Abstract

Conventional micropore membranes based size sorting have been widely applied for single-cell analysis. However, only a single filtering size can be achieved and the clogging issue cannot be completely avoided. Here, we propose a novel arch-like microsorter capable of multimodal (high-, band- and low-capture mode) sorting of particles. The target particles can pass through the front filter and are then trapped by the back filter, while the non-target particles can bypass or pass through the microsorter. This 3D arch-like microstructures are fabricated inside a microchannel by femtosecond laser parallel multifocal scanning. The designed architecture allows for particles isolation free of clogging over 20 minutes. Finally, as a proof of concept demonstration, SUM159 breast cancer cells are successfully separated from whole blood.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical trapping microfabrication with electrophoretically delivered particles inside glass capillaries

Xin-Cheng Yao and Alonso Castro
Opt. Lett. 28(15) 1335-1337 (2003)

Sorting of polystyrene microspheres using a Y-branched optical waveguide

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson
Opt. Express 13(1) 1-7 (2005)

References

  • View by:
  • |
  • |
  • |

  1. T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
    [Crossref] [PubMed]
  2. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  3. E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
    [Crossref] [PubMed]
  4. J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
    [PubMed]
  5. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
    [Crossref] [PubMed]
  6. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
    [Crossref] [PubMed]
  7. A. J. deMello, “Control and detection of chemical reactions in microfluidic systems,” Nature 442(7101), 394–402 (2006).
    [Crossref] [PubMed]
  8. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
    [Crossref] [PubMed]
  9. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
    [Crossref] [PubMed]
  10. C. W. Shields, C. D. Reyes, and G. P. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15(5), 1230–1249 (2015).
    [Crossref] [PubMed]
  11. I. Doh, H. Yoo, Y. Cho, J. Lee, H. K. Kim, and J. Kim, “Viable capture and release of cancer cells in human whole blood,” Appl. Phys. Lett. 101(4), 043701 (2012).
    [Crossref]
  12. S. Song, M. S. Kim, J. Lee, and S. Choi, “A continuous-flow microfluidic syringe filter for size-based cell sorting,” Lab Chip 15(5), 1250–1254 (2015).
    [Crossref] [PubMed]
  13. J. P. Beech, S. H. Holm, K. Adolfsson, and J. O. Tegenfeldt, “Sorting cells by size, shape and deformability,” Lab Chip 12(6), 1048–1051 (2012).
    [Crossref] [PubMed]
  14. S. Choi, J. M. Karp, and R. Karnik, “Cell sorting by deterministic cell rolling,” Lab Chip 12(8), 1427–1430 (2012).
    [Crossref] [PubMed]
  15. M. Werner, F. Merenda, J. Piguet, R. P. Salathé, and H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
    [Crossref] [PubMed]
  16. F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
    [Crossref] [PubMed]
  17. J. Nam, H. Lim, D. Kim, and S. Shin, “Separation of platelets from whole blood using standing surface acoustic waves in a microchannel,” Lab Chip 11(19), 3361–3364 (2011).
    [Crossref] [PubMed]
  18. T. Franke, S. Braunmüller, L. Schmid, A. Wixforth, and D. A. Weitz, “Surface acoustic wave actuated cell sorting (SAWACS),” Lab Chip 10(6), 789–794 (2010).
    [Crossref] [PubMed]
  19. G. Destgeer, B. H. Ha, J. H. Jung, and H. J. Sung, “Submicron separation of microspheres via travelling surface acoustic waves,” Lab Chip 14(24), 4665–4672 (2014).
    [Crossref] [PubMed]
  20. C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
    [Crossref] [PubMed]
  21. J. S. Park, S. H. Song, and H. I. Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels,” Lab Chip 9(7), 939–948 (2009).
    [Crossref] [PubMed]
  22. Z. Wu, Y. Chen, M. Wang, and A. J. Chung, “Continuous inertial microparticle and blood cell separation in straight channels with local microstructures,” Lab Chip 16(3), 532–542 (2016).
    [Crossref] [PubMed]
  23. Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
    [Crossref] [PubMed]
  24. Y. Tang, J. Shi, S. Li, L. Wang, Y. E. Cayre, and Y. Chen, “Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells,” Sci. Rep. 4(1), 6052 (2015).
    [Crossref] [PubMed]
  25. C. C. Wong, Y. Liu, K. Y. Wang, and A. R. A. Rahman, “Size based sorting and patterning of microbeads by evaporation driven flow in a 3D micro-traps array,” Lab Chip 13(18), 3663–3667 (2013).
    [Crossref] [PubMed]
  26. X. Li, W. Chen, G. Liu, W. Lu, and J. Fu, “Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes,” Lab Chip 14(14), 2565–2575 (2014).
    [Crossref] [PubMed]
  27. W. Beattie, X. Qin, L. Wang, and H. Ma, “Clog-free cell filtration using resettable cell traps,” Lab Chip 14(15), 2657–2665 (2014).
    [Crossref] [PubMed]
  28. S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip 12(13), 2369–2376 (2012).
    [Crossref] [PubMed]
  29. J. D. Adams and H. T. Soh, “Tunable acoustophoretic band-pass particle sorter,” Appl. Phys. Lett. 97(6), 064103 (2010).
    [Crossref] [PubMed]
  30. V. Skowronek, R. W. Rambach, and T. Franke, “Surface acoustic wave controlled integrated band-pass filter,” Microfluid. Nanofluidics 19(2), 335–341 (2015).
    [Crossref]
  31. L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
    [Crossref] [PubMed]
  32. Z. T. F. Yu, K. M. Aw Yong, and J. Fu, “Microfluidic blood cell sorting: now and beyond,” Small 10(9), 1687–1703 (2014).
    [Crossref] [PubMed]
  33. J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Advances 5(31), 24072–24080 (2015).
    [Crossref]
  34. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
    [Crossref] [PubMed]
  35. Y. L. Hu, Y. H. Chen, J. Q. Ma, J. W. Li, W. H. Huang, and J. R. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
    [Crossref]
  36. B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
    [Crossref] [PubMed]
  37. C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, and W. Huang, “A rapid two-photon fabrication of tube array using an annular Fresnel lens,” Opt. Express 22(4), 3983–3990 (2014).
    [Crossref] [PubMed]
  38. D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
    [Crossref]
  39. L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
    [Crossref]
  40. J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
    [Crossref] [PubMed]
  41. L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
    [Crossref] [PubMed]
  42. D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
    [Crossref]
  43. D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
    [Crossref] [PubMed]
  44. D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
    [Crossref]
  45. B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
    [Crossref] [PubMed]
  46. H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
    [Crossref] [PubMed]
  47. J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells,” Lab Chip 10(7), 837–842 (2010).
    [Crossref] [PubMed]
  48. Z. Lao, Y. Hu, C. Zhang, L. Yang, J. Li, J. Chu, and D. Wu, “Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,” ACS Nano 9(12), 12060–12069 (2015).
    [Crossref] [PubMed]
  49. Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
    [Crossref] [PubMed]
  50. Z. Zhang, J. Xu, B. Hong, and X. Chen, “The effects of 3D channel geometry on CTC passing pressure--towards deformability-based cancer cell separation,” Lab Chip 14(14), 2576–2584 (2014).
    [Crossref] [PubMed]
  51. Z. F. Zhang, X. L. Chen, and J. Xu, “Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria,” Biomicrofluidics 9, 024108 (2015).
    [Crossref]
  52. H. Mohamed, M. Murray, J. N. Turner, and M. Caggana, “Isolation of tumor cells using size and deformation,” J. Chromatogr. A 1216(47), 8289–8295 (2009).
    [Crossref] [PubMed]
  53. W. Liu, J. C. Wang, and J. Wang, “Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics,” Lab Chip 15(4), 1195–1204 (2015).
    [Crossref] [PubMed]
  54. X. Wang and I. Papautsky, “Size-based microfluidic multimodal microparticle sorter,” Lab Chip 15(5), 1350–1359 (2015).
    [Crossref] [PubMed]
  55. H. Kim, S. Lee, J. H. Lee, and J. Kim, “Integration of a microfluidic chip with a size-based cell bandpass filter for reliable isolation of single cells,” Lab Chip 15(21), 4128–4132 (2015).
    [Crossref] [PubMed]

2016 (2)

Z. Wu, Y. Chen, M. Wang, and A. J. Chung, “Continuous inertial microparticle and blood cell separation in straight channels with local microstructures,” Lab Chip 16(3), 532–542 (2016).
[Crossref] [PubMed]

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

2015 (14)

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Z. Lao, Y. Hu, C. Zhang, L. Yang, J. Li, J. Chu, and D. Wu, “Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,” ACS Nano 9(12), 12060–12069 (2015).
[Crossref] [PubMed]

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Z. F. Zhang, X. L. Chen, and J. Xu, “Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria,” Biomicrofluidics 9, 024108 (2015).
[Crossref]

W. Liu, J. C. Wang, and J. Wang, “Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics,” Lab Chip 15(4), 1195–1204 (2015).
[Crossref] [PubMed]

X. Wang and I. Papautsky, “Size-based microfluidic multimodal microparticle sorter,” Lab Chip 15(5), 1350–1359 (2015).
[Crossref] [PubMed]

H. Kim, S. Lee, J. H. Lee, and J. Kim, “Integration of a microfluidic chip with a size-based cell bandpass filter for reliable isolation of single cells,” Lab Chip 15(21), 4128–4132 (2015).
[Crossref] [PubMed]

Y. Tang, J. Shi, S. Li, L. Wang, Y. E. Cayre, and Y. Chen, “Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells,” Sci. Rep. 4(1), 6052 (2015).
[Crossref] [PubMed]

V. Skowronek, R. W. Rambach, and T. Franke, “Surface acoustic wave controlled integrated band-pass filter,” Microfluid. Nanofluidics 19(2), 335–341 (2015).
[Crossref]

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Advances 5(31), 24072–24080 (2015).
[Crossref]

S. Song, M. S. Kim, J. Lee, and S. Choi, “A continuous-flow microfluidic syringe filter for size-based cell sorting,” Lab Chip 15(5), 1250–1254 (2015).
[Crossref] [PubMed]

C. W. Shields, C. D. Reyes, and G. P. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15(5), 1230–1249 (2015).
[Crossref] [PubMed]

2014 (11)

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref] [PubMed]

Z. T. F. Yu, K. M. Aw Yong, and J. Fu, “Microfluidic blood cell sorting: now and beyond,” Small 10(9), 1687–1703 (2014).
[Crossref] [PubMed]

Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
[Crossref] [PubMed]

G. Destgeer, B. H. Ha, J. H. Jung, and H. J. Sung, “Submicron separation of microspheres via travelling surface acoustic waves,” Lab Chip 14(24), 4665–4672 (2014).
[Crossref] [PubMed]

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

X. Li, W. Chen, G. Liu, W. Lu, and J. Fu, “Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes,” Lab Chip 14(14), 2565–2575 (2014).
[Crossref] [PubMed]

W. Beattie, X. Qin, L. Wang, and H. Ma, “Clog-free cell filtration using resettable cell traps,” Lab Chip 14(15), 2657–2665 (2014).
[Crossref] [PubMed]

Z. Zhang, J. Xu, B. Hong, and X. Chen, “The effects of 3D channel geometry on CTC passing pressure--towards deformability-based cancer cell separation,” Lab Chip 14(14), 2576–2584 (2014).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, and W. Huang, “A rapid two-photon fabrication of tube array using an annular Fresnel lens,” Opt. Express 22(4), 3983–3990 (2014).
[Crossref] [PubMed]

L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

2013 (3)

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

C. C. Wong, Y. Liu, K. Y. Wang, and A. R. A. Rahman, “Size based sorting and patterning of microbeads by evaporation driven flow in a 3D micro-traps array,” Lab Chip 13(18), 3663–3667 (2013).
[Crossref] [PubMed]

Y. L. Hu, Y. H. Chen, J. Q. Ma, J. W. Li, W. H. Huang, and J. R. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

2012 (6)

S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip 12(13), 2369–2376 (2012).
[Crossref] [PubMed]

I. Doh, H. Yoo, Y. Cho, J. Lee, H. K. Kim, and J. Kim, “Viable capture and release of cancer cells in human whole blood,” Appl. Phys. Lett. 101(4), 043701 (2012).
[Crossref]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

J. P. Beech, S. H. Holm, K. Adolfsson, and J. O. Tegenfeldt, “Sorting cells by size, shape and deformability,” Lab Chip 12(6), 1048–1051 (2012).
[Crossref] [PubMed]

S. Choi, J. M. Karp, and R. Karnik, “Cell sorting by deterministic cell rolling,” Lab Chip 12(8), 1427–1430 (2012).
[Crossref] [PubMed]

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

2011 (4)

H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
[Crossref] [PubMed]

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, and H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[Crossref] [PubMed]

J. Nam, H. Lim, D. Kim, and S. Shin, “Separation of platelets from whole blood using standing surface acoustic waves in a microchannel,” Lab Chip 11(19), 3361–3364 (2011).
[Crossref] [PubMed]

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[Crossref] [PubMed]

2010 (5)

J. D. Adams and H. T. Soh, “Tunable acoustophoretic band-pass particle sorter,” Appl. Phys. Lett. 97(6), 064103 (2010).
[Crossref] [PubMed]

T. Franke, S. Braunmüller, L. Schmid, A. Wixforth, and D. A. Weitz, “Surface acoustic wave actuated cell sorting (SAWACS),” Lab Chip 10(6), 789–794 (2010).
[Crossref] [PubMed]

J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells,” Lab Chip 10(7), 837–842 (2010).
[Crossref] [PubMed]

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

2009 (2)

H. Mohamed, M. Murray, J. N. Turner, and M. Caggana, “Isolation of tumor cells using size and deformation,” J. Chromatogr. A 1216(47), 8289–8295 (2009).
[Crossref] [PubMed]

J. S. Park, S. H. Song, and H. I. Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels,” Lab Chip 9(7), 939–948 (2009).
[Crossref] [PubMed]

2007 (1)

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

2006 (4)

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[PubMed]

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

A. J. deMello, “Control and detection of chemical reactions in microfluidic systems,” Nature 442(7101), 394–402 (2006).
[Crossref] [PubMed]

2003 (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

2002 (1)

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
[Crossref] [PubMed]

2000 (1)

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[Crossref] [PubMed]

Adams, J. D.

J. D. Adams and H. T. Soh, “Tunable acoustophoretic band-pass particle sorter,” Appl. Phys. Lett. 97(6), 064103 (2010).
[Crossref] [PubMed]

Adolfsson, K.

J. P. Beech, S. H. Holm, K. Adolfsson, and J. O. Tegenfeldt, “Sorting cells by size, shape and deformability,” Lab Chip 12(6), 1048–1051 (2012).
[Crossref] [PubMed]

Amato, L.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Aw Yong, K. M.

Z. T. F. Yu, K. M. Aw Yong, and J. Fu, “Microfluidic blood cell sorting: now and beyond,” Small 10(9), 1687–1703 (2014).
[Crossref] [PubMed]

Balis, U. J.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Bauer, J. M.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[Crossref] [PubMed]

Beattie, W.

W. Beattie, X. Qin, L. Wang, and H. Ma, “Clog-free cell filtration using resettable cell traps,” Lab Chip 14(15), 2657–2665 (2014).
[Crossref] [PubMed]

Beebe, D. J.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref] [PubMed]

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[Crossref] [PubMed]

Beech, J. P.

J. P. Beech, S. H. Holm, K. Adolfsson, and J. O. Tegenfeldt, “Sorting cells by size, shape and deformability,” Lab Chip 12(6), 1048–1051 (2012).
[Crossref] [PubMed]

Bell, D. W.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Bellini, N.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Bragheri, F.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

Braunmüller, S.

T. Franke, S. Braunmüller, L. Schmid, A. Wixforth, and D. A. Weitz, “Surface acoustic wave actuated cell sorting (SAWACS),” Lab Chip 10(6), 789–794 (2010).
[Crossref] [PubMed]

Caggana, M.

H. Mohamed, M. Murray, J. N. Turner, and M. Caggana, “Isolation of tumor cells using size and deformation,” J. Chromatogr. A 1216(47), 8289–8295 (2009).
[Crossref] [PubMed]

Cayre, Y. E.

Y. Tang, J. Shi, S. Li, L. Wang, Y. E. Cayre, and Y. Chen, “Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells,” Sci. Rep. 4(1), 6052 (2015).
[Crossref] [PubMed]

Cerullo, G.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Chen, Q. D.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Chen, W.

X. Li, W. Chen, G. Liu, W. Lu, and J. Fu, “Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes,” Lab Chip 14(14), 2565–2575 (2014).
[Crossref] [PubMed]

Chen, X.

Z. Zhang, J. Xu, B. Hong, and X. Chen, “The effects of 3D channel geometry on CTC passing pressure--towards deformability-based cancer cell separation,” Lab Chip 14(14), 2576–2584 (2014).
[Crossref] [PubMed]

Chen, X. L.

Z. F. Zhang, X. L. Chen, and J. Xu, “Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria,” Biomicrofluidics 9, 024108 (2015).
[Crossref]

Chen, Y.

Z. Wu, Y. Chen, M. Wang, and A. J. Chung, “Continuous inertial microparticle and blood cell separation in straight channels with local microstructures,” Lab Chip 16(3), 532–542 (2016).
[Crossref] [PubMed]

Y. Tang, J. Shi, S. Li, L. Wang, Y. E. Cayre, and Y. Chen, “Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells,” Sci. Rep. 4(1), 6052 (2015).
[Crossref] [PubMed]

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
[Crossref] [PubMed]

Chen, Y. H.

Y. L. Hu, Y. H. Chen, J. Q. Ma, J. W. Li, W. H. Huang, and J. R. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Chichkov, B. N.

L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[Crossref] [PubMed]

Chiu, D. T.

J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells,” Lab Chip 10(7), 837–842 (2010).
[Crossref] [PubMed]

Cho, Y.

I. Doh, H. Yoo, Y. Cho, J. Lee, H. K. Kim, and J. Kim, “Viable capture and release of cancer cells in human whole blood,” Appl. Phys. Lett. 101(4), 043701 (2012).
[Crossref]

Choi, S.

S. Song, M. S. Kim, J. Lee, and S. Choi, “A continuous-flow microfluidic syringe filter for size-based cell sorting,” Lab Chip 15(5), 1250–1254 (2015).
[Crossref] [PubMed]

S. Choi, J. M. Karp, and R. Karnik, “Cell sorting by deterministic cell rolling,” Lab Chip 12(8), 1427–1430 (2012).
[Crossref] [PubMed]

Chu, J.

Z. Lao, Y. Hu, C. Zhang, L. Yang, J. Li, J. Chu, and D. Wu, “Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,” ACS Nano 9(12), 12060–12069 (2015).
[Crossref] [PubMed]

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, and W. Huang, “A rapid two-photon fabrication of tube array using an annular Fresnel lens,” Opt. Express 22(4), 3983–3990 (2014).
[Crossref] [PubMed]

Chu, J. R.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Y. L. Hu, Y. H. Chen, J. Q. Ma, J. W. Li, W. H. Huang, and J. R. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Chueh, B. H.

H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
[Crossref] [PubMed]

Chung, A. J.

Z. Wu, Y. Chen, M. Wang, and A. J. Chung, “Continuous inertial microparticle and blood cell separation in straight channels with local microstructures,” Lab Chip 16(3), 532–542 (2016).
[Crossref] [PubMed]

Cristiani, I.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

Cumming, B. P.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

deMello, A. J.

A. J. deMello, “Control and detection of chemical reactions in microfluidic systems,” Nature 442(7101), 394–402 (2006).
[Crossref] [PubMed]

Destgeer, G.

G. Destgeer, B. H. Ha, J. H. Jung, and H. J. Sung, “Submicron separation of microspheres via travelling surface acoustic waves,” Lab Chip 14(24), 4665–4672 (2014).
[Crossref] [PubMed]

Devadoss, C.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[Crossref] [PubMed]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Digumarthy, S.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Ding, H.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Doh, I.

I. Doh, H. Yoo, Y. Cho, J. Lee, H. K. Kim, and J. Kim, “Viable capture and release of cancer cells in human whole blood,” Appl. Phys. Lett. 101(4), 043701 (2012).
[Crossref]

Dong, W. F.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Du, W. Q.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

Earhart, C. M.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Eaton, S. M.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Edwards, T.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

El-Ali, J.

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[PubMed]

El-Tamer, A.

L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Fang, H. H.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Franke, T.

V. Skowronek, R. W. Rambach, and T. Franke, “Surface acoustic wave controlled integrated band-pass filter,” Microfluid. Nanofluidics 19(2), 335–341 (2015).
[Crossref]

T. Franke, S. Braunmüller, L. Schmid, A. Wixforth, and D. A. Weitz, “Surface acoustic wave actuated cell sorting (SAWACS),” Lab Chip 10(6), 789–794 (2010).
[Crossref] [PubMed]

Fu, E.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Fu, J.

X. Li, W. Chen, G. Liu, W. Lu, and J. Fu, “Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes,” Lab Chip 14(14), 2565–2575 (2014).
[Crossref] [PubMed]

Z. T. F. Yu, K. M. Aw Yong, and J. Fu, “Microfluidic blood cell sorting: now and beyond,” Small 10(9), 1687–1703 (2014).
[Crossref] [PubMed]

Fulton, A. L.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref] [PubMed]

Gaster, R. S.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Gittard, S. D.

Gu, M.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Gu, Y.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Guo, F.

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

Ha, B. H.

G. Destgeer, B. H. Ha, J. H. Jung, and H. J. Sung, “Submicron separation of microspheres via travelling surface acoustic waves,” Lab Chip 14(24), 4665–4672 (2014).
[Crossref] [PubMed]

Haber, D. A.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Hall, E. W.

H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
[Crossref] [PubMed]

He, Y.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

Helton, K.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Hinze, U.

L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Holm, S. H.

J. P. Beech, S. H. Holm, K. Adolfsson, and J. O. Tegenfeldt, “Sorting cells by size, shape and deformability,” Lab Chip 12(6), 1048–1051 (2012).
[Crossref] [PubMed]

Hong, B.

Z. Zhang, J. Xu, B. Hong, and X. Chen, “The effects of 3D channel geometry on CTC passing pressure--towards deformability-based cancer cell separation,” Lab Chip 14(14), 2576–2584 (2014).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Z. Lao, Y. Hu, C. Zhang, L. Yang, J. Li, J. Chu, and D. Wu, “Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,” ACS Nano 9(12), 12060–12069 (2015).
[Crossref] [PubMed]

C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, and W. Huang, “A rapid two-photon fabrication of tube array using an annular Fresnel lens,” Opt. Express 22(4), 3983–3990 (2014).
[Crossref] [PubMed]

Hu, Y. L.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Y. L. Hu, Y. H. Chen, J. Q. Ma, J. W. Li, W. H. Huang, and J. R. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Huang, P.-H.

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
[Crossref] [PubMed]

Huang, T. J.

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
[Crossref] [PubMed]

Huang, W.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, and W. Huang, “A rapid two-photon fabrication of tube array using an annular Fresnel lens,” Opt. Express 22(4), 3983–3990 (2014).
[Crossref] [PubMed]

Huang, W. H.

L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Y. L. Hu, Y. H. Chen, J. Q. Ma, J. W. Li, W. H. Huang, and J. R. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Hughes, C. E.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Humke, E. W.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Ip, J. Y.

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Advances 5(31), 24072–24080 (2015).
[Crossref]

Irimia, D.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Jeffrey, S. S.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Jensen, K. F.

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[PubMed]

Jo, B. H.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[Crossref] [PubMed]

Jung, H. I.

J. S. Park, S. H. Song, and H. I. Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels,” Lab Chip 9(7), 939–948 (2009).
[Crossref] [PubMed]

Jung, J. H.

G. Destgeer, B. H. Ha, J. H. Jung, and H. J. Sung, “Submicron separation of microspheres via travelling surface acoustic waves,” Lab Chip 14(24), 4665–4672 (2014).
[Crossref] [PubMed]

Karnik, R.

S. Choi, J. M. Karp, and R. Karnik, “Cell sorting by deterministic cell rolling,” Lab Chip 12(8), 1427–1430 (2012).
[Crossref] [PubMed]

Karp, J. M.

S. Choi, J. M. Karp, and R. Karnik, “Cell sorting by deterministic cell rolling,” Lab Chip 12(8), 1427–1430 (2012).
[Crossref] [PubMed]

Kim, D.

J. Nam, H. Lim, D. Kim, and S. Shin, “Separation of platelets from whole blood using standing surface acoustic waves in a microchannel,” Lab Chip 11(19), 3361–3364 (2011).
[Crossref] [PubMed]

Kim, H.

H. Kim, S. Lee, J. H. Lee, and J. Kim, “Integration of a microfluidic chip with a size-based cell bandpass filter for reliable isolation of single cells,” Lab Chip 15(21), 4128–4132 (2015).
[Crossref] [PubMed]

Kim, H. K.

I. Doh, H. Yoo, Y. Cho, J. Lee, H. K. Kim, and J. Kim, “Viable capture and release of cancer cells in human whole blood,” Appl. Phys. Lett. 101(4), 043701 (2012).
[Crossref]

Kim, J.

H. Kim, S. Lee, J. H. Lee, and J. Kim, “Integration of a microfluidic chip with a size-based cell bandpass filter for reliable isolation of single cells,” Lab Chip 15(21), 4128–4132 (2015).
[Crossref] [PubMed]

I. Doh, H. Yoo, Y. Cho, J. Lee, H. K. Kim, and J. Kim, “Viable capture and release of cancer cells in human whole blood,” Appl. Phys. Lett. 101(4), 043701 (2012).
[Crossref]

Kim, M. S.

S. Song, M. S. Kim, J. Lee, and S. Choi, “A continuous-flow microfluidic syringe filter for size-based cell sorting,” Lab Chip 15(5), 1250–1254 (2015).
[Crossref] [PubMed]

Koroleva, A.

Kuo, J. S.

J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells,” Lab Chip 10(7), 837–842 (2010).
[Crossref] [PubMed]

Kwak, E. L.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Lao, Z.

Z. Lao, Y. Hu, C. Zhang, L. Yang, J. Li, J. Chu, and D. Wu, “Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,” ACS Nano 9(12), 12060–12069 (2015).
[Crossref] [PubMed]

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Lao, Z. X.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

Lee, J.

S. Song, M. S. Kim, J. Lee, and S. Choi, “A continuous-flow microfluidic syringe filter for size-based cell sorting,” Lab Chip 15(5), 1250–1254 (2015).
[Crossref] [PubMed]

I. Doh, H. Yoo, Y. Cho, J. Lee, H. K. Kim, and J. Kim, “Viable capture and release of cancer cells in human whole blood,” Appl. Phys. Lett. 101(4), 043701 (2012).
[Crossref]

Lee, J. H.

H. Kim, S. Lee, J. H. Lee, and J. Kim, “Integration of a microfluidic chip with a size-based cell bandpass filter for reliable isolation of single cells,” Lab Chip 15(21), 4128–4132 (2015).
[Crossref] [PubMed]

Lee, S.

H. Kim, S. Lee, J. H. Lee, and J. Kim, “Integration of a microfluidic chip with a size-based cell bandpass filter for reliable isolation of single cells,” Lab Chip 15(21), 4128–4132 (2015).
[Crossref] [PubMed]

Levine, S. J.

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

Li, C. W.

H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
[Crossref] [PubMed]

Li, G.

Li, G. Q.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

Li, J.

Z. Lao, Y. Hu, C. Zhang, L. Yang, J. Li, J. Chu, and D. Wu, “Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,” ACS Nano 9(12), 12060–12069 (2015).
[Crossref] [PubMed]

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, and W. Huang, “A rapid two-photon fabrication of tube array using an annular Fresnel lens,” Opt. Express 22(4), 3983–3990 (2014).
[Crossref] [PubMed]

Li, J. W.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Y. L. Hu, Y. H. Chen, J. Q. Ma, J. W. Li, W. H. Huang, and J. R. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Li, P.

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
[Crossref] [PubMed]

Li, S.

Y. Tang, J. Shi, S. Li, L. Wang, Y. E. Cayre, and Y. Chen, “Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells,” Sci. Rep. 4(1), 6052 (2015).
[Crossref] [PubMed]

Li, X.

X. Li, W. Chen, G. Liu, W. Lu, and J. Fu, “Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes,” Lab Chip 14(14), 2565–2575 (2014).
[Crossref] [PubMed]

Li, Y. F.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

Liang, H.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Lim, D. S. W.

J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells,” Lab Chip 10(7), 837–842 (2010).
[Crossref] [PubMed]

Lim, H.

J. Nam, H. Lim, D. Kim, and S. Shin, “Separation of platelets from whole blood using standing surface acoustic waves in a microchannel,” Lab Chip 11(19), 3361–3364 (2011).
[Crossref] [PubMed]

Lin, B. C.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

Lin, B. K.

S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip 12(13), 2369–2376 (2012).
[Crossref] [PubMed]

Lin, J. M.

H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
[Crossref] [PubMed]

Liu, G.

X. Li, W. Chen, G. Liu, W. Lu, and J. Fu, “Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes,” Lab Chip 14(14), 2565–2575 (2014).
[Crossref] [PubMed]

Liu, R. H.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[Crossref] [PubMed]

Liu, S. L.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

Liu, W.

W. Liu, J. C. Wang, and J. Wang, “Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics,” Lab Chip 15(4), 1195–1204 (2015).
[Crossref] [PubMed]

Liu, Y.

C. C. Wong, Y. Liu, K. Y. Wang, and A. R. A. Rahman, “Size based sorting and patterning of microbeads by evaporation driven flow in a 3D micro-traps array,” Lab Chip 13(18), 3663–3667 (2013).
[Crossref] [PubMed]

López, G. P.

C. W. Shields, C. D. Reyes, and G. P. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15(5), 1230–1249 (2015).
[Crossref] [PubMed]

Lu, W.

X. Li, W. Chen, G. Liu, W. Lu, and J. Fu, “Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes,” Lab Chip 14(14), 2565–2575 (2014).
[Crossref] [PubMed]

Ma, H.

W. Beattie, X. Qin, L. Wang, and H. Ma, “Clog-free cell filtration using resettable cell traps,” Lab Chip 14(15), 2657–2665 (2014).
[Crossref] [PubMed]

S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip 12(13), 2369–2376 (2012).
[Crossref] [PubMed]

Ma, J. Q.

Y. L. Hu, Y. H. Chen, J. Q. Ma, J. W. Li, W. H. Huang, and J. R. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Maerkl, S. J.

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
[Crossref] [PubMed]

Maheswaran, S.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Mai, J. D.

Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
[Crossref] [PubMed]

Mao, Z.

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

Martinez Vazquez, R.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

McCoy, J. P.

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

McFaul, S. M.

S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip 12(13), 2369–2376 (2012).
[Crossref] [PubMed]

Merenda, F.

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, and H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[Crossref] [PubMed]

Midorikawa, K.

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Advances 5(31), 24072–24080 (2015).
[Crossref]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Minzioni, P.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

Mohamed, H.

H. Mohamed, M. Murray, J. N. Turner, and M. Caggana, “Isolation of tumor cells using size and deformation,” J. Chromatogr. A 1216(47), 8289–8295 (2009).
[Crossref] [PubMed]

Mondello, C.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

Moore, J. S.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[Crossref] [PubMed]

Murray, M.

H. Mohamed, M. Murray, J. N. Turner, and M. Caggana, “Isolation of tumor cells using size and deformation,” J. Chromatogr. A 1216(47), 8289–8295 (2009).
[Crossref] [PubMed]

Muzikansky, A.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Nagrath, S.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Nam, J.

J. Nam, H. Lim, D. Kim, and S. Shin, “Separation of platelets from whole blood using standing surface acoustic waves in a microchannel,” Lab Chip 11(19), 3361–3364 (2011).
[Crossref] [PubMed]

Narayan, R. J.

Neal, J. W.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Nelson, K.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Ng, L.

J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells,” Lab Chip 10(7), 837–842 (2010).
[Crossref] [PubMed]

Nguyen, A.

Nguyen, N.-T.

Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
[Crossref] [PubMed]

Ni, J. C.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

Niu, L. G.

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Obata, K.

Ooi, C. C.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Osellame, R.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Paiè, P.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

Papautsky, I.

X. Wang and I. Papautsky, “Size-based microfluidic multimodal microparticle sorter,” Lab Chip 15(5), 1350–1359 (2015).
[Crossref] [PubMed]

Park, J. S.

J. S. Park, S. H. Song, and H. I. Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels,” Lab Chip 9(7), 939–948 (2009).
[Crossref] [PubMed]

Piguet, J.

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, and H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[Crossref] [PubMed]

Qin, J. H.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

Qin, X.

W. Beattie, X. Qin, L. Wang, and H. Ma, “Clog-free cell filtration using resettable cell traps,” Lab Chip 14(15), 2657–2665 (2014).
[Crossref] [PubMed]

Quake, S. R.

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
[Crossref] [PubMed]

Rahman, A. R. A.

C. C. Wong, Y. Liu, K. Y. Wang, and A. R. A. Rahman, “Size based sorting and patterning of microbeads by evaporation driven flow in a 3D micro-traps array,” Lab Chip 13(18), 3663–3667 (2013).
[Crossref] [PubMed]

Rambach, R. W.

V. Skowronek, R. W. Rambach, and T. Franke, “Surface acoustic wave controlled integrated band-pass filter,” Microfluid. Nanofluidics 19(2), 335–341 (2015).
[Crossref]

Ramponi, R.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

Ren, L.

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

Reyes, C. D.

C. W. Shields, C. D. Reyes, and G. P. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15(5), 1230–1249 (2015).
[Crossref] [PubMed]

Rohatgi, R.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Rufo, J.

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

Ryan, P.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Sackmann, E. K.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref] [PubMed]

Salathé, R. P.

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, and H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[Crossref] [PubMed]

Schirhagl, R.

H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
[Crossref] [PubMed]

Schiro, P. G.

J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells,” Lab Chip 10(7), 837–842 (2010).
[Crossref] [PubMed]

Schmid, L.

T. Franke, S. Braunmüller, L. Schmid, A. Wixforth, and D. A. Weitz, “Surface acoustic wave actuated cell sorting (SAWACS),” Lab Chip 10(6), 789–794 (2010).
[Crossref] [PubMed]

Schwartz, E. J.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Sequist, L. V.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Shelby, J. P.

J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells,” Lab Chip 10(7), 837–842 (2010).
[Crossref] [PubMed]

Shi, J.

Y. Tang, J. Shi, S. Li, L. Wang, Y. E. Cayre, and Y. Chen, “Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells,” Sci. Rep. 4(1), 6052 (2015).
[Crossref] [PubMed]

Shields, C. W.

C. W. Shields, C. D. Reyes, and G. P. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15(5), 1230–1249 (2015).
[Crossref] [PubMed]

Shin, S.

J. Nam, H. Lim, D. Kim, and S. Shin, “Separation of platelets from whole blood using standing surface acoustic waves in a microchannel,” Lab Chip 11(19), 3361–3364 (2011).
[Crossref] [PubMed]

Skowronek, V.

V. Skowronek, R. W. Rambach, and T. Franke, “Surface acoustic wave controlled integrated band-pass filter,” Microfluid. Nanofluidics 19(2), 335–341 (2015).
[Crossref]

Smith, M. R.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Soh, H. T.

J. D. Adams and H. T. Soh, “Tunable acoustophoretic band-pass particle sorter,” Appl. Phys. Lett. 97(6), 064103 (2010).
[Crossref] [PubMed]

Song, J. F.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Song, S.

S. Song, M. S. Kim, J. Lee, and S. Choi, “A continuous-flow microfluidic syringe filter for size-based cell sorting,” Lab Chip 15(5), 1250–1254 (2015).
[Crossref] [PubMed]

Song, S. H.

J. S. Park, S. H. Song, and H. I. Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels,” Lab Chip 9(7), 939–948 (2009).
[Crossref] [PubMed]

Sorger, P. K.

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Sugioka, K.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Advances 5(31), 24072–24080 (2015).
[Crossref]

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Sun, H. B.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Sun, H.-B.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Sung, H. J.

G. Destgeer, B. H. Ha, J. H. Jung, and H. J. Sung, “Submicron separation of microspheres via travelling surface acoustic waves,” Lab Chip 14(24), 4665–4672 (2014).
[Crossref] [PubMed]

Tam, M. R.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Tang, Y.

Y. Tang, J. Shi, S. Li, L. Wang, Y. E. Cayre, and Y. Chen, “Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells,” Sci. Rep. 4(1), 6052 (2015).
[Crossref] [PubMed]

Tegenfeldt, J. O.

J. P. Beech, S. H. Holm, K. Adolfsson, and J. O. Tegenfeldt, “Sorting cells by size, shape and deformability,” Lab Chip 12(6), 1048–1051 (2012).
[Crossref] [PubMed]

Thorsen, T.

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
[Crossref] [PubMed]

Tompkins, R. G.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Toner, M.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Turner, J. N.

H. Mohamed, M. Murray, J. N. Turner, and M. Caggana, “Isolation of tumor cells using size and deformation,” J. Chromatogr. A 1216(47), 8289–8295 (2009).
[Crossref] [PubMed]

Ulkus, L.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Vogel, H.

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, and H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[Crossref] [PubMed]

Wakelee, H. A.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Wang, J.

W. Liu, J. C. Wang, and J. Wang, “Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics,” Lab Chip 15(4), 1195–1204 (2015).
[Crossref] [PubMed]

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

Wang, J. C.

W. Liu, J. C. Wang, and J. Wang, “Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics,” Lab Chip 15(4), 1195–1204 (2015).
[Crossref] [PubMed]

Wang, K. Y.

C. C. Wong, Y. Liu, K. Y. Wang, and A. R. A. Rahman, “Size based sorting and patterning of microbeads by evaporation driven flow in a 3D micro-traps array,” Lab Chip 13(18), 3663–3667 (2013).
[Crossref] [PubMed]

Wang, L.

Y. Tang, J. Shi, S. Li, L. Wang, Y. E. Cayre, and Y. Chen, “Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells,” Sci. Rep. 4(1), 6052 (2015).
[Crossref] [PubMed]

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

W. Beattie, X. Qin, L. Wang, and H. Ma, “Clog-free cell filtration using resettable cell traps,” Lab Chip 14(15), 2657–2665 (2014).
[Crossref] [PubMed]

Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
[Crossref] [PubMed]

Wang, M.

Z. Wu, Y. Chen, M. Wang, and A. J. Chung, “Continuous inertial microparticle and blood cell separation in straight channels with local microstructures,” Lab Chip 16(3), 532–542 (2016).
[Crossref] [PubMed]

Wang, R.

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Wang, S. X.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Wang, X.

X. Wang and I. Papautsky, “Size-based microfluidic multimodal microparticle sorter,” Lab Chip 15(5), 1350–1359 (2015).
[Crossref] [PubMed]

Wei, H.

H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
[Crossref] [PubMed]

Weigl, B. H.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Weissman, I. L.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Weitz, D. A.

T. Franke, S. Braunmüller, L. Schmid, A. Wixforth, and D. A. Weitz, “Surface acoustic wave actuated cell sorting (SAWACS),” Lab Chip 10(6), 789–794 (2010).
[Crossref] [PubMed]

Werner, M.

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, and H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[Crossref] [PubMed]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Willingham, S. B.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Wilson, R. J.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Wixforth, A.

T. Franke, S. Braunmüller, L. Schmid, A. Wixforth, and D. A. Weitz, “Surface acoustic wave actuated cell sorting (SAWACS),” Lab Chip 10(6), 789–794 (2010).
[Crossref] [PubMed]

Wong, C. C.

C. C. Wong, Y. Liu, K. Y. Wang, and A. R. A. Rahman, “Size based sorting and patterning of microbeads by evaporation driven flow in a 3D micro-traps array,” Lab Chip 13(18), 3663–3667 (2013).
[Crossref] [PubMed]

Wong, D. J.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Wu, D.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

Z. Lao, Y. Hu, C. Zhang, L. Yang, J. Li, J. Chu, and D. Wu, “Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,” ACS Nano 9(12), 12060–12069 (2015).
[Crossref] [PubMed]

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Advances 5(31), 24072–24080 (2015).
[Crossref]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Wu, H.

H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
[Crossref] [PubMed]

Wu, S. Z.

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

Wu, Z.

Z. Wu, Y. Chen, M. Wang, and A. J. Chung, “Continuous inertial microparticle and blood cell separation in straight channels with local microstructures,” Lab Chip 16(3), 532–542 (2016).
[Crossref] [PubMed]

Xia, H.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

Xie, Y.

Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
[Crossref] [PubMed]

Xu, B.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

Xu, B. B.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Xu, J.

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

Z. F. Zhang, X. L. Chen, and J. Xu, “Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria,” Biomicrofluidics 9, 024108 (2015).
[Crossref]

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Advances 5(31), 24072–24080 (2015).
[Crossref]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Z. Zhang, J. Xu, B. Hong, and X. Chen, “The effects of 3D channel geometry on CTC passing pressure--towards deformability-based cancer cell separation,” Lab Chip 14(14), 2576–2584 (2014).
[Crossref] [PubMed]

Xu, L.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

Yager, P.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Yang, L.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

Z. Lao, Y. Hu, C. Zhang, L. Yang, J. Li, J. Chu, and D. Wu, “Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,” ACS Nano 9(12), 12060–12069 (2015).
[Crossref] [PubMed]

L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Yoo, H.

I. Doh, H. Yoo, Y. Cho, J. Lee, H. K. Kim, and J. Kim, “Viable capture and release of cancer cells in human whole blood,” Appl. Phys. Lett. 101(4), 043701 (2012).
[Crossref]

Yu, Q.

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[Crossref] [PubMed]

Yu, Z. T. F.

Z. T. F. Yu, K. M. Aw Yong, and J. Fu, “Microfluidic blood cell sorting: now and beyond,” Small 10(9), 1687–1703 (2014).
[Crossref] [PubMed]

Zare, R. N.

H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
[Crossref] [PubMed]

Zeng, S. J.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

Zhang, C.

Z. Lao, Y. Hu, C. Zhang, L. Yang, J. Li, J. Chu, and D. Wu, “Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,” ACS Nano 9(12), 12060–12069 (2015).
[Crossref] [PubMed]

C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, and W. Huang, “A rapid two-photon fabrication of tube array using an annular Fresnel lens,” Opt. Express 22(4), 3983–3990 (2014).
[Crossref] [PubMed]

Zhang, C. C.

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

Zhang, R.

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

Zhang, Y. L.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, J. Xu, B. Hong, and X. Chen, “The effects of 3D channel geometry on CTC passing pressure--towards deformability-based cancer cell separation,” Lab Chip 14(14), 2576–2584 (2014).
[Crossref] [PubMed]

Zhang, Z. F.

Z. F. Zhang, X. L. Chen, and J. Xu, “Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria,” Biomicrofluidics 9, 024108 (2015).
[Crossref]

Zhao, Y.

J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells,” Lab Chip 10(7), 837–842 (2010).
[Crossref] [PubMed]

Zhou, L. Y.

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

ACS Nano (1)

Z. Lao, Y. Hu, C. Zhang, L. Yang, J. Li, J. Chu, and D. Wu, “Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles,” ACS Nano 9(12), 12060–12069 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

Y. L. Hu, Y. H. Chen, J. Q. Ma, J. W. Li, W. H. Huang, and J. R. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

I. Doh, H. Yoo, Y. Cho, J. Lee, H. K. Kim, and J. Kim, “Viable capture and release of cancer cells in human whole blood,” Appl. Phys. Lett. 101(4), 043701 (2012).
[Crossref]

J. D. Adams and H. T. Soh, “Tunable acoustophoretic band-pass particle sorter,” Appl. Phys. Lett. 97(6), 064103 (2010).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]

L. Yang, A. El-Tamer, U. Hinze, J. W. Li, Y. L. Hu, W. H. Huang, J. R. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105(4), 041110 (2014).
[Crossref]

Biomed. Opt. Express (1)

Biomicrofluidics (1)

Z. F. Zhang, X. L. Chen, and J. Xu, “Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria,” Biomicrofluidics 9, 024108 (2015).
[Crossref]

J. Chromatogr. A (1)

H. Mohamed, M. Murray, J. N. Turner, and M. Caggana, “Isolation of tumor cells using size and deformation,” J. Chromatogr. A 1216(47), 8289–8295 (2009).
[Crossref] [PubMed]

Lab Chip (28)

W. Liu, J. C. Wang, and J. Wang, “Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics,” Lab Chip 15(4), 1195–1204 (2015).
[Crossref] [PubMed]

X. Wang and I. Papautsky, “Size-based microfluidic multimodal microparticle sorter,” Lab Chip 15(5), 1350–1359 (2015).
[Crossref] [PubMed]

H. Kim, S. Lee, J. H. Lee, and J. Kim, “Integration of a microfluidic chip with a size-based cell bandpass filter for reliable isolation of single cells,” Lab Chip 15(21), 4128–4132 (2015).
[Crossref] [PubMed]

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

H. Wei, B. H. Chueh, H. Wu, E. W. Hall, C. W. Li, R. Schirhagl, J. M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device,” Lab Chip 11(2), 238–245 (2011).
[Crossref] [PubMed]

J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells,” Lab Chip 10(7), 837–842 (2010).
[Crossref] [PubMed]

Z. Zhang, J. Xu, B. Hong, and X. Chen, “The effects of 3D channel geometry on CTC passing pressure--towards deformability-based cancer cell separation,” Lab Chip 14(14), 2576–2584 (2014).
[Crossref] [PubMed]

J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, and H. B. Sun, “Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization,” Lab Chip 10(15), 1993–1996 (2010).
[Crossref] [PubMed]

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

L. Ren, Y. Chen, P. Li, Z. Mao, P.-H. Huang, J. Rufo, F. Guo, L. Wang, J. P. McCoy, S. J. Levine, and T. J. Huang, “A high-throughput acoustic cell sorter,” Lab Chip 15(19), 3870–3879 (2015).
[Crossref] [PubMed]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

C. W. Shields, C. D. Reyes, and G. P. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15(5), 1230–1249 (2015).
[Crossref] [PubMed]

C. C. Wong, Y. Liu, K. Y. Wang, and A. R. A. Rahman, “Size based sorting and patterning of microbeads by evaporation driven flow in a 3D micro-traps array,” Lab Chip 13(18), 3663–3667 (2013).
[Crossref] [PubMed]

X. Li, W. Chen, G. Liu, W. Lu, and J. Fu, “Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes,” Lab Chip 14(14), 2565–2575 (2014).
[Crossref] [PubMed]

W. Beattie, X. Qin, L. Wang, and H. Ma, “Clog-free cell filtration using resettable cell traps,” Lab Chip 14(15), 2657–2665 (2014).
[Crossref] [PubMed]

S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip 12(13), 2369–2376 (2012).
[Crossref] [PubMed]

S. Song, M. S. Kim, J. Lee, and S. Choi, “A continuous-flow microfluidic syringe filter for size-based cell sorting,” Lab Chip 15(5), 1250–1254 (2015).
[Crossref] [PubMed]

J. P. Beech, S. H. Holm, K. Adolfsson, and J. O. Tegenfeldt, “Sorting cells by size, shape and deformability,” Lab Chip 12(6), 1048–1051 (2012).
[Crossref] [PubMed]

S. Choi, J. M. Karp, and R. Karnik, “Cell sorting by deterministic cell rolling,” Lab Chip 12(8), 1427–1430 (2012).
[Crossref] [PubMed]

M. Werner, F. Merenda, J. Piguet, R. P. Salathé, and H. Vogel, “Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells,” Lab Chip 11(14), 2432–2439 (2011).
[Crossref] [PubMed]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12(19), 3779–3784 (2012).
[Crossref] [PubMed]

J. Nam, H. Lim, D. Kim, and S. Shin, “Separation of platelets from whole blood using standing surface acoustic waves in a microchannel,” Lab Chip 11(19), 3361–3364 (2011).
[Crossref] [PubMed]

T. Franke, S. Braunmüller, L. Schmid, A. Wixforth, and D. A. Weitz, “Surface acoustic wave actuated cell sorting (SAWACS),” Lab Chip 10(6), 789–794 (2010).
[Crossref] [PubMed]

G. Destgeer, B. H. Ha, J. H. Jung, and H. J. Sung, “Submicron separation of microspheres via travelling surface acoustic waves,” Lab Chip 14(24), 4665–4672 (2014).
[Crossref] [PubMed]

C. M. Earhart, C. E. Hughes, R. S. Gaster, C. C. Ooi, R. J. Wilson, L. Y. Zhou, E. W. Humke, L. Xu, D. J. Wong, S. B. Willingham, E. J. Schwartz, I. L. Weissman, S. S. Jeffrey, J. W. Neal, R. Rohatgi, H. A. Wakelee, and S. X. Wang, “Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips,” Lab Chip 14(1), 78–88 (2014).
[Crossref] [PubMed]

J. S. Park, S. H. Song, and H. I. Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels,” Lab Chip 9(7), 939–948 (2009).
[Crossref] [PubMed]

Z. Wu, Y. Chen, M. Wang, and A. J. Chung, “Continuous inertial microparticle and blood cell separation in straight channels with local microstructures,” Lab Chip 16(3), 532–542 (2016).
[Crossref] [PubMed]

Y. Chen, P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang, “Rare cell isolation and analysis in microfluidics,” Lab Chip 14(4), 626–645 (2014).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship‐in‐a‐bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Light Sci. Appl. (1)

D. Wu, J. Xu, L. G. Niu, S. Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Microfluid. Nanofluidics (1)

V. Skowronek, R. W. Rambach, and T. Franke, “Surface acoustic wave controlled integrated band-pass filter,” Microfluid. Nanofluidics 19(2), 335–341 (2015).
[Crossref]

Nature (8)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181–189 (2014).
[Crossref] [PubMed]

J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442(7101), 403–411 (2006).
[PubMed]

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000).
[Crossref] [PubMed]

A. J. deMello, “Control and detection of chemical reactions in microfluidic systems,” Nature 442(7101), 394–402 (2006).
[Crossref] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

RSC Advances (1)

J. Xu, D. Wu, J. Y. Ip, K. Midorikawa, and K. Sugioka, “Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis,” RSC Advances 5(31), 24072–24080 (2015).
[Crossref]

Sci. Rep. (2)

B. Xu, W. Q. Du, J. W. Li, Y. L. Hu, L. Yang, C. C. Zhang, G. Q. Li, Z. X. Lao, J. C. Ni, J. R. Chu, D. Wu, S. L. Liu, and K. Sugioka, “High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication,” Sci. Rep. 6(1), 19989 (2016).
[Crossref] [PubMed]

Y. Tang, J. Shi, S. Li, L. Wang, Y. E. Cayre, and Y. Chen, “Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells,” Sci. Rep. 4(1), 6052 (2015).
[Crossref] [PubMed]

Science (1)

T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002).
[Crossref] [PubMed]

Small (1)

Z. T. F. Yu, K. M. Aw Yong, and J. Fu, “Microfluidic blood cell sorting: now and beyond,” Small 10(9), 1687–1703 (2014).
[Crossref] [PubMed]

Supplementary Material (6)

NameDescription
» Visualization 1       The low-capture sorting of 2.5 um particles.
» Visualization 2       The band-capture sorting of 5 um particles.
» Visualization 3       The high-capture sorting of 5 um particles.
» Visualization 4       Blood cells bypassing the high-capture sorter.
» Visualization 5       Cancer cells sorting inside the sorter.
» Visualization 6       Fluorescence microscopy video of cancer cells sorting by the sorter.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Femtosecond laser multifocal integration of 3D arch-like sorter inside a ‘Y’-shaped microchannel. (a) shows the CGH displayed on the SLM for generating the 5 foci. (b) Schematic illustration of system for femtosecond laser multifocal parallel integration of microsorters. (c) The generated 5 foci intensity distribution. (d) A novel arch-shape microsorter design. (e) Photograph of the ‘Y’-shaped microchannel in comparison with a one China Yuan coin.
Fig. 2
Fig. 2 Fluid simulations of conventional micropore and microgrid sorters and the novel arch-like microsorter. a and b are the fluid simulation results of the pressure difference when liquid flows are 1.5 mm/s speed, respectively. The two filters have the same filtering area. The pressure difference of the micropore filter is much larger than that of the microgrid filter, which may induce the cell deformation excessively resulting in cell damage. c, d and e show the fluid simulation results of the arch-like microsorters with different height design (30, 40 and 50 μm) to optimize the design. More flow line passing through the microsorter means that much more particles will be captured by the arch-like sorter.
Fig. 3
Fig. 3 Schematic illustration of the novel multimodal and clogging-improved sorters. (a) The conventional micropore (upper) and microgrid (lower) filtering membranes. They can only separate particles with a single specific size and have an issue of clogging. (b) The new arch-like design. The image shows the band-capture sorting mode that the larger particles bypass the sorter, theand smaller pass through the sorter, while the median particles are captured by the arch-like structure. (c) shows the high-capture, band-capture and low-capture sorting modes (left to right). The high-capture sorting mode targets to capture the largest particles. The inset schematics indicate particle size distribution before and after sorting. d and N represent particle size and number, respectively. The target particles of band-capture and low-capture sorting mode are the median and smallest particles, respectively.
Fig. 4
Fig. 4 Femtosecond laser multifocal integration of 3D arch-like sorter inside a ‘Y’-shaped microchannel. (a) (b) and (c) show multi-focal fabrication of arch-like 3D microsorter of low-capture (2.5 μm), band-capture (5 μm) and high-capture (10 μm) sorters, respectively. In view of the width of microchannel and periodic sorter design, 5 foci are chosen for faster integration. The right column shows periods of each sorter. (h) SEM images of the three sorters for 2.5 μm, 5 μm and 10 μm particles sorting, respectively. (i) shows the sorters immersed in water.
Fig. 5
Fig. 5 Multimodal sorting microparticle mixtures into different size ranges. (a) shows time-lapsed optical microscopy images of the low-capture sorting mode. 10 and 5 μm silicon dioxide micro-spheres bypass the sorter, while a 2.5 μm microsphere is captured by the sorter. (b) The percentage of each particle by low-capture sorting mode. SE is evaluated to be 100%, which means that the sorter contains only 2.5 μm microspheres. (c) and (d) show the percentage of each particle by band-capture and high-capture sorting mode, respectively. SEs are about 92% for band-capture sorter, and 86% for high-capture sorter. There are no 10 μm particles in the band-capture sorter. The high-capture sorter contains few 2.5 and 5 μm microspheres.
Fig. 6
Fig. 6 Multimodal microsorters integrated for multi-size-range sorting. (a) (c) and (b) show time-lapsed optical microscopy images of a 10 and 2.5 μmmicroparticles bypassing the band-capture sorter and the capture process of the target particles (5 μm). (d) (e) and (f) displays the capture process of the target particles (10 μm) and 5 and 2.5 μm microparticles bypassing the sorter. (g) shows the schematic diagram of the multi-size-range sorters. The largest particles are captures by the high-capture sorter first, while the median particles are sorted by the band-capture sorter arranged after the high-capture sorter.The smallest particles are exhausted to the outlet.
Fig. 7
Fig. 7 Procedure for sorting and collecting particles. In the sorting process, firstly the particles suspension is introduced into the one inlet (lower inlet) of the Y-shape microchannel. Particles are directed though the mainflow channel. Several minutes later, the arch-like microsorter is full of targeted particles. Then valve 2 is closed and alcohol solution is injected into the outlet in order to flush the 10 μm Sio2 microparticles to the one side of inlet (valve 1). (b) shows time-lapsed optical microscopy images of the target particles collection process. (c) are the optical microscopy images of particles introduced into the inlet, the collected targeted-particles and the particles in the outlet, respectively.
Fig. 8
Fig. 8 Clogging-improved property of the arch-like microsorters. (a) shows the time-lapsed microscope images of the low-capture sorter. After about 20 minutes, the sorter is filled with 2.5 μm particles, while no-clogging happens. (b) Time-lapsed microscope images of the band-capture sorter. 10 minuters later, about 97% in space of the sorter is occupied with 5 μm particles. (c) shows the flowing process of 10 μm particles.
Fig. 9
Fig. 9 Demonstration of sorting of cancer cells from human blood. (a) Optical (left) and fluorescence microscope (right) images of the blood sample including cancer cells before sorting. The red circle indicates blood cells and the yellow one indicates cancer cells which are labeled with red fluorescent protein. (b) The sorter is filled with cancer cells after sorting. (c) shows the flowing process of a blood cell (~7.6 μm) passing over the high-capture sorter. (d) and (e) show the time-lapsed microscope images and fluorescence images of a cancer cell (~14 μm) being captured inside the sorter, respectively.

Metrics