Abstract

Photodynamic diagnosis (PDD) provides valuable assistance in distinguishing tumor from the normal tissue using fluorescent colors. These colors are affected by the illumination and the photosensitizer, and PDD may be applied during operation. After the diagnosis, photodynamic therapy (PDT) could destroy tiny lesion without removing the tissue, something that considerably reduces the possibility of tumor recurrence. However, the present endoscope technologies cannot realize PDD and PDT using the same endoscope. The use of different endoscopes presents three main disadvantages. First, the intra-operation diagnosis cannot be realized unless endoscopes are the different during operation; use of different endoscopes further burdens of the surgeon and the patients. Second, it is very difficult to find the exact same area via the PDT endoscope, one that is confirmed as tumor or cancer by the PDD endoscope, when different endoscopes are used just as present applied. Third, the laser irradiation field cannot be controlled with present technologies, something that may hurt the surrounding healthy tissue or blood vessels, thus leading to serious complications. To resolve the above-mentioned problems, we propose a new flexible laser endoscope, which integrates PDD and PDT, and provides a controllable laser irradiation field for the surgeon. Experimental results proved that the resolution of both diagnosis and therapy images were five times higher than that of standard laparoscopy, the laser power density was high enough for PDT for a distance of 20 to 50 mm away from the target tumor, and the position accuracy of the presented system was half of the required errors. Moreover, the in-vitro experiments further verified the effectiveness of the laser endoscope system. Therefore, this new flexible laser endoscope is potentially suitable for future in-vivo experiments or clinical applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery

B.J. Chen, L.F. Shen, E.Y.B. Pun, and H. Lin
Opt. Express 20(2) 879-889 (2012)

Pr3+-doped heavy metal germanium tellurite glasses for irradiative light source in minimally invasive photodynamic therapy surgery

J. Yang, B. J. Chen, E. Y. B. Pun, B. Zhai, and H. Lin
Opt. Express 21(1) 1030-1040 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Crow, N. Stone, C. A. Kendall, R. A. Persad, and M. P. J. Wright, “Optical diagnostics in urology: current applications and future prospects,” BJU Int. 92(4), 400–407 (2003).
    [Crossref] [PubMed]
  2. H. G. Sim, W. K. O. Lau, M. Olivo, P. H. Tan, and C. W. S. Cheng, “Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma?” BJU Int. 95(9), 1215–1218 (2005).
    [Crossref] [PubMed]
  3. S. Jheon, T. Kim, and J. K. Kim, “Photodynamic therapy as an adjunct to surgery or other treatments for squamous cell lung cancers,” Laser Ther. 20(2), 107–116 (2011).
    [Crossref] [PubMed]
  4. R. L. Lipson, E. J. Baldes, and A. M. Olsen, “Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease,” J. Thorac. Cardiovasc. Surg. 42, 623–629 (1961).
    [PubMed]
  5. M. H. Abdel-Kader, Photodynamic Therapy: From Theory to Application (Springer-Verlag, 2014).
  6. B. Pettiford and R. J. Landreneau, “Endobronchial stents and bronchial sparing surgery in the management of lung cancer,” Rev. Inst. Nal. Enf. Resp. Mex. 20(1), 33–41 (2007).
  7. N. Yamanaka, H. Yamashita, K. Masamune, T. Chiba, and T. Dohi, “An endoscope with 2 DOFs steering of coaxial Nd:YAG laser beam for fetal surgery,” IEEE/ASME Trans. Mechatron. 15(6), 898–905 (2010).
  8. Y. Hu and K. Masamune, “Flexible coaxial laser endoscope with arbitrarily selected spots in endoscopic view for photodynamic tumor therapy,” Appl. Opt. 55(30), 8433–8440 (2016).
    [Crossref] [PubMed]
  9. R. Shannon, Applied Optics and Optical Engineering (Elsevier, 2012).
  10. H. F. Wolf, Handbook of Fiber Optics: Theory and Applications (Garland, 1979).
  11. Y. K. Zhang, Optical Coherence Tomography Guided Laser-cochleostomy (KIT Sci. Pub., 2015).
  12. L. Beiser, “Fundamental architecture of optical scanning systems,” Appl. Opt. 34(31), 7307–7317 (1995).
    [Crossref] [PubMed]
  13. S. A. Pierre, M. N. Ferrandino, W. N. Simmons, C. Fernandez, P. Zhong, D. M. Albala, and G. M. Preminger, “High definition laparoscopy: objective assessment of performance characteristics and comparison with standard laparoscopy,” J. Endourol. 23(3), 523–528 (2009).
    [Crossref] [PubMed]
  14. G. D. Boreman, “Modulation Transfer Function in Optical and Electro-Optical Systems,” Russ. Chem. Rev. 71(2), 159–179 (2001).
  15. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003).
  16. H. Kostron, “Photodynamic Diagnosis and Therapy and the Brain,” in Photodynamic Therapy (Human, 261–280, 2010).
  17. P. Bourke, Calculating the area and centroid of a polygon, Swinburne Univ. Technol., July 1988, Retrieved 6 Feb 2013.
  18. C. Fritsch, K. Lang, W. Neuse, T. Ruzicka, and P. Lehmann, “Photodynamic diagnosis and therapy in dermatology,” Skin Pharmacol. Appl. Skin Physiol. 11(6), 358–373 (1998).
    [Crossref] [PubMed]
  19. D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
    [Crossref] [PubMed]
  20. A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).
  21. M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
    [Crossref]
  22. L. Teng, J. I. Hamada, M. Nakada, S. G. Zhao, and Y. Hayashi, Current Applications of 5-ALA in Glioma Diagnostics and Therapy (INTECH Open Access Publisher, 2013).
  23. P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, “Cell death pathways in photodynamic therapy of cancer,” Cancers (Basel) 3(2), 2516–2539 (2011).
    [Crossref] [PubMed]
  24. G. López-Carballo, P. Hernández-Muñoz, R. Gavara, and M. J. Ocio, “Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products,” Int. J. Food Microbiol. 126(1-2), 65–70 (2008).
    [Crossref] [PubMed]
  25. N. Yamanak, “Coaxial laser steering endoscope system for fetus surgery,” Ph.D Dissertation, Department of IST, the University of Tokyo, Tokyo, Japan, 2012.
  26. T. Ishida, T. Baba, H. Kuzushita, K. Hatooka, and K. Yoshida, “Development of highly damage resistant anti-reflection coating,” Mitsubishi Cable Indust. Rev. 100, 89–93, (2003).
  27. Edmund optics Japan, “Laser Damage Threshold Testing,” Edmund Optics, [Online]. Available: http://www.edmundoptics.jp/technical-resources-center/lasers/laser-damage-threshold-testing/ . [Accessed 2015].

2016 (1)

2015 (1)

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

2011 (3)

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
[Crossref]

P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, “Cell death pathways in photodynamic therapy of cancer,” Cancers (Basel) 3(2), 2516–2539 (2011).
[Crossref] [PubMed]

S. Jheon, T. Kim, and J. K. Kim, “Photodynamic therapy as an adjunct to surgery or other treatments for squamous cell lung cancers,” Laser Ther. 20(2), 107–116 (2011).
[Crossref] [PubMed]

2010 (1)

N. Yamanaka, H. Yamashita, K. Masamune, T. Chiba, and T. Dohi, “An endoscope with 2 DOFs steering of coaxial Nd:YAG laser beam for fetal surgery,” IEEE/ASME Trans. Mechatron. 15(6), 898–905 (2010).

2009 (1)

S. A. Pierre, M. N. Ferrandino, W. N. Simmons, C. Fernandez, P. Zhong, D. M. Albala, and G. M. Preminger, “High definition laparoscopy: objective assessment of performance characteristics and comparison with standard laparoscopy,” J. Endourol. 23(3), 523–528 (2009).
[Crossref] [PubMed]

2008 (1)

G. López-Carballo, P. Hernández-Muñoz, R. Gavara, and M. J. Ocio, “Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products,” Int. J. Food Microbiol. 126(1-2), 65–70 (2008).
[Crossref] [PubMed]

2007 (1)

B. Pettiford and R. J. Landreneau, “Endobronchial stents and bronchial sparing surgery in the management of lung cancer,” Rev. Inst. Nal. Enf. Resp. Mex. 20(1), 33–41 (2007).

2005 (1)

H. G. Sim, W. K. O. Lau, M. Olivo, P. H. Tan, and C. W. S. Cheng, “Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma?” BJU Int. 95(9), 1215–1218 (2005).
[Crossref] [PubMed]

2003 (3)

P. Crow, N. Stone, C. A. Kendall, R. A. Persad, and M. P. J. Wright, “Optical diagnostics in urology: current applications and future prospects,” BJU Int. 92(4), 400–407 (2003).
[Crossref] [PubMed]

T. Ishida, T. Baba, H. Kuzushita, K. Hatooka, and K. Yoshida, “Development of highly damage resistant anti-reflection coating,” Mitsubishi Cable Indust. Rev. 100, 89–93, (2003).

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

2001 (1)

G. D. Boreman, “Modulation Transfer Function in Optical and Electro-Optical Systems,” Russ. Chem. Rev. 71(2), 159–179 (2001).

1998 (1)

C. Fritsch, K. Lang, W. Neuse, T. Ruzicka, and P. Lehmann, “Photodynamic diagnosis and therapy in dermatology,” Skin Pharmacol. Appl. Skin Physiol. 11(6), 358–373 (1998).
[Crossref] [PubMed]

1995 (1)

1961 (1)

R. L. Lipson, E. J. Baldes, and A. M. Olsen, “Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease,” J. Thorac. Cardiovasc. Surg. 42, 623–629 (1961).
[PubMed]

Aasaki, A.

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

Albala, D. M.

S. A. Pierre, M. N. Ferrandino, W. N. Simmons, C. Fernandez, P. Zhong, D. M. Albala, and G. M. Preminger, “High definition laparoscopy: objective assessment of performance characteristics and comparison with standard laparoscopy,” J. Endourol. 23(3), 523–528 (2009).
[Crossref] [PubMed]

Baba, T.

T. Ishida, T. Baba, H. Kuzushita, K. Hatooka, and K. Yoshida, “Development of highly damage resistant anti-reflection coating,” Mitsubishi Cable Indust. Rev. 100, 89–93, (2003).

Baldes, E. J.

R. L. Lipson, E. J. Baldes, and A. M. Olsen, “Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease,” J. Thorac. Cardiovasc. Surg. 42, 623–629 (1961).
[PubMed]

Beiser, L.

Bojarczuk, K.

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
[Crossref]

Boreman, G. D.

G. D. Boreman, “Modulation Transfer Function in Optical and Electro-Optical Systems,” Russ. Chem. Rev. 71(2), 159–179 (2001).

Cheng, C. W. S.

H. G. Sim, W. K. O. Lau, M. Olivo, P. H. Tan, and C. W. S. Cheng, “Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma?” BJU Int. 95(9), 1215–1218 (2005).
[Crossref] [PubMed]

Chiba, T.

N. Yamanaka, H. Yamashita, K. Masamune, T. Chiba, and T. Dohi, “An endoscope with 2 DOFs steering of coaxial Nd:YAG laser beam for fetal surgery,” IEEE/ASME Trans. Mechatron. 15(6), 898–905 (2010).

Crow, P.

P. Crow, N. Stone, C. A. Kendall, R. A. Persad, and M. P. J. Wright, “Optical diagnostics in urology: current applications and future prospects,” BJU Int. 92(4), 400–407 (2003).
[Crossref] [PubMed]

Dohi, T.

N. Yamanaka, H. Yamashita, K. Masamune, T. Chiba, and T. Dohi, “An endoscope with 2 DOFs steering of coaxial Nd:YAG laser beam for fetal surgery,” IEEE/ASME Trans. Mechatron. 15(6), 898–905 (2010).

Dolmans, D. E.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Fernandez, C.

S. A. Pierre, M. N. Ferrandino, W. N. Simmons, C. Fernandez, P. Zhong, D. M. Albala, and G. M. Preminger, “High definition laparoscopy: objective assessment of performance characteristics and comparison with standard laparoscopy,” J. Endourol. 23(3), 523–528 (2009).
[Crossref] [PubMed]

Ferrandino, M. N.

S. A. Pierre, M. N. Ferrandino, W. N. Simmons, C. Fernandez, P. Zhong, D. M. Albala, and G. M. Preminger, “High definition laparoscopy: objective assessment of performance characteristics and comparison with standard laparoscopy,” J. Endourol. 23(3), 523–528 (2009).
[Crossref] [PubMed]

Firczuk, M.

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
[Crossref]

Fritsch, C.

C. Fritsch, K. Lang, W. Neuse, T. Ruzicka, and P. Lehmann, “Photodynamic diagnosis and therapy in dermatology,” Skin Pharmacol. Appl. Skin Physiol. 11(6), 358–373 (1998).
[Crossref] [PubMed]

Fukumura, D.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Gabrysiak, M.

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
[Crossref]

Gavara, R.

G. López-Carballo, P. Hernández-Muñoz, R. Gavara, and M. J. Ocio, “Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products,” Int. J. Food Microbiol. 126(1-2), 65–70 (2008).
[Crossref] [PubMed]

Golab, J.

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
[Crossref]

Hakozaki, M.

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

Hamblin, M. R.

P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, “Cell death pathways in photodynamic therapy of cancer,” Cancers (Basel) 3(2), 2516–2539 (2011).
[Crossref] [PubMed]

Hatooka, K.

T. Ishida, T. Baba, H. Kuzushita, K. Hatooka, and K. Yoshida, “Development of highly damage resistant anti-reflection coating,” Mitsubishi Cable Indust. Rev. 100, 89–93, (2003).

Hernández-Muñoz, P.

G. López-Carballo, P. Hernández-Muñoz, R. Gavara, and M. J. Ocio, “Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products,” Int. J. Food Microbiol. 126(1-2), 65–70 (2008).
[Crossref] [PubMed]

Hu, Y.

Ishida, T.

T. Ishida, T. Baba, H. Kuzushita, K. Hatooka, and K. Yoshida, “Development of highly damage resistant anti-reflection coating,” Mitsubishi Cable Indust. Rev. 100, 89–93, (2003).

Jain, R. K.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Jheon, S.

S. Jheon, T. Kim, and J. K. Kim, “Photodynamic therapy as an adjunct to surgery or other treatments for squamous cell lung cancers,” Laser Ther. 20(2), 107–116 (2011).
[Crossref] [PubMed]

Kamishima, M.

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

Kendall, C. A.

P. Crow, N. Stone, C. A. Kendall, R. A. Persad, and M. P. J. Wright, “Optical diagnostics in urology: current applications and future prospects,” BJU Int. 92(4), 400–407 (2003).
[Crossref] [PubMed]

Kharkwal, G. B.

P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, “Cell death pathways in photodynamic therapy of cancer,” Cancers (Basel) 3(2), 2516–2539 (2011).
[Crossref] [PubMed]

Kim, J. K.

S. Jheon, T. Kim, and J. K. Kim, “Photodynamic therapy as an adjunct to surgery or other treatments for squamous cell lung cancers,” Laser Ther. 20(2), 107–116 (2011).
[Crossref] [PubMed]

Kim, T.

S. Jheon, T. Kim, and J. K. Kim, “Photodynamic therapy as an adjunct to surgery or other treatments for squamous cell lung cancers,” Laser Ther. 20(2), 107–116 (2011).
[Crossref] [PubMed]

Kimura, T.

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

Kume, K.

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

Kuzushita, H.

T. Ishida, T. Baba, H. Kuzushita, K. Hatooka, and K. Yoshida, “Development of highly damage resistant anti-reflection coating,” Mitsubishi Cable Indust. Rev. 100, 89–93, (2003).

Landreneau, R. J.

B. Pettiford and R. J. Landreneau, “Endobronchial stents and bronchial sparing surgery in the management of lung cancer,” Rev. Inst. Nal. Enf. Resp. Mex. 20(1), 33–41 (2007).

Lang, K.

C. Fritsch, K. Lang, W. Neuse, T. Ruzicka, and P. Lehmann, “Photodynamic diagnosis and therapy in dermatology,” Skin Pharmacol. Appl. Skin Physiol. 11(6), 358–373 (1998).
[Crossref] [PubMed]

Lau, W. K. O.

H. G. Sim, W. K. O. Lau, M. Olivo, P. H. Tan, and C. W. S. Cheng, “Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma?” BJU Int. 95(9), 1215–1218 (2005).
[Crossref] [PubMed]

Lehmann, P.

C. Fritsch, K. Lang, W. Neuse, T. Ruzicka, and P. Lehmann, “Photodynamic diagnosis and therapy in dermatology,” Skin Pharmacol. Appl. Skin Physiol. 11(6), 358–373 (1998).
[Crossref] [PubMed]

Lipson, R. L.

R. L. Lipson, E. J. Baldes, and A. M. Olsen, “Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease,” J. Thorac. Cardiovasc. Surg. 42, 623–629 (1961).
[PubMed]

López-Carballo, G.

G. López-Carballo, P. Hernández-Muñoz, R. Gavara, and M. J. Ocio, “Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products,” Int. J. Food Microbiol. 126(1-2), 65–70 (2008).
[Crossref] [PubMed]

Masamune, K.

Y. Hu and K. Masamune, “Flexible coaxial laser endoscope with arbitrarily selected spots in endoscopic view for photodynamic tumor therapy,” Appl. Opt. 55(30), 8433–8440 (2016).
[Crossref] [PubMed]

N. Yamanaka, H. Yamashita, K. Masamune, T. Chiba, and T. Dohi, “An endoscope with 2 DOFs steering of coaxial Nd:YAG laser beam for fetal surgery,” IEEE/ASME Trans. Mechatron. 15(6), 898–905 (2010).

Mroz, P.

P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, “Cell death pathways in photodynamic therapy of cancer,” Cancers (Basel) 3(2), 2516–2539 (2011).
[Crossref] [PubMed]

Muchowicz, A.

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
[Crossref]

Neuse, W.

C. Fritsch, K. Lang, W. Neuse, T. Ruzicka, and P. Lehmann, “Photodynamic diagnosis and therapy in dermatology,” Skin Pharmacol. Appl. Skin Physiol. 11(6), 358–373 (1998).
[Crossref] [PubMed]

Nishizuka, S.

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

Ocio, M. J.

G. López-Carballo, P. Hernández-Muñoz, R. Gavara, and M. J. Ocio, “Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products,” Int. J. Food Microbiol. 126(1-2), 65–70 (2008).
[Crossref] [PubMed]

Ohmori, Y.

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

Olivo, M.

H. G. Sim, W. K. O. Lau, M. Olivo, P. H. Tan, and C. W. S. Cheng, “Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma?” BJU Int. 95(9), 1215–1218 (2005).
[Crossref] [PubMed]

Olsen, A. M.

R. L. Lipson, E. J. Baldes, and A. M. Olsen, “Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease,” J. Thorac. Cardiovasc. Surg. 42, 623–629 (1961).
[PubMed]

Otsuka, K.

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

Persad, R. A.

P. Crow, N. Stone, C. A. Kendall, R. A. Persad, and M. P. J. Wright, “Optical diagnostics in urology: current applications and future prospects,” BJU Int. 92(4), 400–407 (2003).
[Crossref] [PubMed]

Pettiford, B.

B. Pettiford and R. J. Landreneau, “Endobronchial stents and bronchial sparing surgery in the management of lung cancer,” Rev. Inst. Nal. Enf. Resp. Mex. 20(1), 33–41 (2007).

Pierre, S. A.

S. A. Pierre, M. N. Ferrandino, W. N. Simmons, C. Fernandez, P. Zhong, D. M. Albala, and G. M. Preminger, “High definition laparoscopy: objective assessment of performance characteristics and comparison with standard laparoscopy,” J. Endourol. 23(3), 523–528 (2009).
[Crossref] [PubMed]

Preminger, G. M.

S. A. Pierre, M. N. Ferrandino, W. N. Simmons, C. Fernandez, P. Zhong, D. M. Albala, and G. M. Preminger, “High definition laparoscopy: objective assessment of performance characteristics and comparison with standard laparoscopy,” J. Endourol. 23(3), 523–528 (2009).
[Crossref] [PubMed]

Ruzicka, T.

C. Fritsch, K. Lang, W. Neuse, T. Ruzicka, and P. Lehmann, “Photodynamic diagnosis and therapy in dermatology,” Skin Pharmacol. Appl. Skin Physiol. 11(6), 358–373 (1998).
[Crossref] [PubMed]

Sim, H. G.

H. G. Sim, W. K. O. Lau, M. Olivo, P. H. Tan, and C. W. S. Cheng, “Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma?” BJU Int. 95(9), 1215–1218 (2005).
[Crossref] [PubMed]

Simmons, W. N.

S. A. Pierre, M. N. Ferrandino, W. N. Simmons, C. Fernandez, P. Zhong, D. M. Albala, and G. M. Preminger, “High definition laparoscopy: objective assessment of performance characteristics and comparison with standard laparoscopy,” J. Endourol. 23(3), 523–528 (2009).
[Crossref] [PubMed]

Stone, N.

P. Crow, N. Stone, C. A. Kendall, R. A. Persad, and M. P. J. Wright, “Optical diagnostics in urology: current applications and future prospects,” BJU Int. 92(4), 400–407 (2003).
[Crossref] [PubMed]

Sugitachi, A.

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

Tan, P. H.

H. G. Sim, W. K. O. Lau, M. Olivo, P. H. Tan, and C. W. S. Cheng, “Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma?” BJU Int. 95(9), 1215–1218 (2005).
[Crossref] [PubMed]

Wachowska, M.

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
[Crossref]

Wanczyk, M.

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
[Crossref]

Winiarska, M.

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
[Crossref]

Wright, M. P. J.

P. Crow, N. Stone, C. A. Kendall, R. A. Persad, and M. P. J. Wright, “Optical diagnostics in urology: current applications and future prospects,” BJU Int. 92(4), 400–407 (2003).
[Crossref] [PubMed]

Yaegashi, M.

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

Yamanaka, N.

N. Yamanaka, H. Yamashita, K. Masamune, T. Chiba, and T. Dohi, “An endoscope with 2 DOFs steering of coaxial Nd:YAG laser beam for fetal surgery,” IEEE/ASME Trans. Mechatron. 15(6), 898–905 (2010).

Yamashita, H.

N. Yamanaka, H. Yamashita, K. Masamune, T. Chiba, and T. Dohi, “An endoscope with 2 DOFs steering of coaxial Nd:YAG laser beam for fetal surgery,” IEEE/ASME Trans. Mechatron. 15(6), 898–905 (2010).

Yaroslavsky, A.

P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, “Cell death pathways in photodynamic therapy of cancer,” Cancers (Basel) 3(2), 2516–2539 (2011).
[Crossref] [PubMed]

Yoshida, K.

T. Ishida, T. Baba, H. Kuzushita, K. Hatooka, and K. Yoshida, “Development of highly damage resistant anti-reflection coating,” Mitsubishi Cable Indust. Rev. 100, 89–93, (2003).

Zhong, P.

S. A. Pierre, M. N. Ferrandino, W. N. Simmons, C. Fernandez, P. Zhong, D. M. Albala, and G. M. Preminger, “High definition laparoscopy: objective assessment of performance characteristics and comparison with standard laparoscopy,” J. Endourol. 23(3), 523–528 (2009).
[Crossref] [PubMed]

Appl. Opt. (2)

BJU Int. (2)

P. Crow, N. Stone, C. A. Kendall, R. A. Persad, and M. P. J. Wright, “Optical diagnostics in urology: current applications and future prospects,” BJU Int. 92(4), 400–407 (2003).
[Crossref] [PubMed]

H. G. Sim, W. K. O. Lau, M. Olivo, P. H. Tan, and C. W. S. Cheng, “Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma?” BJU Int. 95(9), 1215–1218 (2005).
[Crossref] [PubMed]

Cancers (Basel) (1)

P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, “Cell death pathways in photodynamic therapy of cancer,” Cancers (Basel) 3(2), 2516–2539 (2011).
[Crossref] [PubMed]

IEEE/ASME Trans. Mechatron. (1)

N. Yamanaka, H. Yamashita, K. Masamune, T. Chiba, and T. Dohi, “An endoscope with 2 DOFs steering of coaxial Nd:YAG laser beam for fetal surgery,” IEEE/ASME Trans. Mechatron. 15(6), 898–905 (2010).

Int. J. Food Microbiol. (1)

G. López-Carballo, P. Hernández-Muñoz, R. Gavara, and M. J. Ocio, “Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products,” Int. J. Food Microbiol. 126(1-2), 65–70 (2008).
[Crossref] [PubMed]

Intergr. Molec. Med. (1)

A. Sugitachi, K. Otsuka, T. Kimura, M. Hakozaki, M. Yaegashi, M. Kamishima, K. Kume, Y. Ohmori, S. Nishizuka, and A. Aasaki, “Color-imaging histodiagnostics approach for cancer,” Intergr. Molec. Med. 2(4), 231–233 (2015).

J. Endourol. (1)

S. A. Pierre, M. N. Ferrandino, W. N. Simmons, C. Fernandez, P. Zhong, D. M. Albala, and G. M. Preminger, “High definition laparoscopy: objective assessment of performance characteristics and comparison with standard laparoscopy,” J. Endourol. 23(3), 523–528 (2009).
[Crossref] [PubMed]

J. Thorac. Cardiovasc. Surg. (1)

R. L. Lipson, E. J. Baldes, and A. M. Olsen, “Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease,” J. Thorac. Cardiovasc. Surg. 42, 623–629 (1961).
[PubMed]

Laser Ther. (1)

S. Jheon, T. Kim, and J. K. Kim, “Photodynamic therapy as an adjunct to surgery or other treatments for squamous cell lung cancers,” Laser Ther. 20(2), 107–116 (2011).
[Crossref] [PubMed]

Mitsubishi Cable Indust. Rev. (1)

T. Ishida, T. Baba, H. Kuzushita, K. Hatooka, and K. Yoshida, “Development of highly damage resistant anti-reflection coating,” Mitsubishi Cable Indust. Rev. 100, 89–93, (2003).

Molecules (1)

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska, M. Wańczyk, K. Bojarczuk, and J. Golab, “Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer,” Molecules 16(12), 4140–4164 (2011).
[Crossref]

Nat. Rev. Cancer (1)

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Rev. Inst. Nal. Enf. Resp. Mex. (1)

B. Pettiford and R. J. Landreneau, “Endobronchial stents and bronchial sparing surgery in the management of lung cancer,” Rev. Inst. Nal. Enf. Resp. Mex. 20(1), 33–41 (2007).

Russ. Chem. Rev. (1)

G. D. Boreman, “Modulation Transfer Function in Optical and Electro-Optical Systems,” Russ. Chem. Rev. 71(2), 159–179 (2001).

Skin Pharmacol. Appl. Skin Physiol. (1)

C. Fritsch, K. Lang, W. Neuse, T. Ruzicka, and P. Lehmann, “Photodynamic diagnosis and therapy in dermatology,” Skin Pharmacol. Appl. Skin Physiol. 11(6), 358–373 (1998).
[Crossref] [PubMed]

Other (10)

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003).

H. Kostron, “Photodynamic Diagnosis and Therapy and the Brain,” in Photodynamic Therapy (Human, 261–280, 2010).

P. Bourke, Calculating the area and centroid of a polygon, Swinburne Univ. Technol., July 1988, Retrieved 6 Feb 2013.

M. H. Abdel-Kader, Photodynamic Therapy: From Theory to Application (Springer-Verlag, 2014).

R. Shannon, Applied Optics and Optical Engineering (Elsevier, 2012).

H. F. Wolf, Handbook of Fiber Optics: Theory and Applications (Garland, 1979).

Y. K. Zhang, Optical Coherence Tomography Guided Laser-cochleostomy (KIT Sci. Pub., 2015).

L. Teng, J. I. Hamada, M. Nakada, S. G. Zhao, and Y. Hayashi, Current Applications of 5-ALA in Glioma Diagnostics and Therapy (INTECH Open Access Publisher, 2013).

N. Yamanak, “Coaxial laser steering endoscope system for fetus surgery,” Ph.D Dissertation, Department of IST, the University of Tokyo, Tokyo, Japan, 2012.

Edmund optics Japan, “Laser Damage Threshold Testing,” Edmund Optics, [Online]. Available: http://www.edmundoptics.jp/technical-resources-center/lasers/laser-damage-threshold-testing/ . [Accessed 2015].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Illustration of flexible laser steering endoscope. (A) Schematic illustration of the laser endoscope (not drawn to scale). (B) The experimental setup.
Fig. 2
Fig. 2 The objective lens system construction. (A) The construction. (B) The lens system parameters.
Fig. 3
Fig. 3 The laser-focusing lens system configuration. (A) The configuration. (B) The lens system parameters.
Fig. 4
Fig. 4 The eyepiece lens system construction. (A) The construction. (B) The lens system parameters.
Fig. 5
Fig. 5 The experimental results regarding the observation optical system. (A)The view field length of the endoscope. The horizontal axis (Distance), represents the distance away from the endoscope tip, 20-50 mm. The vertical axis (View filed), represents the diameter of the image at different distances. (B) The resolution of the endoscope. (C) The modulation transfer function (MTF) of the endoscope. (D) The chromatic aberration (CA) of the endoscope.
Fig. 6
Fig. 6 The laser power transmission efficiency (N = 5). (A) The laser power is measured at different positions with different laser diode currents. (B) The laser power transmission efficiency through the laser focusing lens system, beam splitter, and finally, exiting from the objective lens system.
Fig. 7
Fig. 7 The stage calibration. (A) Obtaining the extrinsic parameters (rotation and translation matrix) based on camera calibration. (B) The recording of different laser spot coordinates in image and the distances of stage moving from the origin used for stage calibration.
Fig. 8
Fig. 8 The results of laser positioning accuracy (N = 5). (A) The selected 21 positions all spreading the image. (B) The examples of extracting laser spot in order to get the center of the laser spot. (a) and (c) are laser spots without outside illumination, (b) and (d) are the corresponding extracted spots. (C) The positioning accuracies at distances from 20 to 50 mm, the colorful points represent the error distance at different positions in the image, the red crosses are the average error distances at the corresponding distance from the endoscope tip.
Fig. 9
Fig. 9 The photodynamic diagnosis images during in-vitro experiment. (A) Phantom for experiment, (B) Image under white light, there is no difference between the two parts, (C) Image under blue light, it is dark red in the center of the phantom, because it is not obvious, we increase the contrast of the image as (D), in which the center part is obvious shown as red.
Fig. 10
Fig. 10 The histograms of a PDD image. (A) The simulated healthy tissue and its corresponding histogram in (C), (B) The simulated tumor tissue and its corresponding histogram in (D).
Fig. 11
Fig. 11 Output laser distribution responds to different incident angles in the fiber bundle. With the incident angle larger, the output laser disperses, which leads to the laser power density decreasing. The laser power density is a very important factor for the photodynamic therapy, and it is not a good idea to cause power density loss by such way, therefore the XY stage is applied in the system to move the fiber header.
Fig. 12
Fig. 12 Laser power effect factors. (A) The laser spot of PDT laser system on image. (B) The laser spot of PDD/PDT laser system on image. The laser spot size in (A) is about 19.5 times of single fiber in fiber bundle, and that in (B) about 8.5 times. (C) The laser power from the laser focusing lens system by two systems, and apparently the laser power by PDD/PDT laser system is much higher than that by PDT laser system, which means that the smaller the laser focusing spot, the higher the output laser power. (The lenses in the two laser system are the same serial with almost the same transmission efficiency.) (D) The laser power transmits through objective lens systems by different laser systems. The pinhole size in the system is presumed to be without effecting the laser power transmission efficiency, but the less-size pinhole in PDD/PDT laser system leads to less laser power from the figure. (E) The laser power transmits from fiber bundle header to endoscope tip in PDT laser system. (F) The laser power transmits from fiber bundle header to endoscope tip in PDD/PDT laser system. The laser power difference values in the two figures prove that the smaller the laser focusing spot size, the higher the laser transmission efficiency of laser in the fiber bundle.

Tables (2)

Tables Icon

Table 1 Laser power density (mW/ c m 2 ) of the system.

Tables Icon

Table 2 Specification the system construction parts

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( h u )=[ 1 0 1 f 0 1 ][ 1 f 0 0 1 ]( h u )=[ 1 f 0 1 f 0 0 ]( h u )
resolution( lp mm )= 2 Group+(element1)/6
λ( u 1 )= C stage ( O p 1 ) where, C stage = C in C ex C inx =[ α 0 0 0 u 0 1 0 0 ] C iny =[ 0 0 α 0 v 0 1 0 0 ] C ex =[ R t O 1×3 1 ]=[ r 1 T t x r 2 T r 3 T O 1×3 t y t z 1 ]
ET(ms)=3.739e007* A 2 +0.016*A+0.074*N p 2 +6.16*Np+6.16

Metrics