Abstract

A new hollow fiber sensor based on metal-cladding waveguide configuration for the detection of the refractive index of liquid is proposed and demonstrated. Due to the existence of both surface and guided modes in the metal-insulator-metal waveguide, the proposed sensor can detect liquid with refractive index either higher or lower than the insulator layer, which significantly extends the detection range. The characteristics of metal-cladding waveguide is analyzed and presented, while the performance of the sensor is numerically calculated and evaluated. The results evince that, the designed fiber sensor can effectively detect both high and low refractive index liquid by respectively exciting surface mode and guided mode.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index

Bing-Hong Liu, Yong-Xiang Jiang, Xiao-Song Zhu, Xiao-Li Tang, and Yi-Wei Shi
Opt. Express 21(26) 32349-32357 (2013)

Long-range surface plasmon resonance sensor based on the GK570/Ag coated hollow fiber with an asymmetric layer structure

Xiao Zhao, Xian Zhang, Xiao-Song Zhu, and Yi-Wei Shi
Opt. Express 27(7) 9550-9560 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  3. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  4. M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
    [Crossref] [PubMed]
  5. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
    [Crossref]
  6. C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21(1), 382–390 (2013).
    [Crossref] [PubMed]
  7. N. Diaz-Herrera, D. Viegas, P. A. S. Jorge, F. M. Araujo, J. L. Santos, M. C. Navarrete, and A. Gonzalez-Cano, “Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sens. Actuator B Chem. 144(1), 226–231 (2010).
    [Crossref]
  8. M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
    [Crossref]
  9. P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
    [Crossref] [PubMed]
  10. Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2(3), 478–484 (2011).
    [Crossref] [PubMed]
  11. P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface Plasmon Resonance Sensor Based on Ethylene Tetra-Fluoro-Ethylene Hollow Fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
    [Crossref] [PubMed]
  12. B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
    [Crossref] [PubMed]
  13. N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
    [Crossref] [PubMed]
  14. H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
    [Crossref]
  15. N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuator B Chem. 106(2), 668–676 (2005).
    [Crossref]
  16. Y. Wang, M. Huang, X. Guan, Z. Cao, F. Chen, and X. Wang, “Determination of trace chromium (VI) using a hollow-core metal-cladding optical waveguide sensor,” Opt. Express 21(25), 31130–31137 (2013).
    [Crossref] [PubMed]
  17. N. Skivesen, R. Horvath, and H. C. Pedersen, “Peak-type and dip-type metal-clad waveguide sensing,” Opt. Lett. 30(13), 1659–1661 (2005).
    [Crossref] [PubMed]
  18. P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, and Z. Cao, “Biosensor based on hollow-core metal-cladding waveguide,” Sens. Actuators A Phys. 183, 22–27 (2012).
    [Crossref]
  19. H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
    [Crossref]
  20. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1(7), 742–753 (1984).
    [Crossref]
  21. Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
    [Crossref] [PubMed]
  22. X. J. Tan and X. S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24(14), 16016–16026 (2016).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

2013 (4)

2012 (1)

P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, and Z. Cao, “Biosensor based on hollow-core metal-cladding waveguide,” Sens. Actuators A Phys. 183, 22–27 (2012).
[Crossref]

2011 (2)

2010 (1)

N. Diaz-Herrera, D. Viegas, P. A. S. Jorge, F. M. Araujo, J. L. Santos, M. C. Navarrete, and A. Gonzalez-Cano, “Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sens. Actuator B Chem. 144(1), 226–231 (2010).
[Crossref]

2008 (2)

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
[Crossref]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

2007 (1)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

2005 (3)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuator B Chem. 106(2), 668–676 (2005).
[Crossref]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Peak-type and dip-type metal-clad waveguide sensing,” Opt. Lett. 30(13), 1659–1661 (2005).
[Crossref] [PubMed]

2004 (1)

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

2003 (1)

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B Chem. 54(1-2), 3–15 (1999).
[Crossref]

1984 (1)

Araujo, F. M.

N. Diaz-Herrera, D. Viegas, P. A. S. Jorge, F. M. Araujo, J. L. Santos, M. C. Navarrete, and A. Gonzalez-Cano, “Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sens. Actuator B Chem. 144(1), 226–231 (2010).
[Crossref]

Bhatia, P.

Cao, Z.

Y. Wang, M. Huang, X. Guan, Z. Cao, F. Chen, and X. Wang, “Determination of trace chromium (VI) using a hollow-core metal-cladding optical waveguide sensor,” Opt. Express 21(25), 31130–31137 (2013).
[Crossref] [PubMed]

P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, and Z. Cao, “Biosensor based on hollow-core metal-cladding waveguide,” Sens. Actuators A Phys. 183, 22–27 (2012).
[Crossref]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[Crossref]

Chen, F.

Chen, P.

P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface Plasmon Resonance Sensor Based on Ethylene Tetra-Fluoro-Ethylene Hollow Fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
[Crossref] [PubMed]

Chen, X.

P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, and Z. Cao, “Biosensor based on hollow-core metal-cladding waveguide,” Sens. Actuators A Phys. 183, 22–27 (2012).
[Crossref]

Chilwell, J.

Couture, M.

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Cuenot, S.

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
[Crossref]

Dam, B.

Diaz-Herrera, N.

N. Diaz-Herrera, D. Viegas, P. A. S. Jorge, F. M. Araujo, J. L. Santos, M. C. Navarrete, and A. Gonzalez-Cano, “Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sens. Actuator B Chem. 144(1), 226–231 (2010).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Gonzalez-Cano, A.

N. Diaz-Herrera, D. Viegas, P. A. S. Jorge, F. M. Araujo, J. L. Santos, M. C. Navarrete, and A. Gonzalez-Cano, “Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sens. Actuator B Chem. 144(1), 226–231 (2010).
[Crossref]

Guan, X.

Gupta, B. D.

P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
[Crossref] [PubMed]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

He, Y. J.

P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface Plasmon Resonance Sensor Based on Ethylene Tetra-Fluoro-Ethylene Hollow Fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
[Crossref] [PubMed]

Hodgkinson, I.

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Horvath, R.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Peak-type and dip-type metal-clad waveguide sensing,” Opt. Lett. 30(13), 1659–1661 (2005).
[Crossref] [PubMed]

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuator B Chem. 106(2), 668–676 (2005).
[Crossref]

Huang, M.

Y. Wang, M. Huang, X. Guan, Z. Cao, F. Chen, and X. Wang, “Determination of trace chromium (VI) using a hollow-core metal-cladding optical waveguide sensor,” Opt. Express 21(25), 31130–31137 (2013).
[Crossref] [PubMed]

P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, and Z. Cao, “Biosensor based on hollow-core metal-cladding waveguide,” Sens. Actuators A Phys. 183, 22–27 (2012).
[Crossref]

Javahiraly, N.

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Jiang, Y. X.

Jorge, P. A. S.

N. Diaz-Herrera, D. Viegas, P. A. S. Jorge, F. M. Araujo, J. L. Santos, M. C. Navarrete, and A. Gonzalez-Cano, “Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sens. Actuator B Chem. 144(1), 226–231 (2010).
[Crossref]

Kanso, M.

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
[Crossref]

Li, H.

P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, and Z. Cao, “Biosensor based on hollow-core metal-cladding waveguide,” Sens. Actuators A Phys. 183, 22–27 (2012).
[Crossref]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[Crossref]

Lin, Y.

Lindquist, R. G.

Liu, B. H.

Louarn, G.

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
[Crossref]

Lu, H.

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[Crossref]

Luan, N.

Lv, W.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Masson, J. F.

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Meyrueis, P.

Navarrete, M. C.

N. Diaz-Herrera, D. Viegas, P. A. S. Jorge, F. M. Araujo, J. L. Santos, M. C. Navarrete, and A. Gonzalez-Cano, “Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sens. Actuator B Chem. 144(1), 226–231 (2010).
[Crossref]

Pedersen, H.

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuator B Chem. 106(2), 668–676 (2005).
[Crossref]

Pedersen, H. C.

Perrotton, C.

Santos, J. L.

N. Diaz-Herrera, D. Viegas, P. A. S. Jorge, F. M. Araujo, J. L. Santos, M. C. Navarrete, and A. Gonzalez-Cano, “Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sens. Actuator B Chem. 144(1), 226–231 (2010).
[Crossref]

Schreuders, H.

Sharma, A. K.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Shen, Q.

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[Crossref]

Shi, Y. W.

Skivesen, N.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Peak-type and dip-type metal-clad waveguide sensing,” Opt. Lett. 30(13), 1659–1661 (2005).
[Crossref] [PubMed]

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuator B Chem. 106(2), 668–676 (2005).
[Crossref]

Slaman, M.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Sun, J.

P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, and Z. Cao, “Biosensor based on hollow-core metal-cladding waveguide,” Sens. Actuators A Phys. 183, 22–27 (2012).
[Crossref]

Tan, X. J.

Tang, X. L.

Viegas, D.

N. Diaz-Herrera, D. Viegas, P. A. S. Jorge, F. M. Araujo, J. L. Santos, M. C. Navarrete, and A. Gonzalez-Cano, “Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sens. Actuator B Chem. 144(1), 226–231 (2010).
[Crossref]

Wang, R.

Wang, X.

Y. Wang, M. Huang, X. Guan, Z. Cao, F. Chen, and X. Wang, “Determination of trace chromium (VI) using a hollow-core metal-cladding optical waveguide sensor,” Opt. Express 21(25), 31130–31137 (2013).
[Crossref] [PubMed]

P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, and Z. Cao, “Biosensor based on hollow-core metal-cladding waveguide,” Sens. Actuators A Phys. 183, 22–27 (2012).
[Crossref]

Wang, Y.

Westerwaal, R. J.

Xiao, P.

P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, and Z. Cao, “Biosensor based on hollow-core metal-cladding waveguide,” Sens. Actuators A Phys. 183, 22–27 (2012).
[Crossref]

Yao, J.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zhao, S. S.

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Zhu, X. S.

Zou, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2759 (2003).
[Crossref]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

Biomed. Opt. Express (1)

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

IEEE Sens. J. (1)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (5)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Plasmonics (1)

M. Kanso, S. Cuenot, and G. Louarn, “Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments,” Plasmonics 3(2-3), 49–57 (2008).
[Crossref]

Sens. Actuator B Chem. (3)

N. Diaz-Herrera, D. Viegas, P. A. S. Jorge, F. M. Araujo, J. L. Santos, M. C. Navarrete, and A. Gonzalez-Cano, “Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sens. Actuator B Chem. 144(1), 226–231 (2010).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B Chem. 54(1-2), 3–15 (1999).
[Crossref]

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuator B Chem. 106(2), 668–676 (2005).
[Crossref]

Sens. Actuators A Phys. (1)

P. Xiao, X. Wang, J. Sun, H. Li, M. Huang, X. Chen, and Z. Cao, “Biosensor based on hollow-core metal-cladding waveguide,” Sens. Actuators A Phys. 183, 22–27 (2012).
[Crossref]

Sensors (Basel) (1)

P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface Plasmon Resonance Sensor Based on Ethylene Tetra-Fluoro-Ethylene Hollow Fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of metal cladding waveguide.
Fig. 2
Fig. 2 Dispersion curves of silver-silica-silver waveguide. Blue solid lines represent the dispersion of corresponding modes, while red dashed lines indicate the light line in silica waveguide. (a) Dispersion relation presented in ω-β relationship. The thickness of the silica layer here is 700 nm. (b) Dispersion relation presented in di-β relationship. The wavelength here is 632.8 nm.
Fig. 3
Fig. 3 (a) Prism-coupling configuration to realize mode resonance in metal cladding waveguide. (b) The spectra of the configuration presented in Fig. 3(a). Blue line and red line refers to the spectrum while the incident angle equals 5° and 40.5°, respectively.
Fig. 4
Fig. 4 The structure of hollow fiber sensor based on metal cladding waveguide.
Fig. 5
Fig. 5 Performance of the designed fiber sensor when detecting liquid with RI = 1.530. (a) The spectrum of the fiber. (b) The dependence of resonance wavelength on the RI of sensed liquid. The red circles and blue triangles represent TM0 and TM1, respectively.
Fig. 6
Fig. 6 Spectrum of the fiber sensor when detecting liquid with RI = 1.330.
Fig. 7
Fig. 7 Transmissivities varying with the refractive index of the sensed liquid. Blue, black and red line respectively represents the situation of dip 1, dip 2 and dip 3 in Fig. 6, and the corresponding wavelength is respectively 664.2 nm, 449.4 nm and 345.2 nm.

Tables (1)

Tables Icon

Table 1 The sensing properties of resonance dips presented in Fig. 6.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k i d i =mπ+2arctan ε i α m ε m k i .
r= ( M 11 + M 12 η s ) η 0 ( M 21 + M 22 η s ) ( M 11 + M 12 η s ) η 0 +( M 21 + M 22 η s ) ,
T= 0 π/2 exp( φ 2 / φ 0 2 ) R N ( φ ) dφ 0 π/2 exp( φ 2 / φ 0 2 )dφ .

Metrics