Abstract

A mode-locked laser autocollimator, in which a group of first-order diffracted beams from a grating reflector are detected by an autocollimation unit, has an expanded angle measurement range compared with a conventional autocollimator using a single-wavelength laser source. In this paper, a new optical frequency domain angle measurement method is proposed to increase the visibility of output signal of the mode-locked femtosecond laser autocollimator, which is limited by the overlap of the focused diffracted light spots. The output visibility of a prototype femtosecond laser autocollimator has been increased by the proposed method to approximately 100% over a large range of 21600 arc-seconds.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode-locked laser autocollimator with an expanded measurement range

Yuan-Liu Chen, Yuki Shimizu, Yukitoshi Kudo, So Ito, and Wei Gao
Opt. Express 24(14) 15554-15569 (2016)

Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions

Yuki Shimizu, Siew Leng Tan, Dai Murata, Taiji Maruyama, So Ito, Yuan-Liu Chen, and Wei Gao
Opt. Express 24(3) 2788-2805 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
    [Crossref]
  2. W. Gao, Precision Nanometrology - Sensors and Measuring Systems for Nanomanufacturing (Springer, 2010).
  3. H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-Manuf. Technol. 51(2), 685–699 (2002).
    [Crossref]
  4. Y. Saito, Y. Arai, and W. Gao, “Detection of three-axis angles by an optical sensor,” Sens. Actuator A-Phys. 150(2), 175–183 (2009).
    [Crossref]
  5. W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
    [Crossref]
  6. F. Siewert, J. Buchheim, S. Boutet, G. J. Williams, P. A. Montanez, J. Krzywinski, and R. Signorato, “Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry,” Opt. Express 20(4), 4525–4536 (2012).
    [Crossref] [PubMed]
  7. T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
    [Crossref]
  8. T. B. Arp, C. A. Hagedorn, S. Schlamminger, and J. H. Gundlach, “A reference-beam autocollimator with nanoradian sensitivity from mHz to kHz and dynamic range of 107.,” Rev. Sci. Instrum. 84(9), 095007 (2013).
    [Crossref] [PubMed]
  9. K. Ishikawa, T. Takamura, M. Xiao, S. Takahashi, and K. Takamasu, “Profile measurement of aspheric surfaces using scanning deflectometry and rotating autocollimator with wide measuring range,” Meas. Sci. Technol. 25(6), 064008 (2014).
    [Crossref]
  10. Möller-Werdel optical GmbH data sheet, “Electric Autocollimators,” http://www.moeller-wedel-optical.com (accessed 24April 2017).
  11. W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
    [Crossref]
  12. E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
    [Crossref]
  13. K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
    [Crossref]
  14. Trioptics GmbH, “TriAngle LASER-Electronic Autocollimator,” http://www.trioptics.com/products/electronic-autocollimators/laser (accessed 24April 2017).
  15. Y. Shimizu, S. L. Tan, D. Murata, T. Maruyama, S. Ito, Y. L. Chen, and W. Gao, “Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions,” Opt. Express 24(3), 2788–2805 (2016).
    [Crossref] [PubMed]
  16. Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
    [Crossref]
  17. Y. L. Chen, Y. Shimizu, Y. Kudo, S. Ito, and W. Gao, “Mode-locked laser autocollimator with an expanded measurement range,” Opt. Express 24(14), 15554–15569 (2016).
    [Crossref] [PubMed]
  18. S. W. Kim, “Metrology: Combs Rule,” Nat. Photonics 3(6), 313–314 (2009).
    [Crossref]
  19. X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Space position measurement using long-path heterodyne interferometer with optical frequency comb,” Opt. Express 20(3), 2725–2732 (2012).
    [Crossref] [PubMed]
  20. Y. J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S. W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
    [Crossref] [PubMed]
  21. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express 17(9), 7011–7018 (2009).
    [Crossref] [PubMed]
  22. T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B-Lasers Opt. 96(2), 251–256 (2009).
    [Crossref]
  23. M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P. J. Delfyett, “Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb,” Opt. Express 19(18), 16851–16865 (2011).
    [Crossref] [PubMed]
  24. J. Davila-Rodriguez, K. Bagnell, and P. J. Delfyett, “Frequency stability of a 10 GHz optical frequency comb from a semiconductor-based mode-locked laser with an intracavity 10,000 finesse etalon,” Opt. Lett. 38(18), 3665–3668 (2013).
    [Crossref] [PubMed]

2016 (2)

2015 (1)

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

2014 (1)

K. Ishikawa, T. Takamura, M. Xiao, S. Takahashi, and K. Takamasu, “Profile measurement of aspheric surfaces using scanning deflectometry and rotating autocollimator with wide measuring range,” Meas. Sci. Technol. 25(6), 064008 (2014).
[Crossref]

2013 (2)

T. B. Arp, C. A. Hagedorn, S. Schlamminger, and J. H. Gundlach, “A reference-beam autocollimator with nanoradian sensitivity from mHz to kHz and dynamic range of 107.,” Rev. Sci. Instrum. 84(9), 095007 (2013).
[Crossref] [PubMed]

J. Davila-Rodriguez, K. Bagnell, and P. J. Delfyett, “Frequency stability of a 10 GHz optical frequency comb from a semiconductor-based mode-locked laser with an intracavity 10,000 finesse etalon,” Opt. Lett. 38(18), 3665–3668 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P. J. Delfyett, “Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb,” Opt. Express 19(18), 16851–16865 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
[Crossref]

2009 (5)

Y. J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S. W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express 17(9), 7011–7018 (2009).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B-Lasers Opt. 96(2), 251–256 (2009).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Detection of three-axis angles by an optical sensor,” Sens. Actuator A-Phys. 150(2), 175–183 (2009).
[Crossref]

S. W. Kim, “Metrology: Combs Rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

2002 (3)

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
[Crossref]

Akbulut, M.

Akgoz, S. A.

T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
[Crossref]

Arai, Y.

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Detection of three-axis angles by an optical sensor,” Sens. Actuator A-Phys. 150(2), 175–183 (2009).
[Crossref]

Arp, T. B.

T. B. Arp, C. A. Hagedorn, S. Schlamminger, and J. H. Gundlach, “A reference-beam autocollimator with nanoradian sensitivity from mHz to kHz and dynamic range of 107.,” Rev. Sci. Instrum. 84(9), 095007 (2013).
[Crossref] [PubMed]

Bagnell, K.

Bosse, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Boutet, S.

Buchheim, J.

Chen, Y. L.

Chun, B. J.

Davila-Rodriguez, J.

Delfyett, P. J.

Estler, W. T.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Fan, K. C.

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

Fussl, R.

E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Gao, W.

Y. Shimizu, S. L. Tan, D. Murata, T. Maruyama, S. Ito, Y. L. Chen, and W. Gao, “Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions,” Opt. Express 24(3), 2788–2805 (2016).
[Crossref] [PubMed]

Y. L. Chen, Y. Shimizu, Y. Kudo, S. Ito, and W. Gao, “Mode-locked laser autocollimator with an expanded measurement range,” Opt. Express 24(14), 15554–15569 (2016).
[Crossref] [PubMed]

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Detection of three-axis angles by an optical sensor,” Sens. Actuator A-Phys. 150(2), 175–183 (2009).
[Crossref]

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

Gundlach, J. H.

T. B. Arp, C. A. Hagedorn, S. Schlamminger, and J. H. Gundlach, “A reference-beam autocollimator with nanoradian sensitivity from mHz to kHz and dynamic range of 107.,” Rev. Sci. Instrum. 84(9), 095007 (2013).
[Crossref] [PubMed]

Hagedorn, C. A.

T. B. Arp, C. A. Hagedorn, S. Schlamminger, and J. H. Gundlach, “A reference-beam autocollimator with nanoradian sensitivity from mHz to kHz and dynamic range of 107.,” Rev. Sci. Instrum. 84(9), 095007 (2013).
[Crossref] [PubMed]

Haitjema, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
[Crossref]

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B-Lasers Opt. 96(2), 251–256 (2009).
[Crossref]

Hauck, C. A.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B-Lasers Opt. 96(2), 251–256 (2009).
[Crossref]

Hausotte, T.

E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Hoghooghi, N.

Holzwarth, R.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B-Lasers Opt. 96(2), 251–256 (2009).
[Crossref]

Huang, P. S.

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

Hyun, S.

Ishikawa, K.

K. Ishikawa, T. Takamura, M. Xiao, S. Takahashi, and K. Takamasu, “Profile measurement of aspheric surfaces using scanning deflectometry and rotating autocollimator with wide measuring range,” Meas. Sci. Technol. 25(6), 064008 (2014).
[Crossref]

Ito, S.

Jager, G.

E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Kim, S. W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Y. J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S. W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

S. W. Kim, “Metrology: Combs Rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

Kim, Y.

Kim, Y. J.

Kiyono, S.

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

Knapp, W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Krzywinski, J.

Kudo, Y.

Kunzmann, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

Lin, S. Y.

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

Liu, Y. C.

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

Lu, X. D.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Manske, E.

E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Maruyama, T.

Matsumoto, H.

Montanez, P. A.

Murata, D.

Muto, H.

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

Ozdur, I.

Ozharar, S.

Pfeifer, T.

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

Quinlan, F.

Rube, U. N.

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

Saito, Y.

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Detection of three-axis angles by an optical sensor,” Sens. Actuator A-Phys. 150(2), 175–183 (2009).
[Crossref]

Schlamminger, S.

T. B. Arp, C. A. Hagedorn, S. Schlamminger, and J. H. Gundlach, “A reference-beam autocollimator with nanoradian sensitivity from mHz to kHz and dynamic range of 107.,” Rev. Sci. Instrum. 84(9), 095007 (2013).
[Crossref] [PubMed]

Schwenke, H.

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

Shimizu, Y.

Siewert, F.

Signorato, R.

Steinmetz, T.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B-Lasers Opt. 96(2), 251–256 (2009).
[Crossref]

Takahashi, S.

Takamasu, K.

Takamura, T.

K. Ishikawa, T. Takamura, M. Xiao, S. Takahashi, and K. Takamasu, “Profile measurement of aspheric surfaces using scanning deflectometry and rotating autocollimator with wide measuring range,” Meas. Sci. Technol. 25(6), 064008 (2014).
[Crossref]

Tan, S. L.

Udem, T.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B-Lasers Opt. 96(2), 251–256 (2009).
[Crossref]

Wang, T. H.

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

Wang, X.

Weckenmann, A.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Wei, D.

Wilken, T.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B-Lasers Opt. 96(2), 251–256 (2009).
[Crossref]

Williams, G. J.

Xiao, M.

K. Ishikawa, T. Takamura, M. Xiao, S. Takahashi, and K. Takamasu, “Profile measurement of aspheric surfaces using scanning deflectometry and rotating autocollimator with wide measuring range,” Meas. Sci. Technol. 25(6), 064008 (2014).
[Crossref]

Yamada, T.

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

Yandayan, T.

T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
[Crossref]

Appl. Phys. B-Lasers Opt. (1)

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B-Lasers Opt. 96(2), 251–256 (2009).
[Crossref]

CIRP Ann.-Manuf. Technol. (3)

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

Meas. Sci. Technol. (4)

E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
[Crossref]

K. Ishikawa, T. Takamura, M. Xiao, S. Takahashi, and K. Takamasu, “Profile measurement of aspheric surfaces using scanning deflectometry and rotating autocollimator with wide measuring range,” Meas. Sci. Technol. 25(6), 064008 (2014).
[Crossref]

Nat. Photonics (1)

S. W. Kim, “Metrology: Combs Rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

Opt. Express (7)

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Space position measurement using long-path heterodyne interferometer with optical frequency comb,” Opt. Express 20(3), 2725–2732 (2012).
[Crossref] [PubMed]

Y. J. Kim, Y. Kim, B. J. Chun, S. Hyun, and S. W. Kim, “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt. Express 17(13), 10939–10945 (2009).
[Crossref] [PubMed]

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express 17(9), 7011–7018 (2009).
[Crossref] [PubMed]

M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P. J. Delfyett, “Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb,” Opt. Express 19(18), 16851–16865 (2011).
[Crossref] [PubMed]

F. Siewert, J. Buchheim, S. Boutet, G. J. Williams, P. A. Montanez, J. Krzywinski, and R. Signorato, “Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry,” Opt. Express 20(4), 4525–4536 (2012).
[Crossref] [PubMed]

Y. L. Chen, Y. Shimizu, Y. Kudo, S. Ito, and W. Gao, “Mode-locked laser autocollimator with an expanded measurement range,” Opt. Express 24(14), 15554–15569 (2016).
[Crossref] [PubMed]

Y. Shimizu, S. L. Tan, D. Murata, T. Maruyama, S. Ito, Y. L. Chen, and W. Gao, “Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions,” Opt. Express 24(3), 2788–2805 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Precis. Eng. (2)

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
[Crossref]

Rev. Sci. Instrum. (1)

T. B. Arp, C. A. Hagedorn, S. Schlamminger, and J. H. Gundlach, “A reference-beam autocollimator with nanoradian sensitivity from mHz to kHz and dynamic range of 107.,” Rev. Sci. Instrum. 84(9), 095007 (2013).
[Crossref] [PubMed]

Sens. Actuator A-Phys. (1)

Y. Saito, Y. Arai, and W. Gao, “Detection of three-axis angles by an optical sensor,” Sens. Actuator A-Phys. 150(2), 175–183 (2009).
[Crossref]

Other (3)

W. Gao, Precision Nanometrology - Sensors and Measuring Systems for Nanomanufacturing (Springer, 2010).

Möller-Werdel optical GmbH data sheet, “Electric Autocollimators,” http://www.moeller-wedel-optical.com (accessed 24April 2017).

Trioptics GmbH, “TriAngle LASER-Electronic Autocollimator,” http://www.trioptics.com/products/electronic-autocollimators/laser (accessed 24April 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of the femtosecond laser autocollimator by utilizing a mode-locked femtosecond laser compared with that of a conventional laser autocollimator.
Fig. 2
Fig. 2 Schematics of the output of the femtosecond laser autocollimator when utilizing a PD as the detector under different spectrum of the laser: (a) without modulation; (b) modulated by a cavity with a small FSR and a low finesse; (c) modulated by a cavity with a large FSR and a low finesse; (d) modulated by a cavity with a large FSR and a high finesse.
Fig. 3
Fig. 3 Principle of the optical frequency domain angle measurement method associated with the femtosecond laser autocollimator.
Fig. 4
Fig. 4 Simulation result of the output of the femtosecond laser autocollimator by the optical frequency domain measurement method compared with the conventional method.
Fig. 5
Fig. 5 Schematic of the experimental setup with the femtosecond laser autocollimator.
Fig. 6
Fig. 6 Intensity distribution of the group of the first-order diffracted beams measured by a beam profiler.
Fig. 7
Fig. 7 Output of the femtosecond laser autocollimator by the optical frequency domain measurement method.
Fig. 8
Fig. 8 Measurement results in a wide range with the frequency domain measurement method at each spindle angular position: (a) 0°; (b) 1°; (c) 2°; (d) 3°; (e) 4°; (f) 5°; (g) 6°.
Fig. 9
Fig. 9 Comparison of the visibility by the frequency domain measurement method and that by the traditional method.
Fig. 10
Fig. 10 Stability of the light intensity of the optical mode at the central wavelength: (a) stability of the light intensity; (b) FFT analysis of the stability.
Fig. 11
Fig. 11 Stabilities in the angle measurement with respect to the optical frequency.
Fig. 12
Fig. 12 Measurement results for calculation of sensitivities at the marked locations.

Tables (1)

Tables Icon

Table 1 Comparison of sensitivities by traditional method and the proposed method.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ β i = β i β i+1 =arcsin c air p v i arcsin c air p v i+1 (i=1,2...n)
V visibility = I max_i I min_i I max_i + I min_i

Metrics