after WSS failure. The purple arrows denote signal flows and the red marker indicates the failed WSS.
Fig. 6
Fig. 6 Subsystem-modular OXC based on mxm WSSs (a) without intra-node protection and (b) with intra-node protection
Fig. 7
Fig. 7 Process of the proposed protection on an mxm-WSS basis (a) before WSS failure and (b) after WSS failure. The purple/orange arrows denote signal flows and the red marker indicates the failed WSS.
Fig. 8
Fig. 8 Physical network topologies: (a) 5x5 regular-mesh network, (b) USNET network, and (c) COST266 pan-European network.
Fig. 9
Fig. 9 The total number of WSS units needed in each network. (a) 5x5 regular-mesh network, (b) USNET network, and (c) COST266 pan-European network.
Fig. 10
Fig. 10 The annual downtime per path with subsystem-modular OXC based on 1x9 WSSs. (a) 5x5 regular-mesh network, (b) USNET network, and (c) COST266 pan-European network.
Fig. 11
Fig. 11 The annual downtime per path with subsystem-modular OXC based on 8x8/10x10 WSSs, as a function of MTBF of an 8x8/10x10 WSS. (a) 5x5 regular-mesh network, (b) USNET network, and (c) COST266 pan-European network.
Fig. 12
Fig. 12 Availability of an optical path traversing n WSSs, where a i ' is the availability of #i WSS.

Tables (3)

Tables Icon

Table 1 Necessary number of components for the conventional OXC when N = 45, L = 20, and P = 1.

Tables Icon

Table 2 The necessary number of components for subsystem-modular OXC when N = 45, m = 9, and r = R = 1.

Tables Icon

Table 3 Parameter values for WSS a .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

a = MTBF MTBF + MTTR .
a 1 x N ' = { a 1 x N a 1 x N + ( 1 a 1 x N ) i = 0 P 1 C N + P 1 i ( 1 a 1 x N ) i a 1 x N N + P 1 i ( P = 0 ) ( P 1 ) ,
a 1 x m ' = { a 1 x m a 1 x m + ( 1 a 1 x m ) i = 0 r 1 C m + r 1 i ( 1 a 1 x m ) i a 1 x m m + r 1 i ( r = 0 ) ( r 1 ) ,
a m x m ' = { a m x m a m x m + ( 1 a m x m ) i = 0 R 1 C S + R 1 i ( 1 a m x m ) i a m x m S + R 1 i ( R = 0 ) ( R 1 ) ,
a p a t h = i = 1 n a i ' .

Metrics