Abstract

Silicon wire waveguide TE0/TE1 mode conversion Bragg grating can be used in wavelength add/drop and polarization rotation Bragg diffraction. The device can implement many filtering functionalities required in wavelength division multiplexing optical communications. In this paper we describe TE0/TE1 mode conversion Bragg grating device incorporating resonant cavity section to obtain narrow transmission wavelength peak. Theoretical calculation agreed with measured wavelength response.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization rotation Bragg grating using Si wire waveguide with non-vertical sidewall

Hideaki Okayama, Yosuke Onawa, Daisuke Shimura, Hiroki Yaegashi, and Hironori Sasaki
Opt. Express 22(25) 31371-31378 (2014)

Spiral Bragg grating waveguides for TM mode silicon photonics

Zhitian Chen, Jonas Flueckiger, Xu Wang, Fan Zhang, Han Yun, Zeqin Lu, Michael Caverley, Yun Wang, Nicolas A. F. Jaeger, and Lukas Chrostowski
Opt. Express 23(19) 25295-25307 (2015)

Higher order mode conversion via focused ion beam milled Bragg gratings in Silicon-on-Insulator waveguides

V.G. Ta’eed, D.J. Moss, B.J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu
Opt. Express 12(21) 5274-5284 (2004)

References

  • View by:
  • |
  • |
  • |

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [Crossref]
  2. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
    [Crossref]
  3. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [Crossref]
  4. H. Okayama, K. Kotani, Y. Maeno, D. Shimura, H. Yaegashi, and Y. Ogawa, “Design of polarization-independent Si-wire-waveguide wavelength demultiplexer for optical network unit,” Jpn. J. Appl. Phys. 49(4), 04DG19 (2010).
    [Crossref]
  5. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19(12), 1938–1942 (2001).
    [Crossref]
  6. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34(9), 1357–1359 (2009).
    [Crossref] [PubMed]
  7. X. Wang, W. Shi, R. Vafaei, A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).
  8. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
    [Crossref] [PubMed]
  9. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
    [Crossref] [PubMed]
  10. K. Nakatsuhara, A. Kato, and Y. Hayama, “Latching operation in a tunable wavelength filter using Si sampled grating waveguide with ferroelectric liquid crystal cladding,” Opt. Express 22(8), 9597–9603 (2014).
    [Crossref] [PubMed]
  11. H. Okayama, Y. Onawa, D. Shimura, S. Miyamura, H. Takahashi, and H. Yaegashi, “Polarization conversion Si waveguide Bragg grating for polarization independent wavelength filter,” Tech. Digest 11th Group IV Photonics, paper ThD5, Paris, 2014.
  12. H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg grating using Si wire waveguide with non-vertical sidewall,” Opt. Express 22(25), 31371–31378 (2014).
    [Crossref] [PubMed]
  13. H. Yaegashi, H. Okayama, D. Shimura, H. Sasaki, and Y. Onawa, “Polarisation rotation Bragg grating with high diffraction efficiency using Si waveguide top surface groove grating,” Electron. Lett. 51(23), 1909–1911 (2015).
    [Crossref]
  14. Y. Onawa, H. Okayama, D. Shimura, S. Miyamura, H. Yaegashi, and H. Sasaki, “Polarization-insensitive Si wire waveguide add/drop wavelength filter using reflective mode conversion grating and mode split coupler,” Electron. Lett. 48(20), 1297–1298 (2012).
    [Crossref]
  15. H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41(11), 2450–2453 (2016).
    [Crossref] [PubMed]
  16. H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator,” Opt. Express 23(15), 19698–19704 (2015).
    [Crossref] [PubMed]
  17. S. McCall and P. M. Platzman, “An optimized π/2 distributed feedback laser,” IEEE J. Quantum Electron. 21(12), 1899–1904 (1985).
    [Crossref]
  18. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
    [Crossref]
  19. H. Ishii, Y. Tohmori, T. Tamamura, and Y. Yoshikuni, “Super structure grating (SSG) for broadly tunable DBR lasers,” IEEE Photonics Technol. Lett. 5(4), 393–395 (1993).
    [Crossref]
  20. H.-C. Kim, K. Ikeda, and Y. Fainman, “Tunable transmission resonant filter and modulator with vertical gratings,” J. Lightwave Technol. 25(5), 1147–1151 (2007).
    [Crossref]
  21. J. Sun, E. S. Purnawirman, E. S. Hosseini, J. D. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Uniformly spaced λ/4-shifted Bragg grating array with wafer-scale CMOS-compatible process,” Opt. Lett. 38(20), 4002–4004 (2013).
    [Crossref] [PubMed]
  22. X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).
  23. H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme,” Jpn. J. Appl. Phys. 55(8), 082202 (2016).
    [Crossref]
  24. A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20(2), 296–303 (2002).
    [Crossref]
  25. H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with resonator cavity section,” Jpn. J. Appl. Phys. 56(4), 042502 (2017).
    [Crossref]
  26. M. W. Pruessner, J. B. Khurgin, T. H. Stievater, W. S. Rabinovich, R. Bass, J. B. Boos, and V. J. Urick, “Demonstration of a mode-conversion cavity add-drop filter,” Opt. Lett. 36(12), 2230–2232 (2011).
    [Crossref] [PubMed]
  27. T. Horikawa, D. Shimura, S.-H. Jeong, M. Tokushima, K. Kinoshita, and T. Mogami, “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng. 156(April), 46–49 (2016).
    [Crossref]

2017 (1)

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with resonator cavity section,” Jpn. J. Appl. Phys. 56(4), 042502 (2017).
[Crossref]

2016 (3)

T. Horikawa, D. Shimura, S.-H. Jeong, M. Tokushima, K. Kinoshita, and T. Mogami, “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng. 156(April), 46–49 (2016).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme,” Jpn. J. Appl. Phys. 55(8), 082202 (2016).
[Crossref]

H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41(11), 2450–2453 (2016).
[Crossref] [PubMed]

2015 (2)

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator,” Opt. Express 23(15), 19698–19704 (2015).
[Crossref] [PubMed]

H. Yaegashi, H. Okayama, D. Shimura, H. Sasaki, and Y. Onawa, “Polarisation rotation Bragg grating with high diffraction efficiency using Si waveguide top surface groove grating,” Electron. Lett. 51(23), 1909–1911 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (2)

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

Y. Onawa, H. Okayama, D. Shimura, S. Miyamura, H. Yaegashi, and H. Sasaki, “Polarization-insensitive Si wire waveguide add/drop wavelength filter using reflective mode conversion grating and mode split coupler,” Electron. Lett. 48(20), 1297–1298 (2012).
[Crossref]

2011 (3)

X. Wang, W. Shi, R. Vafaei, A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

M. W. Pruessner, J. B. Khurgin, T. H. Stievater, W. S. Rabinovich, R. Bass, J. B. Boos, and V. J. Urick, “Demonstration of a mode-conversion cavity add-drop filter,” Opt. Lett. 36(12), 2230–2232 (2011).
[Crossref] [PubMed]

2010 (2)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

H. Okayama, K. Kotani, Y. Maeno, D. Shimura, H. Yaegashi, and Y. Ogawa, “Design of polarization-independent Si-wire-waveguide wavelength demultiplexer for optical network unit,” Jpn. J. Appl. Phys. 49(4), 04DG19 (2010).
[Crossref]

2009 (1)

2007 (1)

2006 (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

2005 (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

2002 (1)

2001 (1)

1993 (2)

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

H. Ishii, Y. Tohmori, T. Tamamura, and Y. Yoshikuni, “Super structure grating (SSG) for broadly tunable DBR lasers,” IEEE Photonics Technol. Lett. 5(4), 393–395 (1993).
[Crossref]

1985 (1)

S. McCall and P. M. Platzman, “An optimized π/2 distributed feedback laser,” IEEE J. Quantum Electron. 21(12), 1899–1904 (1985).
[Crossref]

Adam, T. N.

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Bass, R.

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Boos, J. B.

Bradley, J. D.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Chrostowski, L.

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

X. Wang, W. Shi, R. Vafaei, A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Coldren, L. A.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Coolbaugh, D.

Dai, T.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Fainman, Y.

Fard, S. T.

Flueckiger, J.

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Greenberg, M.

Grist, S.

Hastings, J. T.

Hayama, Y.

Horikawa, T.

T. Horikawa, D. Shimura, S.-H. Jeong, M. Tokushima, K. Kinoshita, and T. Mogami, “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng. 156(April), 46–49 (2016).
[Crossref]

Hosseini, E. S.

Ikeda, K.

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Ishii, H.

H. Ishii, Y. Tohmori, T. Tamamura, and Y. Yoshikuni, “Super structure grating (SSG) for broadly tunable DBR lasers,” IEEE Photonics Technol. Lett. 5(4), 393–395 (1993).
[Crossref]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Jaeger, A. F.

X. Wang, W. Shi, R. Vafaei, A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

Jaeger, N. A. F.

Jayaraman, V.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Jeong, S.-H.

T. Horikawa, D. Shimura, S.-H. Jeong, M. Tokushima, K. Kinoshita, and T. Mogami, “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng. 156(April), 46–49 (2016).
[Crossref]

Jiang, J.

Jiang, X.

Kato, A.

Khurgin, J. B.

Kim, H.-C.

Kinoshita, K.

T. Horikawa, D. Shimura, S.-H. Jeong, M. Tokushima, K. Kinoshita, and T. Mogami, “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng. 156(April), 46–49 (2016).
[Crossref]

Kotani, K.

H. Okayama, K. Kotani, Y. Maeno, D. Shimura, H. Yaegashi, and Y. Ogawa, “Design of polarization-independent Si-wire-waveguide wavelength demultiplexer for optical network unit,” Jpn. J. Appl. Phys. 49(4), 04DG19 (2010).
[Crossref]

Leake, G.

Lin, C.

Maeno, Y.

H. Okayama, K. Kotani, Y. Maeno, D. Shimura, H. Yaegashi, and Y. Ogawa, “Design of polarization-independent Si-wire-waveguide wavelength demultiplexer for optical network unit,” Jpn. J. Appl. Phys. 49(4), 04DG19 (2010).
[Crossref]

Martinelli, M.

McCall, S.

S. McCall and P. M. Platzman, “An optimized π/2 distributed feedback laser,” IEEE J. Quantum Electron. 21(12), 1899–1904 (1985).
[Crossref]

Melloni, A.

Miyamura, S.

Y. Onawa, H. Okayama, D. Shimura, S. Miyamura, H. Yaegashi, and H. Sasaki, “Polarization-insensitive Si wire waveguide add/drop wavelength filter using reflective mode conversion grating and mode split coupler,” Electron. Lett. 48(20), 1297–1298 (2012).
[Crossref]

Mogami, T.

T. Horikawa, D. Shimura, S.-H. Jeong, M. Tokushima, K. Kinoshita, and T. Mogami, “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng. 156(April), 46–49 (2016).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Murphy, T. E.

Nakatsuhara, K.

Ogawa, Y.

H. Okayama, K. Kotani, Y. Maeno, D. Shimura, H. Yaegashi, and Y. Ogawa, “Design of polarization-independent Si-wire-waveguide wavelength demultiplexer for optical network unit,” Jpn. J. Appl. Phys. 49(4), 04DG19 (2010).
[Crossref]

Okayama, H.

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with resonator cavity section,” Jpn. J. Appl. Phys. 56(4), 042502 (2017).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme,” Jpn. J. Appl. Phys. 55(8), 082202 (2016).
[Crossref]

H. Yaegashi, H. Okayama, D. Shimura, H. Sasaki, and Y. Onawa, “Polarisation rotation Bragg grating with high diffraction efficiency using Si waveguide top surface groove grating,” Electron. Lett. 51(23), 1909–1911 (2015).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator,” Opt. Express 23(15), 19698–19704 (2015).
[Crossref] [PubMed]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg grating using Si wire waveguide with non-vertical sidewall,” Opt. Express 22(25), 31371–31378 (2014).
[Crossref] [PubMed]

Y. Onawa, H. Okayama, D. Shimura, S. Miyamura, H. Yaegashi, and H. Sasaki, “Polarization-insensitive Si wire waveguide add/drop wavelength filter using reflective mode conversion grating and mode split coupler,” Electron. Lett. 48(20), 1297–1298 (2012).
[Crossref]

H. Okayama, K. Kotani, Y. Maeno, D. Shimura, H. Yaegashi, and Y. Ogawa, “Design of polarization-independent Si-wire-waveguide wavelength demultiplexer for optical network unit,” Jpn. J. Appl. Phys. 49(4), 04DG19 (2010).
[Crossref]

Onawa, Y.

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with resonator cavity section,” Jpn. J. Appl. Phys. 56(4), 042502 (2017).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme,” Jpn. J. Appl. Phys. 55(8), 082202 (2016).
[Crossref]

H. Yaegashi, H. Okayama, D. Shimura, H. Sasaki, and Y. Onawa, “Polarisation rotation Bragg grating with high diffraction efficiency using Si waveguide top surface groove grating,” Electron. Lett. 51(23), 1909–1911 (2015).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator,” Opt. Express 23(15), 19698–19704 (2015).
[Crossref] [PubMed]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg grating using Si wire waveguide with non-vertical sidewall,” Opt. Express 22(25), 31371–31378 (2014).
[Crossref] [PubMed]

Y. Onawa, H. Okayama, D. Shimura, S. Miyamura, H. Yaegashi, and H. Sasaki, “Polarization-insensitive Si wire waveguide add/drop wavelength filter using reflective mode conversion grating and mode split coupler,” Electron. Lett. 48(20), 1297–1298 (2012).
[Crossref]

Platzman, P. M.

S. McCall and P. M. Platzman, “An optimized π/2 distributed feedback laser,” IEEE J. Quantum Electron. 21(12), 1899–1904 (1985).
[Crossref]

Pruessner, M. W.

Purnawirman, E. S.

Qiu, H.

Rabinovich, W. S.

Sasaki, H.

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with resonator cavity section,” Jpn. J. Appl. Phys. 56(4), 042502 (2017).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme,” Jpn. J. Appl. Phys. 55(8), 082202 (2016).
[Crossref]

H. Yaegashi, H. Okayama, D. Shimura, H. Sasaki, and Y. Onawa, “Polarisation rotation Bragg grating with high diffraction efficiency using Si waveguide top surface groove grating,” Electron. Lett. 51(23), 1909–1911 (2015).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator,” Opt. Express 23(15), 19698–19704 (2015).
[Crossref] [PubMed]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg grating using Si wire waveguide with non-vertical sidewall,” Opt. Express 22(25), 31371–31378 (2014).
[Crossref] [PubMed]

Y. Onawa, H. Okayama, D. Shimura, S. Miyamura, H. Yaegashi, and H. Sasaki, “Polarization-insensitive Si wire waveguide add/drop wavelength filter using reflective mode conversion grating and mode split coupler,” Electron. Lett. 48(20), 1297–1298 (2012).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Shi, W.

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

X. Wang, W. Shi, R. Vafaei, A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

Shimura, D.

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with resonator cavity section,” Jpn. J. Appl. Phys. 56(4), 042502 (2017).
[Crossref]

T. Horikawa, D. Shimura, S.-H. Jeong, M. Tokushima, K. Kinoshita, and T. Mogami, “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng. 156(April), 46–49 (2016).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme,” Jpn. J. Appl. Phys. 55(8), 082202 (2016).
[Crossref]

H. Yaegashi, H. Okayama, D. Shimura, H. Sasaki, and Y. Onawa, “Polarisation rotation Bragg grating with high diffraction efficiency using Si waveguide top surface groove grating,” Electron. Lett. 51(23), 1909–1911 (2015).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator,” Opt. Express 23(15), 19698–19704 (2015).
[Crossref] [PubMed]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg grating using Si wire waveguide with non-vertical sidewall,” Opt. Express 22(25), 31371–31378 (2014).
[Crossref] [PubMed]

Y. Onawa, H. Okayama, D. Shimura, S. Miyamura, H. Yaegashi, and H. Sasaki, “Polarization-insensitive Si wire waveguide add/drop wavelength filter using reflective mode conversion grating and mode split coupler,” Electron. Lett. 48(20), 1297–1298 (2012).
[Crossref]

H. Okayama, K. Kotani, Y. Maeno, D. Shimura, H. Yaegashi, and Y. Ogawa, “Design of polarization-independent Si-wire-waveguide wavelength demultiplexer for optical network unit,” Jpn. J. Appl. Phys. 49(4), 04DG19 (2010).
[Crossref]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Smith, H. I.

Stievater, T. H.

Sun, J.

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tamamura, T.

H. Ishii, Y. Tohmori, T. Tamamura, and Y. Yoshikuni, “Super structure grating (SSG) for broadly tunable DBR lasers,” IEEE Photonics Technol. Lett. 5(4), 393–395 (1993).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tan, D. T. H.

Tohmori, Y.

H. Ishii, Y. Tohmori, T. Tamamura, and Y. Yoshikuni, “Super structure grating (SSG) for broadly tunable DBR lasers,” IEEE Photonics Technol. Lett. 5(4), 393–395 (1993).
[Crossref]

Tokushima, M.

T. Horikawa, D. Shimura, S.-H. Jeong, M. Tokushima, K. Kinoshita, and T. Mogami, “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng. 156(April), 46–49 (2016).
[Crossref]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Urick, V. J.

Vafaei, R.

X. Wang, W. Shi, R. Vafaei, A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Wang, X.

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

X. Wang, W. Shi, R. Vafaei, A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

Wang, Y.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Watts, M. R.

Yaegashi, H.

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with resonator cavity section,” Jpn. J. Appl. Phys. 56(4), 042502 (2017).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme,” Jpn. J. Appl. Phys. 55(8), 082202 (2016).
[Crossref]

H. Yaegashi, H. Okayama, D. Shimura, H. Sasaki, and Y. Onawa, “Polarisation rotation Bragg grating with high diffraction efficiency using Si waveguide top surface groove grating,” Electron. Lett. 51(23), 1909–1911 (2015).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator,” Opt. Express 23(15), 19698–19704 (2015).
[Crossref] [PubMed]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg grating using Si wire waveguide with non-vertical sidewall,” Opt. Express 22(25), 31371–31378 (2014).
[Crossref] [PubMed]

Y. Onawa, H. Okayama, D. Shimura, S. Miyamura, H. Yaegashi, and H. Sasaki, “Polarization-insensitive Si wire waveguide add/drop wavelength filter using reflective mode conversion grating and mode split coupler,” Electron. Lett. 48(20), 1297–1298 (2012).
[Crossref]

H. Okayama, K. Kotani, Y. Maeno, D. Shimura, H. Yaegashi, and Y. Ogawa, “Design of polarization-independent Si-wire-waveguide wavelength demultiplexer for optical network unit,” Jpn. J. Appl. Phys. 49(4), 04DG19 (2010).
[Crossref]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Yang, J.

Yoshikuni, Y.

H. Ishii, Y. Tohmori, T. Tamamura, and Y. Yoshikuni, “Super structure grating (SSG) for broadly tunable DBR lasers,” IEEE Photonics Technol. Lett. 5(4), 393–395 (1993).
[Crossref]

Yu, H.

Yu, P.

Yun, H.

Electron. Lett. (2)

H. Yaegashi, H. Okayama, D. Shimura, H. Sasaki, and Y. Onawa, “Polarisation rotation Bragg grating with high diffraction efficiency using Si waveguide top surface groove grating,” Electron. Lett. 51(23), 1909–1911 (2015).
[Crossref]

Y. Onawa, H. Okayama, D. Shimura, S. Miyamura, H. Yaegashi, and H. Sasaki, “Polarization-insensitive Si wire waveguide add/drop wavelength filter using reflective mode conversion grating and mode split coupler,” Electron. Lett. 48(20), 1297–1298 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

S. McCall and P. M. Platzman, “An optimized π/2 distributed feedback laser,” IEEE J. Quantum Electron. 21(12), 1899–1904 (1985).
[Crossref]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonic devices based on Silicon micro fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

X. Wang, W. Shi, R. Vafaei, A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

H. Ishii, Y. Tohmori, T. Tamamura, and Y. Yoshikuni, “Super structure grating (SSG) for broadly tunable DBR lasers,” IEEE Photonics Technol. Lett. 5(4), 393–395 (1993).
[Crossref]

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photonics Technol. Lett. 23(5), 290–292 (2011).

J. Lightwave Technol. (3)

Jpn. J. Appl. Phys. (3)

H. Okayama, K. Kotani, Y. Maeno, D. Shimura, H. Yaegashi, and Y. Ogawa, “Design of polarization-independent Si-wire-waveguide wavelength demultiplexer for optical network unit,” Jpn. J. Appl. Phys. 49(4), 04DG19 (2010).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with resonator cavity section,” Jpn. J. Appl. Phys. 56(4), 042502 (2017).
[Crossref]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme,” Jpn. J. Appl. Phys. 55(8), 082202 (2016).
[Crossref]

Microelectron. Eng. (1)

T. Horikawa, D. Shimura, S.-H. Jeong, M. Tokushima, K. Kinoshita, and T. Mogami, “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectron. Eng. 156(April), 46–49 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Other (1)

H. Okayama, Y. Onawa, D. Shimura, S. Miyamura, H. Takahashi, and H. Yaegashi, “Polarization conversion Si waveguide Bragg grating for polarization independent wavelength filter,” Tech. Digest 11th Group IV Photonics, paper ThD5, Paris, 2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Device structure of TE0/TE1 mode conversion Bragg grating with resonator cavity section. (a) Single cavity and (b) double cavity structures are shown.
Fig. 2
Fig. 2 Calculated wavelength response of the device for (a) single and (b) double cavity structures using Eq. (6) and Eqs. (7)-(9) respectively.
Fig. 3
Fig. 3 Calculated wavelength response of the device showing dependence on middle to edge grating lengths ratio for (a) 1.5 and (b) 5 dB/cm propagation losses, respectively using Eqs. (7)-(9).
Fig. 4
Fig. 4 Experimental aspects: (a) scanning electron microscopy (SEM) photograph of test grating and (b) measurement setup for device characterization.
Fig. 5
Fig. 5 Measured wavelength response of (a) single and (b) double cavity devices.
Fig. 6
Fig. 6 Photonic crystal type grating device.
Fig. 7
Fig. 7 Calculated wavelength of photonic crystal type grating device using 3D-FDTD.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ t 0 (z) r 1 (z) t 1 (z) r 0 (z) ]=[ E ][ ϕ ][ E ][ t 0 (0) r 1 (0) t 1 (0) r 0 (0) ] =[ a b* 0 0 b a* 0 0 0 0 a b* 0 0 b a* ][ c 0 0 0 0 c 1 * 0 0 0 0 c 1 0 0 0 0 c* ][ a b* 0 0 b a* 0 0 0 0 a b* 0 0 b a* ][ t 0 (0) r 1 (0) t 1 (0) r 0 (0) ] =[ A B* 0 0 B A* 0 0 0 0 A B* 0 0 B A* ][ (c c 1 *) 1/2 t 0 (0) (c c 1 *) 1/2 r 1 (0) (c* c 1 ) 1/2 t 1 (0) (c* c 1 ) 1/2 r 0 (0) ]
A= (c c 1 ) 1/2 a 2 + (c* c 1 *) 1/2 | b | 2 B=[ (c c 1 ) 1/2 a+ (c* c 1 *) 1/2 a*]b
a=cosh(μζ)+(jδα/2)sinh(μζ)/μ b=jKsinh(μζ)/μ
c=exp[(jk N 0 + α p0 /2)L] c 1 =exp[(jk N 1 + α p1 /2)L]
r 0 (0)= r 1 (0)= (a*+c c 1 a)b a * 2 +c c 1 bb*
t 0 (z)= c a * 2 +c c 1 bb* t 1 (z)= c 1 a * 2 +c c 1 bb*
[ t 0 (z) r 1 (z) t 1 (z) r 0 (z) ]=[ E ][ ϕ ][ E ¯ ][ ϕ ][ E ][ t 0 (0) r 1 (0) t 1 (0) r 0 (0) ] =[ a b* 0 0 b a* 0 0 0 0 a b* 0 0 b a* ][ c 0 0 0 0 c 1 * 0 0 0 0 c 1 0 0 0 0 c* ][ a' b'* 0 0 b' a'* 0 0 0 0 a' b'* 0 0 b' a'* ] ×[ c 0 0 0 0 c m * 0 0 0 0 c m 0 0 0 0 c* ][ a b* 0 0 b a* 0 0 0 0 a b* 0 0 b a* ][ t 0 (0) r 1 (0) t 1 (0) r 0 (0) ] =[ A' B'* 0 0 B' A'* 0 0 0 0 A' B'* 0 0 B' A'* ][ (c c 1 *) t 0 (0) (c c 1 *) r 1 (0) (c* c 1 ) t 1 (0) (c* c 1 ) r 0 (0) ]
A=c c 1 a a 2 +abb*+abb*+c* c 1 *a* | b | 2 B=c c 1 aab+b | a | 2 +b* b 2 +c* c 1 *ba*a*
a=cosh(μζ)+(jδα/2)sinh(μζ)/μ b=jKsinh(μζ)/μ

Metrics