Abstract

A method for eliminating atmospheric effects in polarimetric imaging remote sensing detection was developed by combining the shadowing method and radiative transfer (RT) model. First, a polarized bidirectional reflectance distribution function (pBRDF) model of painted surfaces was constructed. Using the resulting polarimetric radiance composition, the atmospheric effects elimination method was developed and compared to Shell’s method. Experiments were performed using a liquid-crystal-variable-retarder-based imaging polarimeter to obtain the surface pBRDFs. The proposed method showed better performance under different weather conditions than Shell’s method. Furthermore, the error was below 4.8% in the proposed method (6.8% in Shell’s method), indicating improved quantitative accuracy of the target physical parameters in remote sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved atmospheric effect elimination method for the roughness estimation of painted surfaces

Ying Zhang, Jiabin Xuan, Huijie Zhao, Ping Song, Yi Zhang, and Wujian Xu
Opt. Lett. 43(5) 1079-1082 (2018)

Novel robust skylight compass method based on full-sky polarization imaging under harsh conditions

Jun Tang, Nan Zhang, Dalin Li, Fei Wang, Binzhen Zhang, Chenguang Wang, Chong Shen, Jianbin Ren, Chenyang Xue, and Jun Liu
Opt. Express 24(14) 15834-15844 (2016)

Ground-based full-sky imaging polarimeter based on liquid crystal variable retarders

Ying Zhang, Huijie Zhao, Ping Song, Shaoguang Shi, Wujian Xu, and Xiao Liang
Opt. Express 22(7) 8749-8764 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
    [Crossref]
  2. Y. Duguay, M. Bernier, E. Lévesque, and F. Domine, “Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data,” Remote Sens. 8(9), 697 (2016).
    [Crossref]
  3. L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
    [Crossref]
  4. C. Walthall, J. L. Roujean, and J. Morisette, “Field and landscape BRDF optical wavelength measurements: Experience, techniques and the future,” Remote Sens. Rev. 18(2–4), 503–531 (2009).
  5. B. Yang, C. Yan, J. Zhang, and H. Zhang, “Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements,” Opt. Commun. 381, 336–345 (2016).
    [Crossref]
  6. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4(7), 767–773 (1965).
    [Crossref]
  7. I. G. E. Renhorn, T. Hallberg, and G. D. Boreman, “Efficient polarimetric BRDF model,” Opt. Express 23(24), 31253–31273 (2015).
    [Crossref] [PubMed]
  8. S. D. Butler, S. E. Nauyoks, and M. A. Marciniak, “Comparison of microfacet BRDF model elements to diffraction BRDF model elements,” Proc. SPIE 9472, 94720C (2015).
  9. J. Shell and J. R. Schott, “A polarized clutter measurement technique based on the governing equation for polarimetric remote sensing in the visible to near infrared,” Proc. SPIE 5811, 34–45 (2005).
    [Crossref]
  10. D. N. Naik, R. K. Singh, H. Itou, Y. Miyamoto, and M. Takeda, “State of polarization mapping using a calibrated interferometric polarimeter,” Proc. SPIE 8082, 80821T (2011).
    [Crossref]
  11. M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50(15), 2283–2293 (2011).
    [Crossref] [PubMed]
  12. M. W. Kudenov, M. J. Escuti, N. Hagen, E. L. Dereniak, and K. Oka, “Snapshot imaging Mueller matrix polarimeter using polarization gratings,” Opt. Lett. 37(8), 1367–1369 (2012).
    [Crossref] [PubMed]
  13. C. Zhang, J. Li, and H. Wu, “Fourier transform hyperspectral imaging polarimeter for remote sensing,” Opt. Eng. 50(6), 066201 (2011).
    [Crossref]
  14. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. 50(8), 1170–1185 (2011).
    [Crossref] [PubMed]
  15. T. Mu, C. Zhang, W. Ren, C. Jia, L. Zhang, and Q. Li, “Compact and static Fourier transform imaging spectropolarimeters using birefringent elements,” Proc. SPIE 8910, 89101A (2013).
    [Crossref]
  16. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
    [Crossref] [PubMed]
  17. J. M. López-Téllez and N. C. Bruce, “Mueller-matrix polarimeter using analysis of the nonlinear voltage-retardance relationship for liquid-crystal variable retarders,” Appl. Opt. 53(24), 5359–5366 (2014).
    [Crossref] [PubMed]
  18. Y. Zhang, H. Zhao, P. Song, S. Shi, W. Xu, and X. Liang, “Ground-based full-sky imaging polarimeter based on liquid crystal variable retarders,” Opt. Express 22(7), 8749–8764 (2014).
    [Crossref] [PubMed]
  19. Y. Zhang, H. Zhao, and N. Li, “Polarization calibration with large apertures in full field of view for a full Stokes imaging polarimeter based on liquid-crystal variable retarders,” Appl. Opt. 52(6), 1284–1292 (2013).
    [Crossref] [PubMed]
  20. P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
    [Crossref]
  21. M. Kupinski, C. Bradley, D. Diner, F. Xu, and R. Chipman, “Applying a microfacet model to polarized light scattering measurements of the Earth’s surface,” Proc. SPIE 9613, 96130T (2015).
    [Crossref]
  22. B. Bartlett, C. Devaraj, M. Gartley, C. Salvaggio, and J. R. Schott, “Spectro-polarimetric BRDF determination of objects using in-scene calibration materials for polarimetric imagers,” Proc. SPIE 7461, 74610T (2009).
    [Crossref]
  23. D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
    [Crossref]
  24. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45(22), 5470–5478 (2006).
    [Crossref] [PubMed]
  25. N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47(34), H190–H198 (2008).
    [Crossref] [PubMed]
  26. N. J. Pust and J. A. Shaw, “Comparison of skylight polarization measurements and MODTRAN-P calculations,” J. Appl. Remote Sens. 5(1), 05329 (2011).
    [Crossref]
  27. R. G. Priest and T. A. Gerner, “Polarimetric BRDF in the microfacet model: Theory and measurements,” in Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 1, 169–181 (2000).
  28. C. F. Bohren and D. R. Huffman, “Absorption and scattering of light by small particles,” Opt. Laser Technol. 31(1), 328 (1999).
  29. H Liu, J P Zhu, and K Wang, “Modification of geometrical attenuation factor of bidirectional reflection distribution function based on random surface microfacet theory,” Acta Physica Sinica.  64, 184213 (2015).
  30. Y. Zhou, Q. H. Liu, and Q. Liu, “Two Methods of Acquiring BRDF of Object in the Field Simulated with Radiosity-graphics Combined Model and Error Analysis,” Yaogan Xuebao 12(4), 568–578 (2008).
  31. R. Hegedüs, S. Åkesson, and G. Horváth, “Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies,” J. Opt. Soc. Am. A 24(8), 2347–2356 (2007).
    [Crossref] [PubMed]

2016 (2)

Y. Duguay, M. Bernier, E. Lévesque, and F. Domine, “Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data,” Remote Sens. 8(9), 697 (2016).
[Crossref]

B. Yang, C. Yan, J. Zhang, and H. Zhang, “Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements,” Opt. Commun. 381, 336–345 (2016).
[Crossref]

2015 (5)

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

I. G. E. Renhorn, T. Hallberg, and G. D. Boreman, “Efficient polarimetric BRDF model,” Opt. Express 23(24), 31253–31273 (2015).
[Crossref] [PubMed]

S. D. Butler, S. E. Nauyoks, and M. A. Marciniak, “Comparison of microfacet BRDF model elements to diffraction BRDF model elements,” Proc. SPIE 9472, 94720C (2015).

M. Kupinski, C. Bradley, D. Diner, F. Xu, and R. Chipman, “Applying a microfacet model to polarized light scattering measurements of the Earth’s surface,” Proc. SPIE 9613, 96130T (2015).
[Crossref]

H Liu, J P Zhu, and K Wang, “Modification of geometrical attenuation factor of bidirectional reflection distribution function based on random surface microfacet theory,” Acta Physica Sinica.  64, 184213 (2015).

2014 (2)

2013 (2)

Y. Zhang, H. Zhao, and N. Li, “Polarization calibration with large apertures in full field of view for a full Stokes imaging polarimeter based on liquid-crystal variable retarders,” Appl. Opt. 52(6), 1284–1292 (2013).
[Crossref] [PubMed]

T. Mu, C. Zhang, W. Ren, C. Jia, L. Zhang, and Q. Li, “Compact and static Fourier transform imaging spectropolarimeters using birefringent elements,” Proc. SPIE 8910, 89101A (2013).
[Crossref]

2012 (2)

M. W. Kudenov, M. J. Escuti, N. Hagen, E. L. Dereniak, and K. Oka, “Snapshot imaging Mueller matrix polarimeter using polarization gratings,” Opt. Lett. 37(8), 1367–1369 (2012).
[Crossref] [PubMed]

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

2011 (6)

N. J. Pust and J. A. Shaw, “Comparison of skylight polarization measurements and MODTRAN-P calculations,” J. Appl. Remote Sens. 5(1), 05329 (2011).
[Crossref]

C. Zhang, J. Li, and H. Wu, “Fourier transform hyperspectral imaging polarimeter for remote sensing,” Opt. Eng. 50(6), 066201 (2011).
[Crossref]

J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. 50(8), 1170–1185 (2011).
[Crossref] [PubMed]

P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
[Crossref]

D. N. Naik, R. K. Singh, H. Itou, Y. Miyamoto, and M. Takeda, “State of polarization mapping using a calibrated interferometric polarimeter,” Proc. SPIE 8082, 80821T (2011).
[Crossref]

M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50(15), 2283–2293 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

C. Walthall, J. L. Roujean, and J. Morisette, “Field and landscape BRDF optical wavelength measurements: Experience, techniques and the future,” Remote Sens. Rev. 18(2–4), 503–531 (2009).

B. Bartlett, C. Devaraj, M. Gartley, C. Salvaggio, and J. R. Schott, “Spectro-polarimetric BRDF determination of objects using in-scene calibration materials for polarimetric imagers,” Proc. SPIE 7461, 74610T (2009).
[Crossref]

2008 (2)

N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47(34), H190–H198 (2008).
[Crossref] [PubMed]

Y. Zhou, Q. H. Liu, and Q. Liu, “Two Methods of Acquiring BRDF of Object in the Field Simulated with Radiosity-graphics Combined Model and Error Analysis,” Yaogan Xuebao 12(4), 568–578 (2008).

2007 (1)

2006 (1)

2005 (1)

J. Shell and J. R. Schott, “A polarized clutter measurement technique based on the governing equation for polarimetric remote sensing in the visible to near infrared,” Proc. SPIE 5811, 34–45 (2005).
[Crossref]

2002 (1)

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

1999 (1)

C. F. Bohren and D. R. Huffman, “Absorption and scattering of light by small particles,” Opt. Laser Technol. 31(1), 328 (1999).

1965 (1)

Åkesson, S.

Bartlett, B.

B. Bartlett, C. Devaraj, M. Gartley, C. Salvaggio, and J. R. Schott, “Spectro-polarimetric BRDF determination of objects using in-scene calibration materials for polarimetric imagers,” Proc. SPIE 7461, 74610T (2009).
[Crossref]

Bermak, A.

Bernier, M.

Y. Duguay, M. Bernier, E. Lévesque, and F. Domine, “Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data,” Remote Sens. 8(9), 697 (2016).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, “Absorption and scattering of light by small particles,” Opt. Laser Technol. 31(1), 328 (1999).

Boreman, G. D.

Boussaid, F.

Bradley, C.

M. Kupinski, C. Bradley, D. Diner, F. Xu, and R. Chipman, “Applying a microfacet model to polarized light scattering measurements of the Earth’s surface,” Proc. SPIE 9613, 96130T (2015).
[Crossref]

Bruce, N. C.

Butler, S. D.

S. D. Butler, S. E. Nauyoks, and M. A. Marciniak, “Comparison of microfacet BRDF model elements to diffraction BRDF model elements,” Proc. SPIE 9472, 94720C (2015).

Cairns, B.

P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
[Crossref]

Chen, X.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Chigrinov, V. G.

Chipman, R.

M. Kupinski, C. Bradley, D. Diner, F. Xu, and R. Chipman, “Applying a microfacet model to polarized light scattering measurements of the Earth’s surface,” Proc. SPIE 9613, 96130T (2015).
[Crossref]

Chipman, R. A.

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Craven-Jones, J.

Davis, A.

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Dereniak, E. L.

Devaraj, C.

B. Bartlett, C. Devaraj, M. Gartley, C. Salvaggio, and J. R. Schott, “Spectro-polarimetric BRDF determination of objects using in-scene calibration materials for polarimetric imagers,” Proc. SPIE 7461, 74610T (2009).
[Crossref]

Diner, D.

M. Kupinski, C. Bradley, D. Diner, F. Xu, and R. Chipman, “Applying a microfacet model to polarized light scattering measurements of the Earth’s surface,” Proc. SPIE 9613, 96130T (2015).
[Crossref]

Diner, D. J.

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Domine, F.

Y. Duguay, M. Bernier, E. Lévesque, and F. Domine, “Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data,” Remote Sens. 8(9), 697 (2016).
[Crossref]

Duguay, Y.

Y. Duguay, M. Bernier, E. Lévesque, and F. Domine, “Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data,” Remote Sens. 8(9), 697 (2016).
[Crossref]

Escuti, M. J.

Gartley, M.

B. Bartlett, C. Devaraj, M. Gartley, C. Salvaggio, and J. R. Schott, “Spectro-polarimetric BRDF determination of objects using in-scene calibration materials for polarimetric imagers,” Proc. SPIE 7461, 74610T (2009).
[Crossref]

Geier, S.

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Gerner, T. A.

R. G. Priest and T. A. Gerner, “Polarimetric BRDF in the microfacet model: Theory and measurements,” in Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 1, 169–181 (2000).

Hagen, N.

Hallberg, T.

Hasekamp, O.

P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
[Crossref]

Hegedüs, R.

Horváth, G.

Hou, W.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Huang, W.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, “Absorption and scattering of light by small particles,” Opt. Laser Technol. 31(1), 328 (1999).

Itou, H.

D. N. Naik, R. K. Singh, H. Itou, Y. Miyamoto, and M. Takeda, “State of polarization mapping using a calibrated interferometric polarimeter,” Proc. SPIE 8082, 80821T (2011).
[Crossref]

Jia, C.

T. Mu, C. Zhang, W. Ren, C. Jia, L. Zhang, and Q. Li, “Compact and static Fourier transform imaging spectropolarimeters using birefringent elements,” Proc. SPIE 8910, 89101A (2013).
[Crossref]

Jovanovic, V. M.

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Kudenov, M. W.

Kupinski, M.

M. Kupinski, C. Bradley, D. Diner, F. Xu, and R. Chipman, “Applying a microfacet model to polarized light scattering measurements of the Earth’s surface,” Proc. SPIE 9613, 96130T (2015).
[Crossref]

Lévesque, E.

Y. Duguay, M. Bernier, E. Lévesque, and F. Domine, “Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data,” Remote Sens. 8(9), 697 (2016).
[Crossref]

Li, D.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Li, J.

C. Zhang, J. Li, and H. Wu, “Fourier transform hyperspectral imaging polarimeter for remote sensing,” Opt. Eng. 50(6), 066201 (2011).
[Crossref]

Li, N.

Li, Q.

T. Mu, C. Zhang, W. Ren, C. Jia, L. Zhang, and Q. Li, “Compact and static Fourier transform imaging spectropolarimeters using birefringent elements,” Proc. SPIE 8910, 89101A (2013).
[Crossref]

Li, Z.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Liang, X.

Litvinov, P.

P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
[Crossref]

Liu, H

H Liu, J P Zhu, and K Wang, “Modification of geometrical attenuation factor of bidirectional reflection distribution function based on random surface microfacet theory,” Acta Physica Sinica.  64, 184213 (2015).

Liu, Q.

Y. Zhou, Q. H. Liu, and Q. Liu, “Two Methods of Acquiring BRDF of Object in the Field Simulated with Radiosity-graphics Combined Model and Error Analysis,” Yaogan Xuebao 12(4), 568–578 (2008).

Liu, Q. H.

Y. Zhou, Q. H. Liu, and Q. Liu, “Two Methods of Acquiring BRDF of Object in the Field Simulated with Radiosity-graphics Combined Model and Error Analysis,” Yaogan Xuebao 12(4), 568–578 (2008).

Liu, Z.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

López-Téllez, J. M.

Marciniak, M. A.

S. D. Butler, S. E. Nauyoks, and M. A. Marciniak, “Comparison of microfacet BRDF model elements to diffraction BRDF model elements,” Proc. SPIE 9472, 94720C (2015).

Martonchik, J. V.

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

McClain, S. C.

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Meier, S. R.

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

Miyamoto, Y.

D. N. Naik, R. K. Singh, H. Itou, Y. Miyamoto, and M. Takeda, “State of polarization mapping using a calibrated interferometric polarimeter,” Proc. SPIE 8082, 80821T (2011).
[Crossref]

Morisette, J.

C. Walthall, J. L. Roujean, and J. Morisette, “Field and landscape BRDF optical wavelength measurements: Experience, techniques and the future,” Remote Sens. Rev. 18(2–4), 503–531 (2009).

Mu, T.

T. Mu, C. Zhang, W. Ren, C. Jia, L. Zhang, and Q. Li, “Compact and static Fourier transform imaging spectropolarimeters using birefringent elements,” Proc. SPIE 8910, 89101A (2013).
[Crossref]

Naik, D. N.

D. N. Naik, R. K. Singh, H. Itou, Y. Miyamoto, and M. Takeda, “State of polarization mapping using a calibrated interferometric polarimeter,” Proc. SPIE 8082, 80821T (2011).
[Crossref]

Nauyoks, S. E.

S. D. Butler, S. E. Nauyoks, and M. A. Marciniak, “Comparison of microfacet BRDF model elements to diffraction BRDF model elements,” Proc. SPIE 9472, 94720C (2015).

Nicodemus, F. E.

Oka, K.

Priest, R. G.

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

R. G. Priest and T. A. Gerner, “Polarimetric BRDF in the microfacet model: Theory and measurements,” in Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 1, 169–181 (2000).

Pust, N. J.

Qiao, Y.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Qie, L.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Ren, W.

T. Mu, C. Zhang, W. Ren, C. Jia, L. Zhang, and Q. Li, “Compact and static Fourier transform imaging spectropolarimeters using birefringent elements,” Proc. SPIE 8910, 89101A (2013).
[Crossref]

Renhorn, I. G. E.

Rheingans, B. E.

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Roujean, J. L.

C. Walthall, J. L. Roujean, and J. Morisette, “Field and landscape BRDF optical wavelength measurements: Experience, techniques and the future,” Remote Sens. Rev. 18(2–4), 503–531 (2009).

Salvaggio, C.

B. Bartlett, C. Devaraj, M. Gartley, C. Salvaggio, and J. R. Schott, “Spectro-polarimetric BRDF determination of objects using in-scene calibration materials for polarimetric imagers,” Proc. SPIE 7461, 74610T (2009).
[Crossref]

Schott, J. R.

B. Bartlett, C. Devaraj, M. Gartley, C. Salvaggio, and J. R. Schott, “Spectro-polarimetric BRDF determination of objects using in-scene calibration materials for polarimetric imagers,” Proc. SPIE 7461, 74610T (2009).
[Crossref]

J. Shell and J. R. Schott, “A polarized clutter measurement technique based on the governing equation for polarimetric remote sensing in the visible to near infrared,” Proc. SPIE 5811, 34–45 (2005).
[Crossref]

Shaw, J. A.

Shell, J.

J. Shell and J. R. Schott, “A polarized clutter measurement technique based on the governing equation for polarimetric remote sensing in the visible to near infrared,” Proc. SPIE 5811, 34–45 (2005).
[Crossref]

Shi, S.

Singh, R. K.

D. N. Naik, R. K. Singh, H. Itou, Y. Miyamoto, and M. Takeda, “State of polarization mapping using a calibrated interferometric polarimeter,” Proc. SPIE 8082, 80821T (2011).
[Crossref]

Song, P.

Stapelbroek, M. G.

Sun, B.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Sun, X.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Takeda, M.

D. N. Naik, R. K. Singh, H. Itou, Y. Miyamoto, and M. Takeda, “State of polarization mapping using a calibrated interferometric polarimeter,” Proc. SPIE 8082, 80821T (2011).
[Crossref]

Walthall, C.

C. Walthall, J. L. Roujean, and J. Morisette, “Field and landscape BRDF optical wavelength measurements: Experience, techniques and the future,” Remote Sens. Rev. 18(2–4), 503–531 (2009).

Wang, H.

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Wang, K

H Liu, J P Zhu, and K Wang, “Modification of geometrical attenuation factor of bidirectional reflection distribution function based on random surface microfacet theory,” Acta Physica Sinica.  64, 184213 (2015).

Wu, H.

C. Zhang, J. Li, and H. Wu, “Fourier transform hyperspectral imaging polarimeter for remote sensing,” Opt. Eng. 50(6), 066201 (2011).
[Crossref]

Xu, F.

M. Kupinski, C. Bradley, D. Diner, F. Xu, and R. Chipman, “Applying a microfacet model to polarized light scattering measurements of the Earth’s surface,” Proc. SPIE 9613, 96130T (2015).
[Crossref]

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

Xu, W.

Yan, C.

B. Yang, C. Yan, J. Zhang, and H. Zhang, “Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements,” Opt. Commun. 381, 336–345 (2016).
[Crossref]

Yang, B.

B. Yang, C. Yan, J. Zhang, and H. Zhang, “Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements,” Opt. Commun. 381, 336–345 (2016).
[Crossref]

Zhang, C.

T. Mu, C. Zhang, W. Ren, C. Jia, L. Zhang, and Q. Li, “Compact and static Fourier transform imaging spectropolarimeters using birefringent elements,” Proc. SPIE 8910, 89101A (2013).
[Crossref]

C. Zhang, J. Li, and H. Wu, “Fourier transform hyperspectral imaging polarimeter for remote sensing,” Opt. Eng. 50(6), 066201 (2011).
[Crossref]

Zhang, H.

B. Yang, C. Yan, J. Zhang, and H. Zhang, “Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements,” Opt. Commun. 381, 336–345 (2016).
[Crossref]

Zhang, J.

B. Yang, C. Yan, J. Zhang, and H. Zhang, “Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements,” Opt. Commun. 381, 336–345 (2016).
[Crossref]

Zhang, L.

T. Mu, C. Zhang, W. Ren, C. Jia, L. Zhang, and Q. Li, “Compact and static Fourier transform imaging spectropolarimeters using birefringent elements,” Proc. SPIE 8910, 89101A (2013).
[Crossref]

Zhang, Y.

Zhao, H.

Zhao, X.

Zhou, Y.

Y. Zhou, Q. H. Liu, and Q. Liu, “Two Methods of Acquiring BRDF of Object in the Field Simulated with Radiosity-graphics Combined Model and Error Analysis,” Yaogan Xuebao 12(4), 568–578 (2008).

Zhu, J P

H Liu, J P Zhu, and K Wang, “Modification of geometrical attenuation factor of bidirectional reflection distribution function based on random surface microfacet theory,” Acta Physica Sinica.  64, 184213 (2015).

Acta Physica Sinica (1)

H Liu, J P Zhu, and K Wang, “Modification of geometrical attenuation factor of bidirectional reflection distribution function based on random surface microfacet theory,” Acta Physica Sinica.  64, 184213 (2015).

Appl. Opt. (7)

Atmosphere (1)

D. J. Diner, F. Xu, J. V. Martonchik, B. E. Rheingans, S. Geier, V. M. Jovanovic, A. Davis, R. A. Chipman, and S. C. McClain, “Exploration of a polarized surface bidirectional reflectance model using the Ground-based Multiangle SpectroPolarimetric Imager,” Atmosphere 3(4), 591–619 (2012).
[Crossref]

J. Appl. Remote Sens. (1)

N. J. Pust and J. A. Shaw, “Comparison of skylight polarization measurements and MODTRAN-P calculations,” J. Appl. Remote Sens. 5(1), 05329 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

B. Yang, C. Yan, J. Zhang, and H. Zhang, “Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements,” Opt. Commun. 381, 336–345 (2016).
[Crossref]

Opt. Eng. (2)

C. Zhang, J. Li, and H. Wu, “Fourier transform hyperspectral imaging polarimeter for remote sensing,” Opt. Eng. 50(6), 066201 (2011).
[Crossref]

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

C. F. Bohren and D. R. Huffman, “Absorption and scattering of light by small particles,” Opt. Laser Technol. 31(1), 328 (1999).

Opt. Lett. (1)

Proc. SPIE (6)

T. Mu, C. Zhang, W. Ren, C. Jia, L. Zhang, and Q. Li, “Compact and static Fourier transform imaging spectropolarimeters using birefringent elements,” Proc. SPIE 8910, 89101A (2013).
[Crossref]

S. D. Butler, S. E. Nauyoks, and M. A. Marciniak, “Comparison of microfacet BRDF model elements to diffraction BRDF model elements,” Proc. SPIE 9472, 94720C (2015).

J. Shell and J. R. Schott, “A polarized clutter measurement technique based on the governing equation for polarimetric remote sensing in the visible to near infrared,” Proc. SPIE 5811, 34–45 (2005).
[Crossref]

D. N. Naik, R. K. Singh, H. Itou, Y. Miyamoto, and M. Takeda, “State of polarization mapping using a calibrated interferometric polarimeter,” Proc. SPIE 8082, 80821T (2011).
[Crossref]

M. Kupinski, C. Bradley, D. Diner, F. Xu, and R. Chipman, “Applying a microfacet model to polarized light scattering measurements of the Earth’s surface,” Proc. SPIE 9613, 96130T (2015).
[Crossref]

B. Bartlett, C. Devaraj, M. Gartley, C. Salvaggio, and J. R. Schott, “Spectro-polarimetric BRDF determination of objects using in-scene calibration materials for polarimetric imagers,” Proc. SPIE 7461, 74610T (2009).
[Crossref]

Remote Sens. (2)

Y. Duguay, M. Bernier, E. Lévesque, and F. Domine, “Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data,” Remote Sens. 8(9), 697 (2016).
[Crossref]

L. Qie, Z. Li, X. Sun, B. Sun, D. Li, Z. Liu, W. Huang, H. Wang, X. Chen, W. Hou, and Y. Qiao, “Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China,” Remote Sens. 7(5), 6240–6256 (2015).
[Crossref]

Remote Sens. Environ. (1)

P. Litvinov, O. Hasekamp, and B. Cairns, “Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements,” Remote Sens. Environ. 115(2), 781–792 (2011).
[Crossref]

Remote Sens. Rev. (1)

C. Walthall, J. L. Roujean, and J. Morisette, “Field and landscape BRDF optical wavelength measurements: Experience, techniques and the future,” Remote Sens. Rev. 18(2–4), 503–531 (2009).

Yaogan Xuebao (1)

Y. Zhou, Q. H. Liu, and Q. Liu, “Two Methods of Acquiring BRDF of Object in the Field Simulated with Radiosity-graphics Combined Model and Error Analysis,” Yaogan Xuebao 12(4), 568–578 (2008).

Other (1)

R. G. Priest and T. A. Gerner, “Polarimetric BRDF in the microfacet model: Theory and measurements,” in Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 1, 169–181 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 BRDF geometry
Fig. 2
Fig. 2 Definitions of angles in a microfacet coordinate system.
Fig. 3
Fig. 3 Change of f00 of in-plane pBRDF with θr when σ = 0.30, 0.20, 0.10, 0.07 and 0.04.
Fig. 4
Fig. 4 Change of f00 non-in-plane of pBRDF with θr when σ = 0.30, 0.20, 0.10, 0.07 and 0.04.
Fig. 5
Fig. 5 Schematic of polarization calibration.
Fig. 6
Fig. 6 Shell’s atmospheric effects elimination method
Fig. 7
Fig. 7 Proposed atmospheric effects elimination method.
Fig. 8
Fig. 8 The imaging polarimeter placed on a tripod mount.
Fig. 9
Fig. 9 Experimental scene and painted target
Fig. 10
Fig. 10 The 476-nm measurement data acquired 28 October 2016.
Fig. 11
Fig. 11 The change in f00 of Target 1 at 476 nm with respect to the viewing elevation angle using different atmospheric effects elimination methods.

Tables (2)

Tables Icon

Table 1 Direction parameters for each group of measurements data

Tables Icon

Table 2 The inverted σ and complex refractive index of Targets 1 and 2 and their Real σ

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

f( θ i , ϕ i , θ r , ϕ r ,λ)= d L r ( θ r , ϕ r ) dE( θ i , ϕ i ) s r 1
d L r ( θ r , ϕ r )=F( θ i , ϕ i , θ r , ϕ r ,λ)dE( θ i , ϕ i )
p(θ)= 1 2π σ 2 cos 3 (θ) exp( tan 2 (θ) 2 σ 2 )
cos(θ)= cos( θ i )+cos( θ r ) 2cos(β)
cos(2β)=cos( θ i )cos( θ r )+sin( θ i )sin( θ r )cos( ϕ i ϕ r )
F( θ i , θ r , ϕ i ϕ r )= G( θ i , θ r )p(θ) 4cos( θ r )cos( θ i ) M( θ i , θ r , ϕ i ϕ r )
( E s r E p r )=( T ss T ps T sp T pp )( E s i E p i )
( E s r E p r )=( cos(ηr) sin(ηr) sin(ηr) cos(ηr) )( a ss 0 0 a pp )( cos(ηi) sin(ηi) sin(ηi) cos(ηi) )( E s i E p i )
cos(ηi)= cos(θi)+cos(θr) 2cos(β) cos(θi)cos(β) sin(θi)sin(β)
cos(ηr)= cos(θi)+cos(θr) 2cos(β) cos(θr)cos(β) sin(θr)sin(β)
a ss = εcos( θ i ) ε sin 2 ( θ i ) εcos( θ i )+ ε sin 2 ( θ i )
a pp = cos( θ i ) ε sin 2 ( θ i ) cos( θ i )+ ε sin 2 ( θ i )
M=[ 1 2 ( | T ss | 2 + | T sp | 2 + | T ps | 2 + | T pp | 2 ) 1 2 ( | T ss | 2 + | T sp | 2 | T ps | 2 | T pp | 2 ) Re( T ss T ps + T sp T pp ) Im( T ps T ss + T pp T sp ) 1 2 ( | T ss | 2 | T sp | 2 + | T ps | 2 | T pp | 2 ) 1 2 ( | T ss | 2 | T sp | 2 | T ps | 2 + | T pp | 2 ) Re( T ss T ps T sp T pp ) Im( T ps T ss T pp T sp ) Re( T ss T sp + T ps T pp ) Re( T ss T sp T ps T pp ) Re( T ss T pp + T ps T sp ) Im( T ps T sp T ss T pp ) Im( T ss T sp + T ps T pp ) Im( T ss T sp T ps T pp ) Im( T ss T pp + T ps T sp ) Re( T ss T pp T ps T sp ) ]
F( θ i , θ r , ϕ i ϕ r )= 1 2π 1 4 σ 2 1 cos 4 (θ) exp( tan 2 (θ) 2 σ 2 ) cos( θ r )cos( θ i ) M( θ i , θ r , ϕ i ϕ r )G( θ i , θ r )
L r = τ r ( θ r ) f r ( θ i , θ r ,ϕ)cos θ i τ i ( θ i ) E s ( θ i )
L d = τ r ( θ r ) Ω i f r ( θ i , θ r ,ϕ)cos θ i L d Ω i ( θ i , ϕ i )d Ω i
L u = L u ( θ r , ϕ r )
L r = τ r ( θ r ) F r ( θ i , θ r ,ϕ) τ i ( θ i )cos θ i E s ( θ i )
L d = τ r ( θ r ) Ω i F r ( θ i , θ r ,ϕ)cos θ i L d Ω i ( θ i , ϕ i )d Ω i
L u = L u ( θ r , ϕ r )
L s = L r + L d + L u
L r = L s L d L u
τ r F r τ i cos θ i E s = L s τ r Ω i F r cos θ i L d Ω i d Ω i L u
[ f 00 f 10 f 20 f 30 ]= L s τ r Ω i F r cos θ i L d Ω i d Ω i L u τ r τ i cos θ i E s
L r =( L r + L d + L u )( L d + L u )CD
L r cal L r sur = τ r f r cal τ i cos θ i E s τ r f r τ i cos θ i E s = f r cal f r = ρ π f r f r = ρ π L r sur L r cal
f r = ρ π [ CD AB ]
f r =[ f 00 f 10 f 20 f 30 ]= ρ[( L r + L d + L u )( L d + L u )] 1 2 π( A 0 B 0 ) = ρ L r 1 2 π( A 0 B 0 )
( L r + L d + L u )( 1 Ω 0 L d Ω 0 d Ω i + L u )CD
f r s =[ f 00 s f 10 s f 20 s f 30 s ]== ρ( L r + Ω 0 F r cos θ i L d Ω 0 d Ω 0 ) 1 2 π( A 0 B 0 ) = ρ L 0 1 2 π( A 0 B 0 )
x= Ω 0 F r cos θ i L d Ω 0 d Ω 0 L 0
f r =[ f 00 f 10 f 20 f 30 ]==R[ f 00 s f 10 s f 20 s f 30 s ]
minf(n,k,σ)= θ i θ r ϕ [ f s m ( θ i , θ r ,ϕ) f s ( θ i , θ r ,ϕ,n,k,σ)] 2 θ i θ r ϕ [ f s m ( θ i , θ r ,ϕ)] 2

Metrics