Abstract

Electrically controlled micron-scale liquid lenses have been designed, fabricated and demonstrated, that provide both adjustable focusing and beam steering, with the goal of applying them to optogenetic in vivo mapping of brain activity with single cell resolution. The liquid lens is formed by the interface between two immiscible liquids which are contained in a conically tapered lens cavity etched into a fused silica substrate. Interdigitated electrodes have been patterned along the sidewall of the taper to control the liquid lens curvature and tilt. Microlenses with apertures ranging in size from 30 to 80 μm were fabricated and tunable focusing ranging from 0.25 to 3 mm and beam steering of ± 1 degree have been demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive electrowetting lens-prism element

Soraya Terrab, Alexander M. Watson, Christopher Roath, Juliet T. Gopinath, and Victor M. Bright
Opt. Express 23(20) 25838-25845 (2015)

Agile wide-angle beam steering with electrowetting microprisms

Neil R. Smith, Don C. Abeysinghe, Joseph W. Haus, and Jason Heikenfeld
Opt. Express 14(14) 6557-6563 (2006)

Liquid-crystal microlens with a beam-steering function

Shin Masuda, Sounosuke Takahashi, Toshiaki Nose, Susumu Sato, and Hiromasa Ito
Appl. Opt. 36(20) 4772-4778 (1997)

References

  • View by:
  • |
  • |
  • |

  1. K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci. 26(41), 10380–10386 (2006).
    [Crossref] [PubMed]
  2. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
    [Crossref] [PubMed]
  3. N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
    [Crossref] [PubMed]
  4. J. P. Rickgauer and D. W. Tank, “Two-photon excitation of channelrhodopsin-2 at saturation,” Proc. Natl. Acad. Sci. U.S.A. 106(35), 15025–15030 (2009).
    [Crossref] [PubMed]
  5. B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
    [Crossref] [PubMed]
  6. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
    [Crossref] [PubMed]
  7. Y. Fainman, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw Hill, 2010).
  8. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  9. L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
    [Crossref] [PubMed]
  10. N. Chronis, G. Liu, K. H. Jeong, and L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [Crossref] [PubMed]
  11. M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
    [Crossref]
  12. W. Wang and J. Fang, “Variable focusing microlens chip for potential sensing applications,” IEEE Sens. J. 7(1), 11–18 (2007).
    [Crossref]
  13. C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2004).
    [Crossref]
  14. S. Xu, H. Ren, and S. T. Wu, “Dielectrically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
    [Crossref]
  15. S. Kupier and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  16. B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  17. F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]
  18. D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41(12), 2735–2738 (2016).
    [Crossref] [PubMed]
  19. D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
    [Crossref] [PubMed]
  20. A. M. Watson, K. Dease, S. Terrab, C. Roath, J. T. Gopinath, and V. M. Bright, “Focus-tunable low-power electrowetting lenses with thin Parylene films,” Appl. Opt. 54(20), 6224–6229 (2015).
    [Crossref] [PubMed]
  21. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [Crossref] [PubMed]
  22. C. E. Clement and S. Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Appl. Phys. Lett. 108(19), 191601 (2016).
    [Crossref]
  23. C. U. Murande, J. M. Oh, D. van de Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15526–15531 (2011).
  24. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” JMEMS 19, 065029 (2009).
  25. A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett. 37(23), 4841–4843 (2012).
    [Crossref] [PubMed]
  26. E. Simon, B. Berge, F. Fillit, H. Gaton, M. Guillet, O. Jacques-Sermet, F. Laune, J. Legrand, M. Maillard, and N. Tallaron, “Optical design rules of a camera module with a liquid lens and principle of command for AF and OIS functions,” in Proceedings of Optical Design and Testing IV, Y. Wang, et al. ed. (SPIE 2010), 784903.
  27. S. R. Berry, J. B. Stewart, T. A. Thorsen, and I. Guha, “Development of adaptive liquid microlenses and microlens arrays,” in Proceedings of MOEMS and Miniaturized Systems XII, W. Piyawattanametha, and Y. H. Park, ed. (SPIE 2013), 861610.
    [Crossref]
  28. M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys. 114(1), 146–159 (1994).
    [Crossref]
  29. M. Maillard, J. Legrand, and B. Berge, “Two liquids wetting and low hysteresis electrowetting on dielectric applications,” Langmuir 25(11), 6162–6167 (2009).
    [Crossref] [PubMed]
  30. S. Berry, J. Kedzierski, and B. Abedian, “Irreversible electrowetting on thin fluoropolymer films,” Langmuir 23(24), 12429–12435 (2007).
    [Crossref] [PubMed]
  31. C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
    [Crossref]
  32. M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
    [Crossref]
  33. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 20.
  34. F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett. 92(24), 244108 (2008).
    [Crossref]
  35. C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

C. E. Clement and S. Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Appl. Phys. Lett. 108(19), 191601 (2016).
[Crossref]

D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41(12), 2735–2738 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

2013 (1)

S. Xu, H. Ren, and S. T. Wu, “Dielectrically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

2012 (3)

2011 (1)

C. U. Murande, J. M. Oh, D. van de Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15526–15531 (2011).

2010 (2)

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

2009 (3)

J. P. Rickgauer and D. W. Tank, “Two-photon excitation of channelrhodopsin-2 at saturation,” Proc. Natl. Acad. Sci. U.S.A. 106(35), 15025–15030 (2009).
[Crossref] [PubMed]

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” JMEMS 19, 065029 (2009).

M. Maillard, J. Legrand, and B. Berge, “Two liquids wetting and low hysteresis electrowetting on dielectric applications,” Langmuir 25(11), 6162–6167 (2009).
[Crossref] [PubMed]

2008 (1)

F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett. 92(24), 244108 (2008).
[Crossref]

2007 (2)

S. Berry, J. Kedzierski, and B. Abedian, “Irreversible electrowetting on thin fluoropolymer films,” Langmuir 23(24), 12429–12435 (2007).
[Crossref] [PubMed]

W. Wang and J. Fang, “Variable focusing microlens chip for potential sensing applications,” IEEE Sens. J. 7(1), 11–18 (2007).
[Crossref]

2006 (3)

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref] [PubMed]

K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci. 26(41), 10380–10386 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

2005 (3)

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

2004 (3)

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2004).
[Crossref]

S. Kupier and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

2003 (2)

N. Chronis, G. Liu, K. H. Jeong, and L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[Crossref] [PubMed]

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

1994 (1)

M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys. 114(1), 146–159 (1994).
[Crossref]

Abedian, B.

S. Berry, J. Kedzierski, and B. Abedian, “Irreversible electrowetting on thin fluoropolymer films,” Langmuir 23(24), 12429–12435 (2007).
[Crossref] [PubMed]

Abeysinghe, D. C.

Agarwal, M.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]

Andrasfalvy, B. K.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

Anselmi, F.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Bamberg, E.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Baret, J.

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Bègue, A.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Berge, B.

M. Maillard, J. Legrand, and B. Berge, “Two liquids wetting and low hysteresis electrowetting on dielectric applications,” Langmuir 25(11), 6162–6167 (2009).
[Crossref] [PubMed]

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Berry, S.

S. Berry, J. Kedzierski, and B. Abedian, “Irreversible electrowetting on thin fluoropolymer films,” Langmuir 23(24), 12429–12435 (2007).
[Crossref] [PubMed]

Birdsey-Benson, A.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Boyden, E. S.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett. 37(23), 4841–4843 (2012).
[Crossref] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Bozler, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Brender, T.

Bright, V. M.

Carpenter, E. J.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Chen, H. M.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Cho, Y. K.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Chow, B. Y.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Chronis, N.

Chuong, A. S.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Clement, C. E.

C. E. Clement and S. Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Appl. Phys. Lett. 108(19), 191601 (2016).
[Crossref]

Coane, P.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]

Constantine-Paton, M.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

de Sars, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Dean, K. A.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” JMEMS 19, 065029 (2009).

Dease, K.

Deisseroth, K.

K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci. 26(41), 10380–10386 (2006).
[Crossref] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Emiliani, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Fainman, Y.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Fang, J.

W. Wang and J. Fang, “Variable focusing microlens chip for potential sensing applications,” IEEE Sens. J. 7(1), 11–18 (2007).
[Crossref]

Feng, G.

K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci. 26(41), 10380–10386 (2006).
[Crossref] [PubMed]

Fijol, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Fike, E.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Fonstad, C. G.

Freeman, L. M.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Frish, M.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Fritze, M.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Ghodssi, R.

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

Glückstad, J.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Gopinath, J. T.

Gunasekaran, R. A.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]

Haus, J. W.

Heikenfeld, J.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” JMEMS 19, 065029 (2009).

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref] [PubMed]

Hendriks, B. H. W.

S. Kupier and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Hirsa, A. H.

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2004).
[Crossref]

Howard, E. M.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” JMEMS 19, 065029 (2009).

Isacoff, E. Y.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Jacobson, S.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Jayaraman, V.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Jeong, K. H.

Johnson, M. R.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” JMEMS 19, 065029 (2009).

Kastantin, M.

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

Keast, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Keating, P.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Kedzierski, J.

S. Berry, J. Kedzierski, and B. Abedian, “Irreversible electrowetting on thin fluoropolymer films,” Langmuir 23(24), 12429–12435 (2007).
[Crossref] [PubMed]

Kessler, B.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Kim, S. S.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Klapoetke, N. C.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Knecht, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Kopp, D.

Kupier, S.

S. Kupier and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

LeBlanc, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Lee, C. C.

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2004).
[Crossref]

Lee, L.

Legrand, J.

M. Maillard, J. Legrand, and B. Berge, “Two liquids wetting and low hysteresis electrowetting on dielectric applications,” Langmuir 25(11), 6162–6167 (2009).
[Crossref] [PubMed]

Li, F.

F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett. 92(24), 244108 (2008).
[Crossref]

Liu, G.

Lopez, C. A.

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2004).
[Crossref]

Maillard, M.

M. Maillard, J. Legrand, and B. Berge, “Two liquids wetting and low hysteresis electrowetting on dielectric applications,” Langmuir 25(11), 6162–6167 (2009).
[Crossref] [PubMed]

Majewska, A. K.

K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci. 26(41), 10380–10386 (2006).
[Crossref] [PubMed]

Manolatou, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

Melkonian, M.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Miesenböck, G.

K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci. 26(41), 10380–10386 (2006).
[Crossref] [PubMed]

Morgan, B.

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

Morimoto, T. K.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Mugele, F.

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
[Crossref] [PubMed]

C. U. Murande, J. M. Oh, D. van de Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15526–15531 (2011).

F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett. 92(24), 244108 (2008).
[Crossref]

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Murade, C. U.

Murande, C. U.

C. U. Murande, J. M. Oh, D. van de Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15526–15531 (2011).

Murata, Y.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Nagel, G.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Oh, J. M.

C. U. Murande, J. M. Oh, D. van de Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15526–15531 (2011).

Osher, S.

M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys. 114(1), 146–159 (1994).
[Crossref]

Pang, L.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Papagiakoumou, E.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Park, S. Y.

C. E. Clement and S. Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Appl. Phys. Lett. 108(19), 191601 (2016).
[Crossref]

Peseux, J.

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Pulver, S. R.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Ren, H.

S. Xu, H. Ren, and S. T. Wu, “Dielectrically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Rickgauer, J. P.

J. P. Rickgauer and D. W. Tank, “Two-photon excitation of channelrhodopsin-2 at saturation,” Proc. Natl. Acad. Sci. U.S.A. 106(35), 15025–15030 (2009).
[Crossref] [PubMed]

Roath, C.

Schnitzer, M. J.

K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci. 26(41), 10380–10386 (2006).
[Crossref] [PubMed]

Scholvin, J.

Smereka, P.

M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys. 114(1), 146–159 (1994).
[Crossref]

Smith, N. R.

Surek, B.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Sussman, M.

M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys. 114(1), 146–159 (1994).
[Crossref]

Tang, J.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

Tank, D. W.

J. P. Rickgauer and D. W. Tank, “Two-photon excitation of channelrhodopsin-2 at saturation,” Proc. Natl. Acad. Sci. U.S.A. 106(35), 15025–15030 (2009).
[Crossref] [PubMed]

Terrab, S.

Tian, Z.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Ting, A.

K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci. 26(41), 10380–10386 (2006).
[Crossref] [PubMed]

van de Ende, D.

C. U. Murande, J. M. Oh, D. van de Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15526–15531 (2011).

van der Ende, D.

Varahramyan, K.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]

Vaziri, A.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

Waits, C. M.

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

Wang, J.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Wang, W.

W. Wang and J. Fang, “Variable focusing microlens chip for potential sensing applications,” IEEE Sens. J. 7(1), 11–18 (2007).
[Crossref]

Watson, A. M.

Wong, G. K.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Wu, S. T.

S. Xu, H. Ren, and S. T. Wu, “Dielectrically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Xie, Y.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Xu, S.

S. Xu, H. Ren, and S. T. Wu, “Dielectrically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Yan, Z.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Zappe, H.

Zemelman, B. V.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

Zhang, F.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Zhang, Y.

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Zhou, K.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” JMEMS 19, 065029 (2009).

Zorzos, A. N.

Appl. Opt. (2)

Appl. Phys. Lett. (4)

C. E. Clement and S. Y. Park, “High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method,” Appl. Phys. Lett. 108(19), 191601 (2016).
[Crossref]

F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett. 92(24), 244108 (2008).
[Crossref]

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2004).
[Crossref]

S. Kupier and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

IEEE Sens. J. (1)

W. Wang and J. Fang, “Variable focusing microlens chip for potential sensing applications,” IEEE Sens. J. 7(1), 11–18 (2007).
[Crossref]

J. Comput. Phys. (1)

M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” J. Comput. Phys. 114(1), 146–159 (1994).
[Crossref]

J. Micromech. Microeng. (1)

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]

J. Neurosci. (1)

K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M. J. Schnitzer, “Next-generation optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci. 26(41), 10380–10386 (2006).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Xu, H. Ren, and S. T. Wu, “Dielectrically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[Crossref]

JMEMS (1)

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” JMEMS 19, 065029 (2009).

Lab Chip (1)

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref] [PubMed]

Langmuir (2)

M. Maillard, J. Legrand, and B. Berge, “Two liquids wetting and low hysteresis electrowetting on dielectric applications,” Langmuir 25(11), 6162–6167 (2009).
[Crossref] [PubMed]

S. Berry, J. Kedzierski, and B. Abedian, “Irreversible electrowetting on thin fluoropolymer films,” Langmuir 23(24), 12429–12435 (2007).
[Crossref] [PubMed]

Nat. Methods (2)

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K. Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K. Wong, and E. S. Boyden, “Independent optical excitation of distinct neural populations,” Nat. Methods 11(3), 338–346 (2014).
[Crossref] [PubMed]

Nat. Neurosci. (1)

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (2)

J. P. Rickgauer and D. W. Tank, “Two-photon excitation of channelrhodopsin-2 at saturation,” Proc. Natl. Acad. Sci. U.S.A. 106(35), 15025–15030 (2009).
[Crossref] [PubMed]

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[Crossref]

Other (4)

A. E. Siegman, Lasers (University Science Books, 1986), Chap. 20.

E. Simon, B. Berge, F. Fillit, H. Gaton, M. Guillet, O. Jacques-Sermet, F. Laune, J. Legrand, M. Maillard, and N. Tallaron, “Optical design rules of a camera module with a liquid lens and principle of command for AF and OIS functions,” in Proceedings of Optical Design and Testing IV, Y. Wang, et al. ed. (SPIE 2010), 784903.

S. R. Berry, J. B. Stewart, T. A. Thorsen, and I. Guha, “Development of adaptive liquid microlenses and microlens arrays,” in Proceedings of MOEMS and Miniaturized Systems XII, W. Piyawattanametha, and Y. H. Park, ed. (SPIE 2013), 861610.
[Crossref]

Y. Fainman, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw Hill, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 a) Liquid microlens design that combines both active focusing and steering by controlling the interface formed between two immiscible liquids. Do is the lens diameter and Dca is the clear aperture diameter. The liquid interface is contained within a 45° conical taper that has a series of patterned metal electrodes along the sidewall. b) Variable focusing along the optical path will occur when the same potential is applied to all the electrodes. c) Beam steering will occur when different potentials are applied to each electrode pair.
Fig. 2
Fig. 2 Numerical simulation results for microlens cavities having different taper angles. The liquid properties in the simulations were for deionized water and dodecane (oil phase), where θ° = 23°, and γwo = 45 mN/m. The clear aperture was set at 32 µm and the cavity depth was 15 µm. a) Interface profile at 0 V for 45° taper. b) Focusing condition when V1 = V2 for 45° taper. c) Beam steering V1 < V2 for 45° taper. d) Interface profile at 0 V for 75° taper. e) Focusing condition when V1 = V2 for 75° taper. f) Beam steering V1 < V2 for 75° taper. g) Interface profile at 0 V for 15° taper. h) Focusing condition when V1 = V2 for 15° taper. i) Beam steering V1 < V2 for 15° taper.
Fig. 3
Fig. 3 a) Measured resist profile after reflow at 150°C, for a 50 µm outside diameter and 28 µm clear aperture lens design. Image captured from a 3-D microscope (Keyence). b) Measured etch profile in fused silica. Final lens cavity dimensions: 55 µm outside diameter, 32 µm clear aperture, 12 µm etch depth, and 43° taper angle. Image captured from a 3-D microscope. c) Top-down microscope image of quadrupole electrode design after metal patterning and etch. d) SEM image of quadrupole electrode design after depositing 500 nm of PECVD oxide. e) SEM image after CYTOP processing.
Fig. 4
Fig. 4 Liquid filled microlens test chip wire bonded in a 40-pin DIP (right). Test chip contains 44 microlenses. Top down microscope images of the liquid microlenses with an outside diameter of Do = 110 µm, clear aperture of Dca = 82 µm, and a 45° taper, 12 µm deep, after self-assembly (left). Oil phase: dodecane (w/red dye for clarity), water phase: deionized water.
Fig. 5
Fig. 5 Illustration of the optical test-setup used for liquid microlens characterization.
Fig. 6
Fig. 6 Measured and predicted focal length vs. voltage for different sized liquid filled with deionized water and dodecane oil (Δn = 0.09). Several images of the beam waist diameters captured from the beam profile camera for different voltages for the liquid microlens with an outside diameter of Do = 110 µm, clear aperture of Dca = 82 µm, and a 45° taper, 12 µm deep are also included.
Fig. 7
Fig. 7 Measured and predicted focal length vs. voltage for different liquid microlenses filled with different oil phases but constant lens cavity geometry. One set of liquid lenses were filled with deionized water and dodecane oil (Δn = 0.09). The other set of liquid lenses were filled with deionized water and silicone oil, DC-704 (Δn = 0.23). The liquid microlens had a geometry with an outside diameter of Do = 110 µm, clear aperture of Dca = 82 µm, and a 45° taper, 12 µm deep.
Fig. 8
Fig. 8 2D laminar two-phase numerical simulation results for different sidewall voltages, V1 and V2 for a liquid microlens geometry with an outside diameter of Do = 110 µm, clear aperture of Dca = 80 µm, and a 45° taper, 15 µm deep. The liquid properties used in the simulations were deionized water and dodecane oil. The dielectric thicknesses used for the electrowetting contact angle calculations were toxide = 500 nm, and tCYTOP = 85 nm.
Fig. 9
Fig. 9 Changes in beam waist diameter centroid position for four different voltage states. The shaded electrodes are receiving 30 Vac and the other electrode pair is receiving 20 Vac. The liquid microlenses were filled with deionized water and dodecane oil (Δn = 0.09) and had a geometry with an outside diameter of Do = 110 µm, clear aperture of Dca = 82 µm, and a 45° taper, 12 µm deep.
Fig. 10
Fig. 10 Comparing beam waist displacement for different voltages and liquid lenses filled with different oils. The shaded electrodes are receiving higher voltage than the other electrode pair. a) The liquid microlenses were filled with deionized water and dodecane oil (Δn = 0.09) and had a geometry with an outside diameter of Do = 110 µm, clear aperture of Dca = 82 µm, and a 45° taper, 12 µm deep. b) The liquid microlenses were filled with deionized water and silicone oil, DC-704 (Δn = 0.23) and had a geometry with an outside diameter of Do = 110 µm, clear aperture of Dca = 82 µm, and a 45° taper, 12 µm deep.

Tables (1)

Tables Icon

Table 1 Calculated steering angle from measured centroid position.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ( V )= cos 1 [ cos( θ o ) C V 2 2 γ wo ]
D ll D i = [ ( f 2 f 1 ) 2 ( 1+ z f ll ) 2 + ( λ π D i 2 ) 2 ( f 1 f 2 f ll ) 2 ] 1 2

Metrics