Abstract

The feasibility of stimulated emission depletion (STED) microscopy using a solid immersion lens was investigated. First, the theoretical feasibility of the considered system is discussed based on a vectorial field algorithm that uses a stratified medium composed of a SIL air-gap and test sample. Using the simulation, we verified that evanescent waves with much higher spatial frequencies corresponding to the high numerical aperture in the air-gap can be utilized to achieve a higher resolution than a confocal fluorescent image without a depletion beam. The simulated expectation was supported by actual imaging on two types of samples: fluorescent beads with a 20 nm diameter and an actin sample with a filamentous structure. The lateral resolution of the system was determined to be 34 nm via the imaging results on the nano-beads. The system was quite promising for achieving nano-scale surface imaging of biological samples; an even higher resolution was achieved by adjusting the wavelength and the intensity of the depletion beam.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics

Brian R. Patton, Daniel Burke, David Owald, Travis J. Gould, Joerg Bewersdorf, and Martin J. Booth
Opt. Express 24(8) 8862-8876 (2016)

Investigation on improvement of lateral resolution of continuous wave STED microscopy by standing wave illumination

Won-Sup Lee, Geon Lim, Wan-Chin Kim, Guk-Jong Choi, Han-Wook Yi, and No-Cheol Park
Opt. Express 26(8) 9901-9919 (2018)

Adaptive optics enables 3D STED microscopy in aberrating specimens

Travis J. Gould, Daniel Burke, Joerg Bewersdorf, and Martin J. Booth
Opt. Express 20(19) 20998-21009 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
    [Crossref] [PubMed]
  2. W. E. Moerner, “Microscopy beyond the diffraction limit using actively controlled single molecules,” J. Microsc. 246(3), 213–220 (2012).
    [Crossref] [PubMed]
  3. M. Ni, S. Zhuo, P. T. C. So, and H. Yu, “Fluorescent probes for nanoscopy: four categories and multiple possibilities,” J. Biophotonics 10(1), 11–23 (2017).
    [Crossref] [PubMed]
  4. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  5. S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  6. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
    [Crossref] [PubMed]
  7. A. Ruelas, S. Lopez-Aguayo, and J. C. Gutiérrez-Vega, “Engineering parabolic beams with dynamic intensity profiles,” J. Opt. Soc. Am. A 30(8), 1476–1483 (2013).
    [Crossref] [PubMed]
  8. T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
    [Crossref]
  9. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
    [Crossref]
  10. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36(19), 4339–4348 (1997).
    [Crossref] [PubMed]
  11. F. Zijp, “Near-Field Optical Data Storage, Ph.D. Dissertation,” (Ph.D. Dissertation, Delft University of Technology, 2007).
  12. J. G. Kim, M. S. Kang, T. W. Kwon, J. Jeong, N. C. Park, H. Yang, and Y. P. Park, “Improved Gap Control System Using a Disturbance Observer for Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5947–5952 (2008).
    [Crossref]
  13. J. G. Kim, W. H. Shin, J. Jeong, K. S. Park, N. C. Park, H. Yang, and Y. P. Park, Improved Air Gap Controller for Solid Immersion Lens-Based Near-Field Recording Servo System,” Jpn. J. Appl. Phys. 48, 03A044 (2009).
  14. H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
    [Crossref]
  15. D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
    [Crossref] [PubMed]
  16. J. M. A. van den Eerenbeemd, “Near-Field Optical Recording on Cover Protected Discs,” (Ph.D. Dissertation, Delft University of Technology, 2008).
  17. F. Zijp, J. M. A. van den Eerenbeemd, P. Urbach, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys. 45(1), 1341–1347 (2006).
    [Crossref]
  18. T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukumoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
  19. M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
    [Crossref]
  20. M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, “High-density near-field readout over 50 GB capacity using solid immersion lens with high refractive index,” Jpn. J. Appl. Phys. 42(1), 1101–1104 (2003).
    [Crossref]
  21. A. S. Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system,” Opt. Express 12(7), 1281–1293 (2004).
    [Crossref] [PubMed]
  22. H. Xie, Y. Liu, D. Jin, P. J. Santangelo, and P. Xi, “Analytical description of high-aperture STED resolution with 0-2π vortex phase modulation,” J. Opt. Soc. Am. A 30(8), 1640–1645 (2013).
    [Crossref] [PubMed]
  23. M. Leutenegger, C. Eggeling, and S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010).
    [Crossref] [PubMed]
  24. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33(2), 113–115 (2008).
    [Crossref] [PubMed]

2017 (1)

M. Ni, S. Zhuo, P. T. C. So, and H. Yu, “Fluorescent probes for nanoscopy: four categories and multiple possibilities,” J. Biophotonics 10(1), 11–23 (2017).
[Crossref] [PubMed]

2014 (1)

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

2013 (2)

2012 (2)

W. E. Moerner, “Microscopy beyond the diffraction limit using actively controlled single molecules,” J. Microsc. 246(3), 213–220 (2012).
[Crossref] [PubMed]

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

2011 (1)

H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
[Crossref]

2010 (1)

2009 (1)

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[Crossref] [PubMed]

2008 (2)

J. G. Kim, M. S. Kang, T. W. Kwon, J. Jeong, N. C. Park, H. Yang, and Y. P. Park, “Improved Gap Control System Using a Disturbance Observer for Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5947–5952 (2008).
[Crossref]

E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett. 33(2), 113–115 (2008).
[Crossref] [PubMed]

2007 (1)

S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

2006 (2)

F. Zijp, J. M. A. van den Eerenbeemd, P. Urbach, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys. 45(1), 1341–1347 (2006).
[Crossref]

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

2005 (1)

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, “High-density near-field readout over 50 GB capacity using solid immersion lens with high refractive index,” Jpn. J. Appl. Phys. 42(1), 1101–1104 (2003).
[Crossref]

2001 (1)

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

1997 (1)

1994 (1)

Akhavan, F.

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

Astratov, V. N.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Auksorius, E.

Bailey, M.

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

Bates, M.

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[Crossref] [PubMed]

Billy, L.

Boruah, B. R.

Braat, J. J. M.

Darafsheh, A.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Derov, J. S.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Dunsby, C.

Eggeling, C.

Erwin, J. K.

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

Felix, D. M.

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

French, P. M. W.

Furuki, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Godfried, H. P.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Gutiérrez-Vega, J. C.

Hadden, J. P.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Hayashi, S.

Hell, S. W.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

M. Leutenegger, C. Eggeling, and S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010).
[Crossref] [PubMed]

S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Hirota, K.

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

Houwman, E. P.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Huang, B.

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[Crossref] [PubMed]

Hwang, H.

H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
[Crossref]

Ichimura, I.

Ishimoto, T.

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, “High-density near-field readout over 50 GB capacity using solid immersion lens with high refractive index,” Jpn. J. Appl. Phys. 42(1), 1101–1104 (2003).
[Crossref]

Jeong, J.

J. G. Kim, M. S. Kang, T. W. Kwon, J. Jeong, N. C. Park, H. Yang, and Y. P. Park, “Improved Gap Control System Using a Disturbance Observer for Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5947–5952 (2008).
[Crossref]

Jin, D.

Kang, M. S.

J. G. Kim, M. S. Kang, T. W. Kwon, J. Jeong, N. C. Park, H. Yang, and Y. P. Park, “Improved Gap Control System Using a Disturbance Observer for Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5947–5952 (2008).
[Crossref]

Kennedy, G.

Kim, J. G.

H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
[Crossref]

J. G. Kim, M. S. Kang, T. W. Kwon, J. Jeong, N. C. Park, H. Yang, and Y. P. Park, “Improved Gap Control System Using a Disturbance Observer for Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5947–5952 (2008).
[Crossref]

Kino, G. S.

Knauer, S.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Koester, S.

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

Kondo, T.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, “High-density near-field readout over 50 GB capacity using solid immersion lens with high refractive index,” Jpn. J. Appl. Phys. 42(1), 1101–1104 (2003).
[Crossref]

Kriele, P. A. C.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Kwon, T. W.

J. G. Kim, M. S. Kang, T. W. Kwon, J. Jeong, N. C. Park, H. Yang, and Y. P. Park, “Improved Gap Control System Using a Disturbance Observer for Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5947–5952 (2008).
[Crossref]

Lanigan, P. M. P.

Leutenegger, M.

Limberopoulos, N. I.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Liu, Y.

Lopez-Aguayo, S.

Marseglia, L.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Milster, T. D.

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

Moerner, W. E.

W. E. Moerner, “Microscopy beyond the diffraction limit using actively controlled single molecules,” J. Microsc. 246(3), 213–220 (2012).
[Crossref] [PubMed]

Nakaoki, A.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, “High-density near-field readout over 50 GB capacity using solid immersion lens with high refractive index,” Jpn. J. Appl. Phys. 42(1), 1101–1104 (2003).
[Crossref]

Neil, M. A. A.

Nelissen, W. H. M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Nes, A. S.

Ni, M.

M. Ni, S. Zhuo, P. T. C. So, and H. Yu, “Fluorescent probes for nanoscopy: four categories and multiple possibilities,” J. Biophotonics 10(1), 11–23 (2017).
[Crossref] [PubMed]

O’Brien, J. L.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Park, K. S.

H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
[Crossref]

Park, N. C.

H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
[Crossref]

J. G. Kim, M. S. Kang, T. W. Kwon, J. Jeong, N. C. Park, H. Yang, and Y. P. Park, “Improved Gap Control System Using a Disturbance Observer for Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5947–5952 (2008).
[Crossref]

Park, Y. P.

H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
[Crossref]

J. G. Kim, M. S. Kang, T. W. Kwon, J. Jeong, N. C. Park, H. Yang, and Y. P. Park, “Improved Gap Control System Using a Disturbance Observer for Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5947–5952 (2008).
[Crossref]

Patton, B. R.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Pels, G. J.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Pereira, S. F.

Rarity, J. G.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Rhim, Y. C.

H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
[Crossref]

Ruelas, A.

Saito, K.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, “High-density near-field readout over 50 GB capacity using solid immersion lens with high refractive index,” Jpn. J. Appl. Phys. 42(1), 1101–1104 (2003).
[Crossref]

Santangelo, P. J.

Schaich, T. J.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Schill, H.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Schönle, A.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Shimura, K.

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

Shinoda, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, “High-density near-field readout over 50 GB capacity using solid immersion lens with high refractive index,” Jpn. J. Appl. Phys. 42(1), 1101–1104 (2003).
[Crossref]

Smith, J. M.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

So, P. T. C.

M. Ni, S. Zhuo, P. T. C. So, and H. Yu, “Fluorescent probes for nanoscopy: four categories and multiple possibilities,” J. Biophotonics 10(1), 11–23 (2017).
[Crossref] [PubMed]

Song, K. W.

H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
[Crossref]

Spaaij, P. G. M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Takeda, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Urbach, P.

F. Zijp, J. M. A. van den Eerenbeemd, P. Urbach, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys. 45(1), 1341–1347 (2006).
[Crossref]

van den Eerenbeemd, J. M. A.

F. Zijp, J. M. A. van den Eerenbeemd, P. Urbach, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys. 45(1), 1341–1347 (2006).
[Crossref]

van Oerle, B. M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Verschuren, C. A.

F. Zijp, J. M. A. van den Eerenbeemd, P. Urbach, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys. 45(1), 1341–1347 (2006).
[Crossref]

Walker, D. E.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Westphal, V.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

Wichmann, J.

Wildanger, D.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Xi, P.

Xie, H.

Yamamoto, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

Yang, H.

H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
[Crossref]

J. G. Kim, M. S. Kang, T. W. Kwon, J. Jeong, N. C. Park, H. Yang, and Y. P. Park, “Improved Gap Control System Using a Disturbance Observer for Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5947–5952 (2008).
[Crossref]

Yu, H.

M. Ni, S. Zhuo, P. T. C. So, and H. Yu, “Fluorescent probes for nanoscopy: four categories and multiple possibilities,” J. Biophotonics 10(1), 11–23 (2017).
[Crossref] [PubMed]

Zhang, Y.

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

Zhuang, X.

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[Crossref] [PubMed]

Zhuo, S.

M. Ni, S. Zhuo, P. T. C. So, and H. Yu, “Fluorescent probes for nanoscopy: four categories and multiple possibilities,” J. Biophotonics 10(1), 11–23 (2017).
[Crossref] [PubMed]

Zijp, F.

F. Zijp, J. M. A. van den Eerenbeemd, P. Urbach, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys. 45(1), 1341–1347 (2006).
[Crossref]

Adv. Mater. (1)

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization,” Adv. Mater. 24(44), OP309–OP313 (2012).
[Crossref] [PubMed]

Annu. Rev. Biochem. (1)

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

J. Biophotonics (1)

M. Ni, S. Zhuo, P. T. C. So, and H. Yu, “Fluorescent probes for nanoscopy: four categories and multiple possibilities,” J. Biophotonics 10(1), 11–23 (2017).
[Crossref] [PubMed]

J. Microsc. (1)

W. E. Moerner, “Microscopy beyond the diffraction limit using actively controlled single molecules,” J. Microsc. 246(3), 213–220 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (6)

H. Hwang, J. G. Kim, K. W. Song, K. S. Park, N. C. Park, H. Yang, Y. C. Rhim, and Y. P. Park, “High-speed gap servo control for solid-immersion-lens-based near-field recording system with a flexible optical disk,” Jpn. J. Appl. Phys. 50(9S1), 09MC04 (2011).
[Crossref]

T. D. Milster, F. Akhavan, M. Bailey, J. K. Erwin, D. M. Felix, K. Hirota, S. Koester, K. Shimura, and Y. Zhang, “Super-resolution by combination of a solid immersion lens and an aperture,” Jpn. J. Appl. Phys. 40(1), 1778–1782 (2001).
[Crossref]

J. G. Kim, M. S. Kang, T. W. Kwon, J. Jeong, N. C. Park, H. Yang, and Y. P. Park, “Improved Gap Control System Using a Disturbance Observer for Near-Field Recording,” Jpn. J. Appl. Phys. 47(7), 5947–5952 (2008).
[Crossref]

F. Zijp, J. M. A. van den Eerenbeemd, P. Urbach, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys. 45(1), 1341–1347 (2006).
[Crossref]

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(1), 1311–1313 (2006).
[Crossref]

M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, “High-density near-field readout over 50 GB capacity using solid immersion lens with high refractive index,” Jpn. J. Appl. Phys. 42(1), 1101–1104 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

Science (1)

S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

Other (4)

F. Zijp, “Near-Field Optical Data Storage, Ph.D. Dissertation,” (Ph.D. Dissertation, Delft University of Technology, 2007).

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukumoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).

J. G. Kim, W. H. Shin, J. Jeong, K. S. Park, N. C. Park, H. Yang, and Y. P. Park, Improved Air Gap Controller for Solid Immersion Lens-Based Near-Field Recording Servo System,” Jpn. J. Appl. Phys. 48, 03A044 (2009).

J. M. A. van den Eerenbeemd, “Near-Field Optical Recording on Cover Protected Discs,” (Ph.D. Dissertation, Delft University of Technology, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Spherical aberration coefficient (W040) calculated as a function of the normalized thickness, T/R, of the truncated sphere and the optical configuration with a hemi-spherical SIL. (a): The position at thickness T1 corresponds to a hemispherical lens and the position at T2 corresponds to a super-hemispherical lens. (b): The NA of the system is defined as nssin(αm).
Fig. 2
Fig. 2 Conceptual diagram of aplanatic imaging optics with a multi-layered medium near the focal region. The incident electric field, E0, on the entrance pupil is transformed to E1 on the exit pupil with a constant geometric focal length, f. θmax is the incident angle of the marginal ray focusing through the focusing lens. A stratified thin-film stack in which each thin film has a different refractive index ni is located near the focal plane. In a stratified thin-film stack, each medium transition is denoted by di. The geometric focal position of the focusing lens is set to z = 0 in this configuration.
Fig. 3
Fig. 3 Optical configurations considered in theoretical analysis. Configuration (a) considers illumination onto the center of a spherical SIL which the entire image space is filled with KTaO3, whose refractive index is approximately 2.23. Configuration (b) considers the image space which is composed of a KTaO3 SIL and a consecutive medium whose refractive index is 1.5. Configuration (c) considers image space which is composed of the KTaO3 SIL, a 20-nm-thick air-gap and a sample whose refractive index is approximately 1.5.
Fig. 4
Fig. 4 Simulated intensity distribution in the focal region for the configuration expressed in Fig. 3(a). Indexes (a) and (b) denote the illumination of the pure excitation beam and depletion beam, respectively. Index (c) denotes the residual electric-field intensity distribution via the STED effect. The lower part of the figure (d) represents the normalized electric-field intensity distributions at several transversal planes near the focal region for several illumination conditions. Exc., Dep. and Res. refer to the excitation beam, depletion beam and residual beam profile, respectively. (e) is the enlarged plot of (d) for the transversal region from r = 0 to r = 100 nm.
Fig. 5
Fig. 5 Simulated intensity distribution in the focal for the configuration expressed in Fig. 3(b). Indexes (a) and (b) denote illumination of the pure excitation beam and depletion beam, respectively. Index (c) denotes the residual electric-field intensity distribution via the STED effect. The lower part of the figure (d) represents the normalized electric-field intensity distributions at several transversal planes near the focal region for several illumination conditions. Exc., Dep. and Res. refer to the excitation beam, depletion beam and residual beam profile, respectively. (e) is the enlarged plot of (d) for the transversal region from r = 0 to r = 100 nm.
Fig. 6
Fig. 6 Simulated intensity distribution in the focal for the configuration expressed in Fig. 3(c). Indexes (a) and (b) denote illumination of the pure excitation beam and depletion beam, respectively. Index (c) denotes the residual electric-field intensity distribution via the STED effect. The lower part of the figure (d) represents the normalized electric field intensity distributions at several transversal planes near the focal region for several illuminations conditions. Exc., Dep. and Res. refer to the excitation beam, depletion beam and residual beam profile, respectively. (e) is the enlarged plot of (d) for the transversal region from r = 0 to r = 100 nm.
Fig. 7
Fig. 7 Optical layout for the SIL-STED microscopy. The incident beam from the FS is split by a PBS to generate the optical path for the excitation beam (the upper optical path) and the optical path for the depletion beam (the lower optical path). In the lower optical path, a laser beam at 780 nm from the FS passes through the SC and a color filter to generate a femto-second excitation beam at 630 nm. In the upper optical path, a PMF is used to change the modulation frequency to pico-seconds for the depletion beam. To adjust the synchronization between the excitation beam and the depletion beam, the optical path length is controlled by a DL composed of 4 mirrors. Two separated optical branches are recombined by a DM for each wavelength, and the beams are scanned by the xy-GM. Before those are combined, the depletion beam passes the VPP to generate a beam with an azimuthal polarization. Two beams are imaged by the focusing optics, which are composed of the pre-focusing objective lens and the SIL. The fluorescent light from the sample is detected by the single photon counting module after spectral filtering by a dichroic mirror pair and the emission filter. A Twyman-Green interferometer is used to guarantee precise optical alignment between the pre-focusing lens and the SIL before its actual imaging.
Fig. 8
Fig. 8 Detected irradiance and interferometric fringe at the exit pupil of the Twyman-Green interferometric setup for the SIL based optics. The index denoted as (a) represents the reflected irradiance distribution and the index denoted as (b) shows the interferometric fringe.
Fig. 9
Fig. 9 Construction of the imaging head applied in the experiment. The fluorescent nano beads and the F-actin bio-sample were attached to the rear bottom surface of the SIL.
Fig. 10
Fig. 10 Experimental results of imaging the 20-nm beads using the SIL confocal setup and the SIL STED setup. (a), (d) show images from the SIL confocal setup, and (b), (e) from the SIL STED setup, respectively. (c) and (f) represent the cross-sectional intensity profiles at dashed yellow boxes, respectively.
Fig. 11
Fig. 11 Experimental results of imaging the F-actin sample with a filamentous structure for both cases: the SIL confocal setup and the SIL STED setup. (a) and (b) show images from the SIL confocal setup and from the SIL STED setup, respectively. (c), (d) and (e) represents the cross-sectional intensity profile at positions ①, ② and ③, respectively.

Tables (1)

Tables Icon

Table 1 Aberration characteristics of the SIL-based imaging optics.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E Img ( r p , ϕ p , z p )= if k 1z k 1 0 k rmax [ Π i + e i k iz z p + Π i e i k iz z p ] k r d k r
Π i ± linear =[ g i 0± J 0 g i 2± J 2 - g i 2± J ¯ 2 - g i 1± J 1 ], Π i ± circular = 1 2 [ ( g i 0± J 0 g i 2± J 2 ) e iπ/4 g i 2± J ¯ 2 e iπ/4 - g i 2± J ¯ 2 e iπ/4 +( g i 0± J 0 + g i 2± J 2 ) e iπ/4 - g i 1± J 1 e iπ/4 g i 1± J ¯ 1 e iπ/4 ], Π i ± radial =[ ( g i 0± g i 2± ) J 1 ( g i 0± g i 2± ) J ¯ 1 - g i 1± J 0 ], Π i ± azimuthal =[ -( g i 0± + g i 2± ) J ¯ 1 ( g i 0± + g i 2± ) J 1 0 ],

Metrics