Abstract

A tunable Raman laser in the hollow bottle-like microresonator is demonstrated. By controlling the pump laser frequency, we have demonstrated continuous Raman laser frequency tuning. We also have studied the interesting transient mode evolution with Raman gain by sweeping the pump and probe laser, and verified the thermal tuning mechanism by theoretical simulations. By mechanically stretching the resonator, we have achieved the large range frequency tuning of the Raman laser, with the tuning range of 132 GHz with the resolution about 85 MHz. The demonstrated tunable Raman laser can be used as a source for future optical applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators

Zhong-Hao Zhou, Chang-Ling Zou, Yuan Chen, Zhen Shen, Guang-Can Guo, and Chun-Hua Dong
Opt. Express 25(4) 4046-4053 (2017)

Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring

Guoqiang Gu, Changlei Guo, Zhiping Cai, Huiying Xu, Lujian Chen, Hongyan Fu, Kaijun Che, Minghui Hong, Shufeng Sun, and Fengping Li
Appl. Opt. 53(32) 7819-7824 (2014)

Degenerate four-wave mixing in a silica hollow bottle-like microresonator

Yong Yang, Yuta Ooka, Ruth M. Thompson, Jonathan M. Ward, and Síle Nic Chormaic
Opt. Lett. 41(3) 575-578 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, Optical microcavities, Nature 424, 839 (2003).
    [Crossref] [PubMed]
  2. L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
    [Crossref]
  3. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref] [PubMed]
  4. B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q.-H. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” P. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
    [Crossref]
  5. S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
    [Crossref]
  6. F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref] [PubMed]
  7. C.-H. Dong, L.-N. He, Y.-F. Xiao, V. R. Gaddam, S. K. Özdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” App. Phy. Lett. 94, 231119 (2009).
    [Crossref]
  8. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
    [Crossref] [PubMed]
  9. Y. Park, A. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano. Lett. 6, 2075–2079 (2006).
    [Crossref] [PubMed]
  10. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Frequency tuning of the whispering gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26, 166–168 (2001).
    [Crossref]
  11. C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609 (2012).
    [Crossref] [PubMed]
  12. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
    [Crossref]
  13. Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243 (2015).
    [Crossref]
  14. J. U. Furst, D.V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum Light from a Whispering-Gallery-Mode Disk Resonator,” Phys. Rev. Lett. 106, 113901 (2011).
    [Crossref] [PubMed]
  15. P. D. Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nat. Photonics 450, 1214 (2007).
  16. M. Asano, S. Komori, R. Ikuta, N. Imoto, S. K. Özdemir, and T. Yamamoto, “Visible light emission from a silica microbottle resonator by second- and third-harmonic generation,” Opt. Lett. 41, 5793–5796 (2016).
    [Crossref] [PubMed]
  17. M. Asano, Y. Takeuchi, S. K. Özdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24, 12082–12092 (2016).
    [Crossref] [PubMed]
  18. D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, and S. Soria, “Generation of hyper-parametric oscillations in silica microbubbles,” Opt. Lett. 40, 4508–4511 (2015).
    [Crossref] [PubMed]
  19. Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
    [Crossref] [PubMed]
  20. G. Zhao, S. K. Özdemir, T. Wang, L. Xu, G. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallerymode microresonator,” Science Bulletin,  62, 875–878 (2017).
    [Crossref]
  21. Y. Ooka, Y. Yang, J. Ward, and S. Nic Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Applied Physics Express 8, 092001 (2015).
    [Crossref]
  22. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively Mode-Locked Raman Laser,” Phys. Rev. Lett. 105, 143903 (2010).
    [Crossref]
  23. G.-P. Lin, S. Diallo, J. M. Dudley, and Y. K. Chembo, “Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators,” Opt. Express 24, 14880–14894 (2016).
    [Crossref] [PubMed]
  24. G.-P. Lin and Y. K. Chembo, “Phase-locking transition in Raman combs generated with whispering gallery mode resonators,” Opt. Lett. 41, 3718–3721 (2016).
    [Crossref] [PubMed]
  25. B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
    [Crossref] [PubMed]
  26. F. Vanier, Y.-A. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22, 28731–28739 (2014).
    [Crossref] [PubMed]
  27. P. Latawiec, V. Venkataraman, M. J. Burek, B. J. M. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica 2, 924–928 (2015).
    [Crossref]
  28. N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39, 1354 (2014).
    [Crossref] [PubMed]
  29. T. J. Kippenberg, S. M. Spillane, B. K. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
    [Crossref]
  30. K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
    [Crossref]
  31. Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58, 114208 (2015).
    [Crossref]
  32. C. L. Linslal, M. Kailasnath, S. Mathew, T. K. Nideep, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Tuning whispering gallery lasing modes from polymer fibers under tensile strain,” Opt. Lett. 41, 551–554 (2016).
    [Crossref] [PubMed]
  33. Z.-H. Zhou, C.-L. Zou, Y. Chen, Z. Shen, G.-C. Guo, and C.-H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25, 4046–4053 (2017).
    [Crossref] [PubMed]
  34. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011).
    [Crossref] [PubMed]
  35. Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308–1313 (2017).
    [Crossref] [PubMed]
  36. R. Madugani, Y. Yang, J. Ward, V. Le, and S. Nic Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28, 1134 (2016).
    [Crossref]
  37. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866 (2010).
    [Crossref] [PubMed]
  38. J. Ward, Y. Yang, and S. Nic Chormaic, “Flow sensing using a hollow whispering gallery mode microlaser,” Proc. SPIE 9727, 97270 (2016).
  39. K. Han, J. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3, 585–591 (2016).
    [Crossref]
  40. Y. Z. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” P. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
    [Crossref]
  41. C.-H. Dong, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
    [Crossref]
  42. M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
    [Crossref] [PubMed]
  43. F.-J. Shu, C.-L. Zou, S. K. Özdemir, L. Yang, and G.-C. Guo, “Transient microcavity sensor,” Opt. Express 23, 30067–30078 (2015).
    [Crossref] [PubMed]
  44. Y. Dumeige, S. Trebaol, L. Ghişa, T. K. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” Journal of the Optical Society of America B 25, 2073–2080 (2008).
    [Crossref]
  45. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref] [PubMed]
  46. Y. Zheng, T. Qin, J. Yang, X. Chen, L. Ge, and W. Wan, “Observation of gain spiking and nonlinear beating of optical frequency comb in a microcavity,” arXiv: 1703.10876 (2017).
  47. X. Yang, S. K. Özdemir, B. Peng, H. Yilmaz, F.-C. Lei, G.-L. Long, and L. Yang, “Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities,” Opt. Express 23, 29573–29583 (2015).
    [Crossref] [PubMed]
  48. X.-F. Liu, F.-C. Lei, M. Gao, X. Yang, C. Wang, S. K. Özdemir, L. Yang, and G.-L. Long, “Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators,” Opt. Express 24, 9550–9560 (2016).
    [Crossref] [PubMed]
  49. L. He, Y.-F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
    [Crossref] [PubMed]
  50. G.-P. Lin, Y. Candela, O. Tillement, Z.-P. Cai, V. Lefèvre-Seguin, and J. Hare, “Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers,” Opt. Lett. 37, 5193–5195 (2012).
    [Crossref] [PubMed]
  51. Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Physics 13, 53 (2017).
    [Crossref]

2017 (5)

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

G. Zhao, S. K. Özdemir, T. Wang, L. Xu, G. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallerymode microresonator,” Science Bulletin,  62, 875–878 (2017).
[Crossref]

Z.-H. Zhou, C.-L. Zou, Y. Chen, Z. Shen, G.-C. Guo, and C.-H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25, 4046–4053 (2017).
[Crossref] [PubMed]

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308–1313 (2017).
[Crossref] [PubMed]

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Physics 13, 53 (2017).
[Crossref]

2016 (10)

M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
[Crossref] [PubMed]

C. L. Linslal, M. Kailasnath, S. Mathew, T. K. Nideep, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Tuning whispering gallery lasing modes from polymer fibers under tensile strain,” Opt. Lett. 41, 551–554 (2016).
[Crossref] [PubMed]

X.-F. Liu, F.-C. Lei, M. Gao, X. Yang, C. Wang, S. K. Özdemir, L. Yang, and G.-L. Long, “Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators,” Opt. Express 24, 9550–9560 (2016).
[Crossref] [PubMed]

R. Madugani, Y. Yang, J. Ward, V. Le, and S. Nic Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28, 1134 (2016).
[Crossref]

J. Ward, Y. Yang, and S. Nic Chormaic, “Flow sensing using a hollow whispering gallery mode microlaser,” Proc. SPIE 9727, 97270 (2016).

K. Han, J. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3, 585–591 (2016).
[Crossref]

G.-P. Lin, S. Diallo, J. M. Dudley, and Y. K. Chembo, “Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators,” Opt. Express 24, 14880–14894 (2016).
[Crossref] [PubMed]

G.-P. Lin and Y. K. Chembo, “Phase-locking transition in Raman combs generated with whispering gallery mode resonators,” Opt. Lett. 41, 3718–3721 (2016).
[Crossref] [PubMed]

M. Asano, S. Komori, R. Ikuta, N. Imoto, S. K. Özdemir, and T. Yamamoto, “Visible light emission from a silica microbottle resonator by second- and third-harmonic generation,” Opt. Lett. 41, 5793–5796 (2016).
[Crossref] [PubMed]

M. Asano, Y. Takeuchi, S. K. Özdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24, 12082–12092 (2016).
[Crossref] [PubMed]

2015 (7)

2014 (5)

N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39, 1354 (2014).
[Crossref] [PubMed]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

F. Vanier, Y.-A. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22, 28731–28739 (2014).
[Crossref] [PubMed]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q.-H. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” P. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

2013 (2)

2012 (3)

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609 (2012).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

G.-P. Lin, Y. Candela, O. Tillement, Z.-P. Cai, V. Lefèvre-Seguin, and J. Hare, “Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers,” Opt. Lett. 37, 5193–5195 (2012).
[Crossref] [PubMed]

2011 (2)

J. U. Furst, D.V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum Light from a Whispering-Gallery-Mode Disk Resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011).
[Crossref] [PubMed]

2010 (3)

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866 (2010).
[Crossref] [PubMed]

Y. Z. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” P. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively Mode-Locked Raman Laser,” Phys. Rev. Lett. 105, 143903 (2010).
[Crossref]

2009 (3)

2008 (1)

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” Journal of the Optical Society of America B 25, 2073–2080 (2008).
[Crossref]

2007 (2)

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[Crossref]

P. D. Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nat. Photonics 450, 1214 (2007).

2006 (2)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
[Crossref] [PubMed]

Y. Park, A. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano. Lett. 6, 2075–2079 (2006).
[Crossref] [PubMed]

2004 (2)

T. J. Kippenberg, S. M. Spillane, B. K. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

2003 (1)

K. J. Vahala, Optical microcavities, Nature 424, 839 (2003).
[Crossref] [PubMed]

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

2001 (1)

Aiello, A.

J. U. Furst, D.V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum Light from a Whispering-Gallery-Mode Disk Resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

Andersen, U. L.

J. U. Furst, D.V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum Light from a Whispering-Gallery-Mode Disk Resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
[Crossref] [PubMed]

Arcizet, O.

P. D. Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nat. Photonics 450, 1214 (2007).

Armani, A. M.

Arnold, S.

Y. Z. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” P. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

Asano, M.

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Bahl, G.

Barucci, A.

Benson, O.

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
[Crossref] [PubMed]

Bulu, I.

Burek, M. J.

Cai, Z.-P.

Candela, Y.

Cao, Q.-T.

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Carmon, T.

Chembo, Y. K.

Chen, X.

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Y. Zheng, T. Qin, J. Yang, X. Chen, L. Ge, and W. Wan, “Observation of gain spiking and nonlinear beating of optical frequency comb in a microcavity,” arXiv: 1703.10876 (2017).

Chen, Y.

Clements, W. R.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q.-H. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” P. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref] [PubMed]

Conti, G. N.

Cook, A.

Y. Park, A. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano. Lett. 6, 2075–2079 (2006).
[Crossref] [PubMed]

Cui, J.-M.

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
[Crossref] [PubMed]

Deka, N.

Diallo, S.

Dong, C.-H.

Z.-H. Zhou, C.-L. Zou, Y. Chen, Z. Shen, G.-C. Guo, and C.-H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25, 4046–4053 (2017).
[Crossref] [PubMed]

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58, 114208 (2015).
[Crossref]

Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243 (2015).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609 (2012).
[Crossref] [PubMed]

C.-H. Dong, L.-N. He, Y.-F. Xiao, V. R. Gaddam, S. K. Özdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” App. Phy. Lett. 94, 231119 (2009).
[Crossref]

C.-H. Dong, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
[Crossref]

Dudley, J. M.

Dulashko, Y.

Dumeige, Y.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” Journal of the Optical Society of America B 25, 2073–2080 (2008).
[Crossref]

Elser, D.

J. U. Furst, D.V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum Light from a Whispering-Gallery-Mode Disk Resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

Fan, X. D.

Y. Z. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” P. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

Farnesi, D.

Féron, P.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” Journal of the Optical Society of America B 25, 2073–2080 (2008).
[Crossref]

Fiore, V.

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609 (2012).
[Crossref] [PubMed]

Furst, J. U.

J. U. Furst, D.V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum Light from a Whispering-Gallery-Mode Disk Resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

Gaddam, V. R.

C.-H. Dong, L.-N. He, Y.-F. Xiao, V. R. Gaddam, S. K. Özdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” App. Phy. Lett. 94, 231119 (2009).
[Crossref]

Gao, M.

Ge, L.

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Y. Zheng, T. Qin, J. Yang, X. Chen, L. Ge, and W. Wan, “Observation of gain spiking and nonlinear beating of optical frequency comb in a microcavity,” arXiv: 1703.10876 (2017).

Ghisa, L.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” Journal of the Optical Society of America B 25, 2073–2080 (2008).
[Crossref]

Gong, Q.

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref] [PubMed]

Gong, Q.-H.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q.-H. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” P. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Guo, G.-C.

Guo, G.-P.

Han, K.

Han, Z.-F.

C.-H. Dong, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
[Crossref]

C.-H. Dong, L.-N. He, Y.-F. Xiao, V. R. Gaddam, S. K. Özdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” App. Phy. Lett. 94, 231119 (2009).
[Crossref]

Hare, J.

Hausmann, B. J. M.

Haye, P. D.

P. D. Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nat. Photonics 450, 1214 (2007).

He, L.

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

L. He, Y.-F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

He, L.-N.

C.-H. Dong, L.-N. He, Y.-F. Xiao, V. R. Gaddam, S. K. Özdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” App. Phy. Lett. 94, 231119 (2009).
[Crossref]

Henze, R.

Holzwarth, R.

P. D. Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nat. Photonics 450, 1214 (2007).

Huang, S. H.

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Ikuta, R.

Ilchenko, V. S.

Imoto, N.

Jing, H.

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Kailasnath, M.

Kasumie, S.

Kim, J.

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

P. D. Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nat. Photonics 450, 1214 (2007).

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, B. K. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Komori, S.

Kuzyk, M. C.

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609 (2012).
[Crossref] [PubMed]

Latawiec, P.

Le, V.

R. Madugani, Y. Yang, J. Ward, V. Le, and S. Nic Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28, 1134 (2016).
[Crossref]

Lefèvre-Seguin, V.

Lei, F.

Lei, F.-C.

Leuchs, G.

J. U. Furst, D.V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum Light from a Whispering-Gallery-Mode Disk Resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

Li, B.-B.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q.-H. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” P. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref] [PubMed]

Liang, W.

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively Mode-Locked Raman Laser,” Phys. Rev. Lett. 105, 143903 (2010).
[Crossref]

Lin, G.-P.

Lin, X.-M.

M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
[Crossref] [PubMed]

Linslal, C. L.

Liu, R.-S.

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Liu, X.-F.

Loncar, M.

Long, G.

G. Zhao, S. K. Özdemir, T. Wang, L. Xu, G. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallerymode microresonator,” Science Bulletin,  62, 875–878 (2017).
[Crossref]

Long, G. L.

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Long, G.-L.

Long, R.

Madugani, R.

R. Madugani, Y. Yang, J. Ward, V. Le, and S. Nic Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28, 1134 (2016).
[Crossref]

Maker, A. J.

Maleki, L.

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively Mode-Locked Raman Laser,” Phys. Rev. Lett. 105, 143903 (2010).
[Crossref]

Marquardt, Ch.

J. U. Furst, D.V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum Light from a Whispering-Gallery-Mode Disk Resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Mathew, S.

Matsko, A. B.

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively Mode-Locked Raman Laser,” Phys. Rev. Lett. 105, 143903 (2010).
[Crossref]

Min, B. K.

T. J. Kippenberg, S. M. Spillane, B. K. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

Monifi, F.

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Nampoori, V. P. N.

Nguyên, T. K.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” Journal of the Optical Society of America B 25, 2073–2080 (2008).
[Crossref]

Nic Chormaic, S.

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308–1313 (2017).
[Crossref] [PubMed]

J. Ward, Y. Yang, and S. Nic Chormaic, “Flow sensing using a hollow whispering gallery mode microlaser,” Proc. SPIE 9727, 97270 (2016).

R. Madugani, Y. Yang, J. Ward, V. Le, and S. Nic Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28, 1134 (2016).
[Crossref]

Y. Ooka, Y. Yang, J. Ward, and S. Nic Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Applied Physics Express 8, 092001 (2015).
[Crossref]

Nideep, T. K.

Ooka, Y.

Y. Ooka, Y. Yang, J. Ward, and S. Nic Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Applied Physics Express 8, 092001 (2015).
[Crossref]

Özdemir, S. K.

G. Zhao, S. K. Özdemir, T. Wang, L. Xu, G. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallerymode microresonator,” Science Bulletin,  62, 875–878 (2017).
[Crossref]

M. Asano, Y. Takeuchi, S. K. Özdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24, 12082–12092 (2016).
[Crossref] [PubMed]

X.-F. Liu, F.-C. Lei, M. Gao, X. Yang, C. Wang, S. K. Özdemir, L. Yang, and G.-L. Long, “Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators,” Opt. Express 24, 9550–9560 (2016).
[Crossref] [PubMed]

M. Asano, S. Komori, R. Ikuta, N. Imoto, S. K. Özdemir, and T. Yamamoto, “Visible light emission from a silica microbottle resonator by second- and third-harmonic generation,” Opt. Lett. 41, 5793–5796 (2016).
[Crossref] [PubMed]

F.-J. Shu, C.-L. Zou, S. K. Özdemir, L. Yang, and G.-C. Guo, “Transient microcavity sensor,” Opt. Express 23, 30067–30078 (2015).
[Crossref] [PubMed]

X. Yang, S. K. Özdemir, B. Peng, H. Yilmaz, F.-C. Lei, G.-L. Long, and L. Yang, “Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities,” Opt. Express 23, 29573–29583 (2015).
[Crossref] [PubMed]

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

C.-H. Dong, L.-N. He, Y.-F. Xiao, V. R. Gaddam, S. K. Özdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” App. Phy. Lett. 94, 231119 (2009).
[Crossref]

L. He, Y.-F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

Painter, O.

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[Crossref]

Park, Y.

Y. Park, A. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano. Lett. 6, 2075–2079 (2006).
[Crossref] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
[Crossref] [PubMed]

Peng, B.

X. Yang, S. K. Özdemir, B. Peng, H. Yilmaz, F.-C. Lei, G.-L. Long, and L. Yang, “Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities,” Opt. Express 23, 29573–29583 (2015).
[Crossref] [PubMed]

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Peter, Y.-A.

Qin, T.

Y. Zheng, T. Qin, J. Yang, X. Chen, L. Ge, and W. Wan, “Observation of gain spiking and nonlinear beating of optical frequency comb in a microcavity,” arXiv: 1703.10876 (2017).

Radhakrishnan, P.

Righini, G. C.

Rochette, M.

Savchenkov, A. A.

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively Mode-Locked Raman Laser,” Phys. Rev. Lett. 105, 143903 (2010).
[Crossref]

Schliesser, A.

P. D. Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nat. Photonics 450, 1214 (2007).

Seidel, D.

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively Mode-Locked Raman Laser,” Phys. Rev. Lett. 105, 143903 (2010).
[Crossref]

Seifert, T.

Shen, M.-X.

M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
[Crossref] [PubMed]

Shen, Z.

Shi, K.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q.-H. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” P. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Shopova, S. I.

Y. Z. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” P. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

Shu, F.-J.

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58, 114208 (2015).
[Crossref]

F.-J. Shu, C.-L. Zou, S. K. Özdemir, L. Yang, and G.-C. Guo, “Transient microcavity sensor,” Opt. Express 23, 30067–30078 (2015).
[Crossref] [PubMed]

Soria, S.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, B. K. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Srinivasan, K.

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[Crossref]

Strekalov, D.V.

J. U. Furst, D.V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum Light from a Whispering-Gallery-Mode Disk Resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

Sumetsky, M.

Sun, F.-W.

Sun, Y. Z.

Y. Z. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” P. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

Takeuchi, Y.

Tavernier, H.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” Journal of the Optical Society of America B 25, 2073–2080 (2008).
[Crossref]

Tillement, O.

Trebaol, S.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” Journal of the Optical Society of America B 25, 2073–2080 (2008).
[Crossref]

Vahala, K.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Physics 13, 53 (2017).
[Crossref]

Vahala, K. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, B. K. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

K. J. Vahala, Optical microcavities, Nature 424, 839 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Vallabhan, C. P. G.

Vanier, F.

Venkataraman, V.

Vollmer, F.

F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

von Klitzing, W.

Wan, W.

Y. Zheng, T. Qin, J. Yang, X. Chen, L. Ge, and W. Wan, “Observation of gain spiking and nonlinear beating of optical frequency comb in a microcavity,” arXiv: 1703.10876 (2017).

Wang, C.

Wang, H.

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609 (2012).
[Crossref] [PubMed]

Y. Park, A. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano. Lett. 6, 2075–2079 (2006).
[Crossref] [PubMed]

Wang, H.-M.

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

Wang, T.

G. Zhao, S. K. Özdemir, T. Wang, L. Xu, G. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallerymode microresonator,” Science Bulletin,  62, 875–878 (2017).
[Crossref]

Ward, J.

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308–1313 (2017).
[Crossref] [PubMed]

R. Madugani, Y. Yang, J. Ward, V. Le, and S. Nic Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28, 1134 (2016).
[Crossref]

J. Ward, Y. Yang, and S. Nic Chormaic, “Flow sensing using a hollow whispering gallery mode microlaser,” Proc. SPIE 9727, 97270 (2016).

Y. Ooka, Y. Yang, J. Ward, and S. Nic Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Applied Physics Express 8, 092001 (2015).
[Crossref]

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011).
[Crossref] [PubMed]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
[Crossref] [PubMed]

Wilken, T.

P. D. Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nat. Photonics 450, 1214 (2007).

Windeler, R. S.

Wu, C. S.

Y. Z. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” P. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

Xiao, Y.-F.

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q.-H. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” P. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref] [PubMed]

C.-H. Dong, L.-N. He, Y.-F. Xiao, V. R. Gaddam, S. K. Özdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” App. Phy. Lett. 94, 231119 (2009).
[Crossref]

L. He, Y.-F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

Xu, L.

G. Zhao, S. K. Özdemir, T. Wang, L. Xu, G. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallerymode microresonator,” Science Bulletin,  62, 875–878 (2017).
[Crossref]

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308–1313 (2017).
[Crossref] [PubMed]

Yamamoto, T.

Yan, M.-Y.

Yang, J.

Y. Zheng, T. Qin, J. Yang, X. Chen, L. Ge, and W. Wan, “Observation of gain spiking and nonlinear beating of optical frequency comb in a microcavity,” arXiv: 1703.10876 (2017).

Yang, K. Y.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Physics 13, 53 (2017).
[Crossref]

Yang, L.

G. Zhao, S. K. Özdemir, T. Wang, L. Xu, G. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallerymode microresonator,” Science Bulletin,  62, 875–878 (2017).
[Crossref]

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308–1313 (2017).
[Crossref] [PubMed]

M. Asano, Y. Takeuchi, S. K. Özdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24, 12082–12092 (2016).
[Crossref] [PubMed]

X.-F. Liu, F.-C. Lei, M. Gao, X. Yang, C. Wang, S. K. Özdemir, L. Yang, and G.-L. Long, “Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators,” Opt. Express 24, 9550–9560 (2016).
[Crossref] [PubMed]

X. Yang, S. K. Özdemir, B. Peng, H. Yilmaz, F.-C. Lei, G.-L. Long, and L. Yang, “Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities,” Opt. Express 23, 29573–29583 (2015).
[Crossref] [PubMed]

F.-J. Shu, C.-L. Zou, S. K. Özdemir, L. Yang, and G.-C. Guo, “Transient microcavity sensor,” Opt. Express 23, 30067–30078 (2015).
[Crossref] [PubMed]

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

C.-H. Dong, L.-N. He, Y.-F. Xiao, V. R. Gaddam, S. K. Özdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” App. Phy. Lett. 94, 231119 (2009).
[Crossref]

L. He, Y.-F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

Yang, Q.-F.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Physics 13, 53 (2017).
[Crossref]

Yang, X.

Yang, Y.

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308–1313 (2017).
[Crossref] [PubMed]

J. Ward, Y. Yang, and S. Nic Chormaic, “Flow sensing using a hollow whispering gallery mode microlaser,” Proc. SPIE 9727, 97270 (2016).

R. Madugani, Y. Yang, J. Ward, V. Le, and S. Nic Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28, 1134 (2016).
[Crossref]

Y. Ooka, Y. Yang, J. Ward, and S. Nic Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Applied Physics Express 8, 092001 (2015).
[Crossref]

Ye, M.-Y.

M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
[Crossref] [PubMed]

Yi, X.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Physics 13, 53 (2017).
[Crossref]

Yilmaz, H.

X. Yang, S. K. Özdemir, B. Peng, H. Yilmaz, F.-C. Lei, G.-L. Long, and L. Yang, “Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities,” Opt. Express 23, 29573–29583 (2015).
[Crossref] [PubMed]

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Yu, X.-C.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q.-H. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” P. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Zhao, G.

G. Zhao, S. K. Özdemir, T. Wang, L. Xu, G. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallerymode microresonator,” Science Bulletin,  62, 875–878 (2017).
[Crossref]

Zheng, Y.

Y. Zheng, T. Qin, J. Yang, X. Chen, L. Ge, and W. Wan, “Observation of gain spiking and nonlinear beating of optical frequency comb in a microcavity,” arXiv: 1703.10876 (2017).

Zhou, Z.-H.

Zhu, J.

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

L. He, Y.-F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

Zou, C.-L.

App. Phy. Lett. (1)

C.-H. Dong, L.-N. He, Y.-F. Xiao, V. R. Gaddam, S. K. Özdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” App. Phy. Lett. 94, 231119 (2009).
[Crossref]

Appl. Phys. Lett. (1)

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[Crossref]

Applied Physics Express (1)

Y. Ooka, Y. Yang, J. Ward, and S. Nic Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Applied Physics Express 8, 092001 (2015).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Kippenberg, S. M. Spillane, B. K. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Madugani, Y. Yang, J. Ward, V. Le, and S. Nic Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28, 1134 (2016).
[Crossref]

Journal of the Optical Society of America B (1)

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” Journal of the Optical Society of America B 25, 2073–2080 (2008).
[Crossref]

Laser Photon. Rev. (1)

L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

Nano. Lett. (1)

Y. Park, A. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano. Lett. 6, 2075–2079 (2006).
[Crossref] [PubMed]

Nanophotonics (1)

F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

P. D. Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nat. Photonics 450, 1214 (2007).

Nat. Physics (1)

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Stokes solitons in optical microcavities,” Nat. Physics 13, 53 (2017).
[Crossref]

Nature (3)

K. J. Vahala, Optical microcavities, Nature 424, 839 (2003).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671 (2006).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Opt. Express (10)

M. Asano, Y. Takeuchi, S. K. Özdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24, 12082–12092 (2016).
[Crossref] [PubMed]

G.-P. Lin, S. Diallo, J. M. Dudley, and Y. K. Chembo, “Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators,” Opt. Express 24, 14880–14894 (2016).
[Crossref] [PubMed]

F. Vanier, Y.-A. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22, 28731–28739 (2014).
[Crossref] [PubMed]

Z.-H. Zhou, C.-L. Zou, Y. Chen, Z. Shen, G.-C. Guo, and C.-H. Dong, “Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators,” Opt. Express 25, 4046–4053 (2017).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

X. Yang, S. K. Özdemir, B. Peng, H. Yilmaz, F.-C. Lei, G.-L. Long, and L. Yang, “Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities,” Opt. Express 23, 29573–29583 (2015).
[Crossref] [PubMed]

X.-F. Liu, F.-C. Lei, M. Gao, X. Yang, C. Wang, S. K. Özdemir, L. Yang, and G.-L. Long, “Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators,” Opt. Express 24, 9550–9560 (2016).
[Crossref] [PubMed]

L. He, Y.-F. Xiao, J. Zhu, S. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17, 9571–9581 (2009).
[Crossref] [PubMed]

Y. Yang, F. Lei, S. Kasumie, L. Xu, J. Ward, L. Yang, and S. Nic Chormaic, “Tunable erbium-doped microbubble laser fabricated by sol-gel coating,” Opt. Express 25, 1308–1313 (2017).
[Crossref] [PubMed]

F.-J. Shu, C.-L. Zou, S. K. Özdemir, L. Yang, and G.-C. Guo, “Transient microcavity sensor,” Opt. Express 23, 30067–30078 (2015).
[Crossref] [PubMed]

Opt. Lett. (10)

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866 (2010).
[Crossref] [PubMed]

G.-P. Lin, Y. Candela, O. Tillement, Z.-P. Cai, V. Lefèvre-Seguin, and J. Hare, “Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers,” Opt. Lett. 37, 5193–5195 (2012).
[Crossref] [PubMed]

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011).
[Crossref] [PubMed]

C. L. Linslal, M. Kailasnath, S. Mathew, T. K. Nideep, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Tuning whispering gallery lasing modes from polymer fibers under tensile strain,” Opt. Lett. 41, 551–554 (2016).
[Crossref] [PubMed]

N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39, 1354 (2014).
[Crossref] [PubMed]

G.-P. Lin and Y. K. Chembo, “Phase-locking transition in Raman combs generated with whispering gallery mode resonators,” Opt. Lett. 41, 3718–3721 (2016).
[Crossref] [PubMed]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref] [PubMed]

M. Asano, S. Komori, R. Ikuta, N. Imoto, S. K. Özdemir, and T. Yamamoto, “Visible light emission from a silica microbottle resonator by second- and third-harmonic generation,” Opt. Lett. 41, 5793–5796 (2016).
[Crossref] [PubMed]

D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, and S. Soria, “Generation of hyper-parametric oscillations in silica microbubbles,” Opt. Lett. 40, 4508–4511 (2015).
[Crossref] [PubMed]

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Frequency tuning of the whispering gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26, 166–168 (2001).
[Crossref]

Optica (2)

P. Natl. Acad. Sci. USA (3)

Y. Z. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” P. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q.-H. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” P. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

S. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” P. Natl. Acad. Sci. USA 111, E3836 (2014).
[Crossref]

Photon. Res. (1)

Phys. Rev. Lett. (3)

J. U. Furst, D.V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum Light from a Whispering-Gallery-Mode Disk Resonator,” Phys. Rev. Lett. 106, 113901 (2011).
[Crossref] [PubMed]

Q.-T. Cao, H.-M. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, and Y.-F. Xiao, “Experimental demonstration of spontaneous chirality in a nonlinear microresonator,” Phys. Rev. Lett. 118, 033901 (2017).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively Mode-Locked Raman Laser,” Phys. Rev. Lett. 105, 143903 (2010).
[Crossref]

Proc. SPIE (1)

J. Ward, Y. Yang, and S. Nic Chormaic, “Flow sensing using a hollow whispering gallery mode microlaser,” Proc. SPIE 9727, 97270 (2016).

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Sci. China-Phy. Mech. Astron. (1)

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58, 114208 (2015).
[Crossref]

Sci. Rep. (1)

M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
[Crossref] [PubMed]

Science (1)

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609 (2012).
[Crossref] [PubMed]

Science Bulletin (1)

G. Zhao, S. K. Özdemir, T. Wang, L. Xu, G. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallerymode microresonator,” Science Bulletin,  62, 875–878 (2017).
[Crossref]

Other (1)

Y. Zheng, T. Qin, J. Yang, X. Chen, L. Ge, and W. Wan, “Observation of gain spiking and nonlinear beating of optical frequency comb in a microcavity,” arXiv: 1703.10876 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the experiment setup of the strain tuning of Raman laser. FPC: fiber polarization controller. PD: photo detector. OSA: optical spectrum analyzer. DSO: digital oscilloscope. PZT: the piezoelectric transducer. FG: function generator. BPF: bandpass filter.
Fig. 2
Fig. 2 Typical transmission spectra of the optical modes in BLMR with different laser frequency sweeping speeds of 2.17, 4.34, 6.51, 8.68MHz/μs, respectively. The characteristic sweep speed is Vc/2π = 1.98MHz/μs. The scanning speed Vs from 1.1Vc to 4.38Vc, gets much lager than Vc, while the dip width and the peak width get larger, the peak height gets higher and the ring tail gets longer, which is coincident with [43]. In the measurement, the input power is kept 20 μW to suppress the thermal effect. The red lines represent the theoretical calculations with Q 0 = 2.2 × 108 and Qex = 1.2 × 109.
Fig. 3
Fig. 3 (a) The temperature fluctuation when the pump laser scanned through the optical modes. (b–c) Typical transmission spectra measured in the experiments when the pump laser (b) and a probe laser (c) near the Raman lasing were scanned through the optical modes. The scanning speeds of the pump laser and the probe laser were 3.7MHz/μs and 1.2MHz/μs, respectively. The powers of the pump laser and probe laser were 1.86 mW and 0.29 mW. (d) Expanded transmissions with different detuning of the probe laser and cavity resonance, corresponding to the position mentioned with the arrrows in (c). The red lines are results of theoretical calculations discussed in Sec. 3. The calculated Qeff are 1.7 × 108, 3.0 × 108, 6.4 × 108, 6.8 × 108, respectively. And the calculated Qex is about 1.2 × 109. The last one is the probe laser with beating of the Raman lasing in figure (d). Inset: the wavelength of the pump laser is 1522.9 nm, and the wavelength of the Raman laser is 1616.9 nm.
Fig. 4
Fig. 4 The Raman spectrum when the pump power is above the threshold. The wavelength of the pump laser and Raman laser are 1544.08 nm and 1651.85 nm, respectively. Inset: relationship between the pump power and Raman power.
Fig. 5
Fig. 5 The spectrum from an optical spectral analyzer (a) and the corresponding Raman lasing wavelength for different stretching lengths (b). The red dots are experiment data, and the blue line is the linear fitted in (b). The fitting slope of the wavelength shift is 4.23 MHz/nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d a cw ( ccw ) d t = [ ω d i ω a ( 1 + Δ T γ 1 ) + κ a , i + κ a , e ] a cw ( ccw ) i g a a ccw ( cw ) 2 κ a , e a cw in ,
d b cw ( ccw ) d t = [ ω p i ω b ( 1 + Δ T γ 2 ) + κ b , i + κ b , e ξ ( t ) ] b cw ( ccw ) i g b b ccw ( cw ) 2 κ b , e b cw in .
C p d Δ T d t = α a ( | a cw | 2 + | a ccw | 2 ) K Δ T

Metrics