Abstract

We propose and experimentally demonstrate an all-optical microwave filter with tunable central frequency and bandwidth based on two cascaded silicon opto-mechanical microring resonators (MRRs). Due to the Vernier effect, transmission spectrum of the cascaded MRRs is a series of notch bimodal distribution. In the case of intensity modulation with optical double-sideband (ODSB) signals, the optical carrier is fixed between the two resonant peaks of one notch bimodal distribution. By injecting two pump powers to control the above two resonance red-shifts based on the nonlinear effects in opto-mechanical MRRs, the frequency intervals between the optical carrier and the two resonances could be flexibly manipulated for tunable microwave processing. In the experiment, with the highest required pump powers of 1.65 mW and 0.96 mW, the central frequency and bandwidth of the notch microwave photonic filter (MPF) could be tuned from 5 GHz to 36 GHz and 6.7 GHz to 10.3 GHz, respectively. The proposed opto-mechanical device is competent to process microwave signals with dominant advantages of all-optical control, compact footprint, wide tuning range and low-power consumption, which has significant applications in on-chip microwave systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator

Li Liu, Yue Yang, Zhihua Li, Xing Jin, Wenqin Mo, and Xing Liu
Opt. Express 25(2) 960-971 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  4. Y. Liu, Y. Yu, S. Yuan, X. Xu, and X. Zhang, “Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity,” Opt. Lett. 41(21), 5078–5081 (2016).
    [Crossref] [PubMed]
  5. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  6. D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
    [Crossref]
  7. B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32(1), 23–25 (2007).
    [Crossref] [PubMed]
  8. A. Byrnes, R. Pant, E. Li, D. Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
    [Crossref] [PubMed]
  9. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
    [Crossref] [PubMed]
  10. X. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 19(17), 1334–1336 (2007).
    [Crossref]
  11. J. Mora, B. Ortega, J. Capmany, J. Cruz, M. Andres, D. Pastor, and S. Sales, “Automatic tunable and reconfigurable fiberoptic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings,” Opt. Express 10(22), 1291–1298 (2002).
    [Crossref] [PubMed]
  12. M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
    [Crossref]
  13. H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
    [Crossref]
  14. X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, and Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” IEEE Photonics Technol. Lett. 15(5), 754–756 (2003).
    [Crossref]
  15. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  16. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  17. L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
    [Crossref] [PubMed]
  18. M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263271 (2010).
    [Crossref]
  19. L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
    [Crossref] [PubMed]
  20. M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19(22), 22292–22304 (2011).
    [Crossref] [PubMed]
  21. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  22. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  23. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  24. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
    [Crossref] [PubMed]
  25. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
  26. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [Crossref]
  27. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
    [Crossref]
  28. A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
    [Crossref] [PubMed]
  29. A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett. 40(17), 4154–4157 (2015).
    [Crossref] [PubMed]
  30. R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin Scattering for microwave signal processing and generation,” Laser Photonics Rev. 8(5), 653–666 (2014).
    [Crossref]
  31. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [Crossref] [PubMed]
  32. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005).
    [Crossref] [PubMed]
  33. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
    [Crossref] [PubMed]
  34. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
    [Crossref]
  35. B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
    [Crossref]
  36. J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
    [Crossref]
  37. Y. F. Yu, M. Ren, J. B. Zhang, T. Bourouina, C. S. Tan, J. M. Tsai, and A. Q. Liu, “Force-induced optical nonlinearity and Kerr-like coefficient in opto-mechanical ring resonators,” Opt. Express 20(16), 18005–18015 (2012).
    [Crossref] [PubMed]
  38. H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
    [Crossref]
  39. J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
    [Crossref]
  40. L. Liu, M. He, and J. Dong, “Compact continuously tunable microwave photonic filters based on cascaded silicon microring resonators,” Opt. Commun. 363, 128–133 (2016).
    [Crossref]
  41. L. Liu, Y. Yang, Z. Li, X. Jin, W. Mo, and X. Liu, “Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator,” Opt. Express 25(2), 960–971 (2017).
    [Crossref] [PubMed]
  42. M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, “Nano-optomechanical actuator and pull-back instability,” ACS Nano 7(2), 1676–1681 (2013).
    [Crossref] [PubMed]
  43. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
    [Crossref]
  44. M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
    [Crossref]
  45. L. Martinez and M. Lipson, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Opt. Express 14(13), 6259–6263 (2006).
    [Crossref] [PubMed]
  46. V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
    [Crossref]
  47. Y. Long and J. Wang, “All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment,” Opt. Express 23(14), 17758–17771 (2015).
    [Crossref] [PubMed]
  48. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [Crossref] [PubMed]

2017 (1)

2016 (3)

2015 (5)

2014 (1)

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin Scattering for microwave signal processing and generation,” Laser Photonics Rev. 8(5), 653–666 (2014).
[Crossref]

2013 (6)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, “Nano-optomechanical actuator and pull-back instability,” ACS Nano 7(2), 1676–1681 (2013).
[Crossref] [PubMed]

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

2012 (6)

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Y. F. Yu, M. Ren, J. B. Zhang, T. Bourouina, C. S. Tan, J. M. Tsai, and A. Q. Liu, “Force-induced optical nonlinearity and Kerr-like coefficient in opto-mechanical ring resonators,” Opt. Express 20(16), 18005–18015 (2012).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

A. Byrnes, R. Pant, E. Li, D. Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
[Crossref] [PubMed]

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
[Crossref] [PubMed]

2011 (2)

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19(22), 22292–22304 (2011).
[Crossref] [PubMed]

2010 (4)

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263271 (2010).
[Crossref]

2009 (4)

J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[Crossref] [PubMed]

2008 (1)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

2007 (5)

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

X. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 19(17), 1334–1336 (2007).
[Crossref]

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[Crossref]

B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32(1), 23–25 (2007).
[Crossref] [PubMed]

2006 (5)

2005 (1)

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

2003 (1)

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, and Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” IEEE Photonics Technol. Lett. 15(5), 754–756 (2003).
[Crossref]

2002 (1)

1997 (1)

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

Adibi, A.

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19(22), 22292–22304 (2011).
[Crossref] [PubMed]

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263271 (2010).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Andres, M.

Antman, Y.

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Aryanfar, I.

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bourouina, T.

Boyd, J. T.

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

Byrnes, A.

Cai, H.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, “Nano-optomechanical actuator and pull-back instability,” ACS Nano 7(2), 1676–1681 (2013).
[Crossref] [PubMed]

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Capasso, F.

Capmany, J.

Casas-Bedoya, A.

Chamanzar, M.

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19(22), 22292–22304 (2011).
[Crossref] [PubMed]

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263271 (2010).
[Crossref]

Chen, D.

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[Crossref]

Chin, S.

Choi, D. Y.

Choudhary, A.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cruz, J.

De Brabander, G. N.

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Ding, L.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, and Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” IEEE Photonics Technol. Lett. 15(5), 754–756 (2003).
[Crossref]

Dong, B.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

Dong, J.

L. Liu, M. He, and J. Dong, “Compact continuously tunable microwave photonic filters based on cascaded silicon microring resonators,” Opt. Commun. 363, 128–133 (2016).
[Crossref]

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
[Crossref] [PubMed]

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Eggleton, B. J.

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Fan, S.

Fathpour, S.

Feng, X.

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

X. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 19(17), 1334–1336 (2007).
[Crossref]

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Fu, H.

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[Crossref]

Gao, D.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Geluk, E. J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).

Gondarenko, A.

Gu, Y. D.

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

He, M.

L. Liu, M. He, and J. Dong, “Compact continuously tunable microwave photonic filters based on cascaded silicon microring resonators,” Opt. Commun. 363, 128–133 (2016).
[Crossref]

He, S.

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[Crossref]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Hu, X.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Huang, J.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, “Nano-optomechanical actuator and pull-back instability,” ACS Nano 7(2), 1676–1681 (2013).
[Crossref] [PubMed]

Huang, Y.

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).

Ibanescu, M.

Jalali, B.

Jiang, X.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Jin, X.

Joannopoulos, J. D.

Johnson, S. G.

Kabakova, I. V.

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin Scattering for microwave signal processing and generation,” Laser Photonics Rev. 8(5), 653–666 (2014).
[Crossref]

Kippenberg, T. J.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Kropelnicki, P.

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kwong, D. L.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Leaird, D. E.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Levy, J. S.

Li, E.

Li, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Li, Z.

Lin, J.

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Lin, Q.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[Crossref]

Lipson, M.

Liu, A.

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Liu, A. Q.

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, “Nano-optomechanical actuator and pull-back instability,” ACS Nano 7(2), 1676–1681 (2013).
[Crossref] [PubMed]

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Y. F. Yu, M. Ren, J. B. Zhang, T. Bourouina, C. S. Tan, J. M. Tsai, and A. Q. Liu, “Force-induced optical nonlinearity and Kerr-like coefficient in opto-mechanical ring resonators,” Opt. Express 20(16), 18005–18015 (2012).
[Crossref] [PubMed]

Liu, L.

L. Liu, Y. Yang, Z. Li, X. Jin, W. Mo, and X. Liu, “Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator,” Opt. Express 25(2), 960–971 (2017).
[Crossref] [PubMed]

L. Liu, M. He, and J. Dong, “Compact continuously tunable microwave photonic filters based on cascaded silicon microring resonators,” Opt. Commun. 363, 128–133 (2016).
[Crossref]

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
[Crossref] [PubMed]

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).

Liu, X.

Liu, Y.

Liu, Z.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, “Nano-optomechanical actuator and pull-back instability,” ACS Nano 7(2), 1676–1681 (2013).
[Crossref] [PubMed]

Lo, G. Q.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Loncar, M.

Long, C. M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Long, Y.

Lu, C.

X. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 19(17), 1334–1336 (2007).
[Crossref]

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, and Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” IEEE Photonics Technol. Lett. 15(5), 754–756 (2003).
[Crossref]

Luther-Davies, B.

Madden, S.

Madden, S. J.

Marpaung, D.

Martí, J.

Martinez, L.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Mo, W.

Momeni, B.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263271 (2010).
[Crossref]

Mora, J.

Morrison, B.

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).

Naghski, D. H.

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

Ng, G. I.

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ortega, B.

Ou, H.

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[Crossref]

Pagani, M.

Painter, O.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Pant, R.

Pastor, D.

Pernice, W. H. P.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Piqueras, M. A.

Poulton, C. G.

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin Scattering for microwave signal processing and generation,” Laser Photonics Rev. 8(5), 653–666 (2014).
[Crossref]

A. Byrnes, R. Pant, E. Li, D. Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
[Crossref] [PubMed]

Povinelli, M. L.

Primerov, N.

Randles, A. B.

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

Ren, M.

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Roels, J.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

Rosenberg, J.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[Crossref]

Sales, S.

Sancho, J.

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Seeds, A. J.

Seo, D.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Shahnia, S.

Smythe, E. J.

Soltani, M.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263271 (2010).
[Crossref]

Song, M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).

Su, Y.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Subramaniam, V.

V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” J. Lightwave Technol. 15(6), 990–997 (1997).
[Crossref]

Suo, Z.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, “Nano-optomechanical actuator and pull-back instability,” ACS Nano 7(2), 1676–1681 (2013).
[Crossref] [PubMed]

Suo, Z. G.

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

Tam, H. Y.

X. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 19(17), 1334–1336 (2007).
[Crossref]

Tan, C. S.

Tang, H. X.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Tang, M.

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

Tao, J.

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Tao, J. F.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

Thévenaz, L.

Tsai, J. M.

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, “Nano-optomechanical actuator and pull-back instability,” ACS Nano 7(2), 1676–1681 (2013).
[Crossref] [PubMed]

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Y. F. Yu, M. Ren, J. B. Zhang, T. Bourouina, C. S. Tan, J. M. Tsai, and A. Q. Liu, “Force-induced optical nonlinearity and Kerr-like coefficient in opto-mechanical ring resonators,” Opt. Express 20(16), 18005–18015 (2012).
[Crossref] [PubMed]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vidal, B.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Vu, K.

Wai, P. K. A.

X. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 19(17), 1334–1336 (2007).
[Crossref]

Wang, J.

Wang, T.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Wang, Y.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, and Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” IEEE Photonics Technol. Lett. 15(5), 754–756 (2003).
[Crossref]

Wei, F.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, and Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” IEEE Photonics Technol. Lett. 15(5), 754–756 (2003).
[Crossref]

Weiner, A. M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Williams, K. J.

Wu, J.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Wu, R.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Xu, M.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Xu, Q.

Xu, X.

Yang, T.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Yang, X.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, and Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” IEEE Photonics Technol. Lett. 15(5), 754–756 (2003).
[Crossref]

Yang, Y.

Yao, J.

Yegnanarayanan, S.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263271 (2010).
[Crossref]

Yi, X.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, and Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” IEEE Photonics Technol. Lett. 15(5), 754–756 (2003).
[Crossref]

Yu, Y.

Y. Liu, Y. Yu, S. Yuan, X. Xu, and X. Zhang, “Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity,” Opt. Lett. 41(21), 5078–5081 (2016).
[Crossref] [PubMed]

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Yu, Y. F.

Yuan, S.

Zadok, A.

Zhang, D.

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Zhang, J. B.

Zhang, Q.

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

Zhang, X.

Y. Liu, Y. Yu, S. Yuan, X. Xu, and X. Zhang, “Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity,” Opt. Lett. 41(21), 5078–5081 (2016).
[Crossref] [PubMed]

L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
[Crossref] [PubMed]

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Zheng, A.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

Zhong, W. D.

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, and Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” IEEE Photonics Technol. Lett. 15(5), 754–756 (2003).
[Crossref]

Zhou, J.

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, “Nano-optomechanical actuator and pull-back instability,” ACS Nano 7(2), 1676–1681 (2013).
[Crossref] [PubMed]

ACS Nano (1)

M. Ren, J. Huang, H. Cai, J. M. Tsai, J. Zhou, Z. Liu, Z. Suo, and A. Q. Liu, “Nano-optomechanical actuator and pull-back instability,” ACS Nano 7(2), 1676–1681 (2013).
[Crossref] [PubMed]

Appl. Phys. B (1)

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101(1-2), 263271 (2010).
[Crossref]

Appl. Phys. Lett. (3)

B. Dong, H. Cai, G. I. Ng, P. Kropelnicki, J. M. Tsai, A. B. Randles, M. Tang, Y. D. Gu, Z. G. Suo, and A. Q. Liu, “A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator,” Appl. Phys. Lett. 103(18), 181105 (2013).
[Crossref]

J. Tao, J. Wu, H. Cai, Q. Zhang, J. M. Tsai, J. Lin, and A. Liu, “A nanomachined optical logic gate driven by gradient optical force,” Appl. Phys. Lett. 100(11), 113104 (2012).
[Crossref]

H. Cai, B. Dong, J. F. Tao, L. Ding, J. M. Tsai, G. Q. Lo, A. Q. Liu, and D. L. Kwong, “A nanoelectromechanical systems optical switch driven by optical gradient force,” Appl. Phys. Lett. 102(2), 023103 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Photonics J. (2)

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5(2), 5500307 (2013).
[Crossref]

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (4)

X. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 19(17), 1334–1336 (2007).
[Crossref]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photonics Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

X. Yi, C. Lu, X. Yang, W. D. Zhong, F. Wei, L. Ding, and Y. Wang, “Continuously tunable microwave-photonic filter design using high-birefringence linear chirped grating,” IEEE Photonics Technol. Lett. 15(5), 754–756 (2003).
[Crossref]

J. Lightwave Technol. (5)

Laser Photonics Rev. (3)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin Scattering for microwave signal processing and generation,” Laser Photonics Rev. 8(5), 653–666 (2014).
[Crossref]

Nat. Photonics (5)

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[Crossref]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009).
[Crossref]

Nature (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[Crossref]

L. Liu, M. He, and J. Dong, “Compact continuously tunable microwave photonic filters based on cascaded silicon microring resonators,” Opt. Commun. 363, 128–133 (2016).
[Crossref]

Opt. Express (11)

L. Liu, Y. Yang, Z. Li, X. Jin, W. Mo, and X. Liu, “Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator,” Opt. Express 25(2), 960–971 (2017).
[Crossref] [PubMed]

L. Martinez and M. Lipson, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Opt. Express 14(13), 6259–6263 (2006).
[Crossref] [PubMed]

Y. Long and J. Wang, “All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment,” Opt. Express 23(14), 17758–17771 (2015).
[Crossref] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[Crossref] [PubMed]

J. Mora, B. Ortega, J. Capmany, J. Cruz, M. Andres, D. Pastor, and S. Sales, “Automatic tunable and reconfigurable fiberoptic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings,” Opt. Express 10(22), 1291–1298 (2002).
[Crossref] [PubMed]

L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
[Crossref] [PubMed]

A. Byrnes, R. Pant, E. Li, D. Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
[Crossref] [PubMed]

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
[Crossref] [PubMed]

Y. F. Yu, M. Ren, J. B. Zhang, T. Bourouina, C. S. Tan, J. M. Tsai, and A. Q. Liu, “Force-induced optical nonlinearity and Kerr-like coefficient in opto-mechanical ring resonators,” Opt. Express 20(16), 18005–18015 (2012).
[Crossref] [PubMed]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19(22), 22292–22304 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (1)

Sci. Rep. (1)

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

Science (1)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic diagram of the free-hanging MRR. (b) Cross-sectional illustration of the deflected MRR influenced by the optical gradient force.
Fig. 2
Fig. 2 Operation principle of the tunable MPF central frequency. (a) The transmission spectrum of the cascaded MRRs. The frequency intervals between the optical carrier and two resonances of the working region are equally tuned as (b) f1 (λ3: Pump on, λ4: Pump off), (d) f2 (λ3: Pump on, λ4: Pump on) and (f) f3 (λ3: Pump off, λ4: Pump on), respectively. The central frequencies of the MPF response are (c) f1, (e) f2 and (g) f3, respectively.
Fig. 3
Fig. 3 Operation principle of the tunable MPF bandwidth. (a) The frequency intervals between the optical carrier and two resonances of the working region are tuned as 2f3-f4 and f4. λ3: Pump on, λ4: Pump on. (b) The MPF response with a larger bandwidth, shown as the blue line.
Fig. 4
Fig. 4 (a) Calculated bending loss under different MRR waveguide widths. (b) Effective indexes and energy profiles of the fundamental modes in different waveguide structures.
Fig. 5
Fig. 5 SEM images of (a) the cascaded opto-mechanical MRRs, (b) R1 and (c) the grating coupler, respectively.
Fig. 6
Fig. 6 (a) Measured transmission spectrum of the cascaded MRRs. (b) Zoom in image of the working region.
Fig. 7
Fig. 7 (a) Measured transmission spectra of the cascaded MRRs under different pump powers. (b) The relationships between the red-shifts of λ1, λ2 and input pump powers.
Fig. 8
Fig. 8 Schematic illustration of the experimental setup. The red dotted lines: electrical path, the blue solid lines: optical path. LD: laser diode, PC: polarization controller, MZM: Mach–Zehnder modulator, EDFA: erbium-doped fiber amplifier, VOA: variable optical attenuator, OC: optical coupler, PD: photodetector, VNA: vector network analyzer, EA: electrical amplifier.
Fig. 9
Fig. 9 (a) Measured notch MPFs with tunable central frequency. (b) Features of MPF rejection ratio and 3dB bandwidth.
Fig. 10
Fig. 10 Variations of MPF bandwidths under different frequency offsets. (a) Frequency offset of 0 GHz (blue line): Pin(λ3) = 0.76 mW and Pin(λ4) = 0.83 mW, frequency offset of 1 GHz (green line): Pin(λ3) = 0.81 mW and Pin(λ4) = 0.89 mW. (b) Frequency offset of 1.5 GHz (pink line): Pin(λ3) = 0.83 mW and Pin(λ4) = 0.92 mW. (c) Frequency offset of 2 GHz (red line): Pin(λ3) = 0.86 mW and Pin(λ4) = 0.96 mW. (d) Features of the MPF rejection ratio and 3dB bandwidth under different frequency offsets.

Tables (2)

Tables Icon

Table 1 Input pump powers of λ3 and λ4 corresponding to different MPF central frequencies

Tables Icon

Table 2 Performance comparisons of recent on-chip tunable MPFs using nonlinear effects

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δ λ 1 g o m 2 P m / k
δ λ 2 λ 0 n g Γ th k th R th P t
δ λ = δ λ 1 + δ λ 2 P pump
V ( t ) = 1 2 V π + α V π cos ( ω R F t )
E o u t ( t ) = E 0 cos ( ω 0 t ) cos [ π 2 V π V ( t ) ]
E o u t ( t ) = E 0 [ J 0 ( m ) e j ω 0 t J 1 ( m ) e j ( ω 0 ω R F ) t J 1 ( m ) e j ( ω 0 + ω R F ) t ]
E ( ω ) = 2 π E 0 [ J 0 ( m ) H ( ω 0 ) J 1 ( m ) H ( ω 0 ω R F ) J 1 ( m ) H ( ω 0 + ω R F ) ]
i A C 4 π 2 E 0 2 J 0 ( m ) J 1 ( m ) H ( ω 0 ) [ H ( ω 0 ω R F ) + H ( ω 0 + ω R F ) ]
λ res = 2 π n e f f R m , m = 1 , 2 , 3...

Metrics