Abstract

Electro-optic frequency comb generators are particularly promising for dual-comb spectroscopy. They provide a high degree of mutual coherence between the combs without resorting to complex feedback stabilization mechanisms. In addition, electro-optic frequency combs can operate at very high repetition rates, thus providing very fast acquisition speeds. Here, we exploit these two features to resolve the rapid movement of a vibrating target. Our electro-optic dual-comb interferometer is capable of combining time-of-fight information with a more precise interferometric measurement based on the carrier phase. This fact, previously demonstrated by stabilized femtosecond frequency combs, allows us to increase the precision of the time-of-flight measurement by several orders of magnitude. As a proof of concept, we implement a fiber-based vibrometer that offers sub-nanometer precision at an effective acquisition speed of 250 kHz. These results expand the application landscape of electro-optic dual-comb spectroscopy to laser ranging and other remote sensing measurements.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time

Pedro Martín-Mateos, Borja Jerez, Pedro Largo-Izquierdo, and Pablo Acedo
Opt. Express 26(8) 9700-9713 (2018)

Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators

Jiqiang Kang, Pingping Feng, Bowen Li, Chi Zhang, Xiaoming Wei, Edmund Y. Lam, Kevin K. Tsia, and Kenneth K. Y. Wong
Opt. Express 26(19) 24928-24939 (2018)

Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement

Zebin Zhu, Guangyao Xu, Kai Ni, Qian Zhou, and Guanhao Wu
Opt. Express 26(5) 5747-5757 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  2. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  3. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
    [Crossref]
  4. Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38(16), 3148–3150 (2013).
    [Crossref] [PubMed]
  5. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
    [Crossref] [PubMed]
  6. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  7. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [Crossref] [PubMed]
  8. S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
    [Crossref] [PubMed]
  9. S. Boudreau and J. Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22(7), 8101–8113 (2014).
    [Crossref] [PubMed]
  10. J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors (Basel) 16(12), 2007 (2016).
    [Crossref] [PubMed]
  11. F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34(24), 3875–3877 (2009).
    [Crossref] [PubMed]
  12. V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23(23), 30557–30569 (2015).
    [Crossref] [PubMed]
  13. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref] [PubMed]
  14. O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett. 28(11), 890–892 (2003).
    [Crossref] [PubMed]
  15. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
    [Crossref]
  16. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref] [PubMed]
  17. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
    [Crossref] [PubMed]
  18. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
    [Crossref] [PubMed]
  19. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
    [Crossref] [PubMed]
  20. S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
    [Crossref]
  21. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
    [Crossref] [PubMed]
  22. A. J. Metcalf, V. Torres-company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
    [Crossref]
  23. K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4(4), 406–411 (2017).
    [Crossref]
  24. N. Kuse, T. R. Schibli, and M. E. Fermann, “Low noise electro-optic comb generation by fully stabilizing to a mode-locked fiber comb,” Opt. Express 24(15), 16884–16893 (2016).
    [Crossref] [PubMed]
  25. X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
    [Crossref] [PubMed]
  26. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
    [Crossref] [PubMed]
  27. P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
    [Crossref] [PubMed]
  28. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
    [Crossref]
  29. M. Yan, P. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy with Doppler-Limited Resolution,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SW4H.4.
    [Crossref]
  30. N. B. Hébert, V. Michaud-Belleau, C. Perella, G. W. Truog, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiteu, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
    [Crossref]
  31. V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41(18), 4190–4193 (2016).
    [Crossref] [PubMed]
  32. N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
    [Crossref] [PubMed]
  33. R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39(20), 5834–5837 (2014).
    [Crossref] [PubMed]
  34. M. Vibrometer, Optical Comb Inc. http://www.optocomb.com/
  35. P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
    [Crossref]

2017 (1)

2016 (8)

N. Kuse, T. R. Schibli, and M. E. Fermann, “Low noise electro-optic comb generation by fully stabilizing to a mode-locked fiber comb,” Opt. Express 24(15), 16884–16893 (2016).
[Crossref] [PubMed]

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
[Crossref] [PubMed]

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, C. Perella, G. W. Truog, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiteu, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41(18), 4190–4193 (2016).
[Crossref] [PubMed]

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors (Basel) 16(12), 2007 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (5)

2013 (4)

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
[Crossref] [PubMed]

Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38(16), 3148–3150 (2013).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

A. J. Metcalf, V. Torres-company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

2012 (2)

2011 (2)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

2009 (3)

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2006 (1)

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]

2004 (1)

2003 (1)

2001 (1)

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Acedo, P.

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors (Basel) 16(12), 2007 (2016).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
[Crossref] [PubMed]

Ahn, S.-W.

Andrekson, P. A.

Anstie, J. D.

N. B. Hébert, V. Michaud-Belleau, C. Perella, G. W. Truog, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiteu, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
[Crossref] [PubMed]

Baumann, E.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Beha, K.

Beichman, C.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Berkovic, G.

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Bhattacharya, N.

Bielska, K.

Blaser, S.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Bosse, H.

Bottom, M.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Boudreau, S.

Braat, J. J. M.

Burger, J. P.

Castellini, P.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]

Chang, Y.

Chen, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Coddington, I.

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Coillet, A.

Cole, D. C.

Cui, M.

Del’Haye, P.

Deschênes, J.-D.

Diddams, S.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Diddams, S. A.

Doppmann, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Douglass, K. O.

Dubovitsky, S.

Durán, V.

Faist, J.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Ferdous, F.

Fermann, M. E.

Fetterman, H. R.

Fitzgerald, M. P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Fleisher, A. J.

Furlan, E.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Gagne, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Gao, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Garcia-Souto, J. A.

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors (Basel) 16(12), 2007 (2016).
[Crossref] [PubMed]

Gardiner, T.

Genest, J.

Giorgetta, F. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hänsch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hébert, N. B.

N. B. Hébert, V. Michaud-Belleau, C. Perella, G. W. Truog, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiteu, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
[Crossref] [PubMed]

Hodges, J. T.

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hovannysyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Huang, C.-B.

Hugi, A.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Ideguchi, T.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Jerez, B.

Kourogi, M.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Kuse, N.

Lay, O. P.

Leaird, D. E.

A. J. Metcalf, V. Torres-company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34(24), 3875–3877 (2009).
[Crossref] [PubMed]

Lee, S.-J.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Leifer, S.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Levasseur, S.

Li, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Liu, T.-A.

Long, D. A.

Luiten, A. N.

Luiteu, A. N.

N. B. Hébert, V. Michaud-Belleau, C. Perella, G. W. Truog, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiteu, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

Martarelli, M.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]

Martin, E. C.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Martín-Mateos, P.

Maxwell, S. E.

Meiners-Hagen, K.

Metcalf, A. J.

A. J. Metcalf, V. Torres-company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

Michaud-Belleau, V.

N. B. Hébert, V. Michaud-Belleau, C. Perella, G. W. Truog, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiteu, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
[Crossref] [PubMed]

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Ohtsu, M.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Papp, S. B.

Perella, C.

N. B. Hébert, V. Michaud-Belleau, C. Perella, G. W. Truog, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiteu, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

Perilla, C.

Peters, R. D.

Picqué, N.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Plavchan, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Plusquellic, D. F.

Poiana, D. A.

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors (Basel) 16(12), 2007 (2016).
[Crossref] [PubMed]

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Pollinger, F.

Posada-Roman, J. E.

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors (Basel) 16(12), 2007 (2016).
[Crossref] [PubMed]

Potvin, S.

Reed, Z. D.

Reid, D. T.

Roy, J.

Roy, S.

Sandhu, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Schibli, T. R.

Shafir, E.

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Stace, T. M.

N. B. Hébert, V. Michaud-Belleau, C. Perella, G. W. Truog, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiteu, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

Steier, W. H.

Swann, W. C.

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Tainta, S.

Tan, J.

Tomasini, E. P.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]

Torres-Company, V.

Truog, G. W.

N. B. Hébert, V. Michaud-Belleau, C. Perella, G. W. Truog, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiteu, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

Urbach, H. P.

Vahala, K.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

van den Berg, S. A.

Vasisht, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Villares, G.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Weiner, A. M.

A. J. Metcalf, V. Torres-company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34(24), 3875–3877 (2009).
[Crossref] [PubMed]

Widiyatmoko, B.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Yang, R.

Ycas, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Ye, J.

Yi, X.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

Zeitouny, M. G.

Zhang, Z.

Zolot, A. M.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Adv. Opt. Photonics (1)

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. J. Metcalf, V. Torres-company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Mech. Syst. Signal Process. (1)

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[Crossref]

Nat. Commun. (3)

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Opt. Express (9)

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
[Crossref] [PubMed]

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
[Crossref] [PubMed]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23(21), 27806–27818 (2015).
[Crossref] [PubMed]

V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23(23), 30557–30569 (2015).
[Crossref] [PubMed]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
[Crossref] [PubMed]

N. Kuse, T. R. Schibli, and M. E. Fermann, “Low noise electro-optic comb generation by fully stabilizing to a mode-locked fiber comb,” Opt. Express 24(15), 16884–16893 (2016).
[Crossref] [PubMed]

S. Boudreau and J. Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22(7), 8101–8113 (2014).
[Crossref] [PubMed]

Opt. Lett. (8)

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
[Crossref] [PubMed]

R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39(20), 5834–5837 (2014).
[Crossref] [PubMed]

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41(18), 4190–4193 (2016).
[Crossref] [PubMed]

Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38(16), 3148–3150 (2013).
[Crossref] [PubMed]

O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett. 28(11), 890–892 (2003).
[Crossref] [PubMed]

J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
[Crossref] [PubMed]

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34(24), 3875–3877 (2009).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. A (1)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Phys. Rev. Appl. (1)

N. B. Hébert, V. Michaud-Belleau, C. Perella, G. W. Truog, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiteu, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6(4), 044012 (2016).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Sensors (Basel) (1)

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors (Basel) 16(12), 2007 (2016).
[Crossref] [PubMed]

Other (2)

M. Yan, P. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy with Doppler-Limited Resolution,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SW4H.4.
[Crossref]

M. Vibrometer, Optical Comb Inc. http://www.optocomb.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Upper row: simplified electro-optic dual-comb spectrometer setup for vibrometry applications. Lower row: Examples of two dynamic samples used in this work (a fiber stretcher and an ultrasound speaker).
Fig. 2
Fig. 2 a) Four consecutive interferograms recorded by the oscilloscope for the system that includes the fiber stretcher. The 25-MHz signal driving the AOM is registered simultaneously to extract every individual interferogram. b) Intensity of the temporal signal computed from a single interferogram. Two co-propagating pulses are reconstructed, one coming from the target and the other one from the reference, with a time delay τ 0 between them. c) When a voltage signal is applied to the fiber stretcher, the target pulse shifts by Δτ with respect to the reference peak. The two pulse profiles shown here (in red and green) correspond to two interferograms separated by 2 microseconds ( 5× 10 4 optical periods).
Fig. 3
Fig. 3 Time-resolved vibration of the fiber stretcher driven by a sinusoidal signal at 20 kHz. (a) TOF measurements at the maximum refresh rate (25 MHz) and when a moving average is performed (effective refresh rate of 250 kHz). The reduction of the data noise in the second case is apparent. (b) Temporal evolution of the unwrapped spectral phase of the carrier, showing the expected behavior with a period of 50 µs.
Fig. 4
Fig. 4 Time-resolved vibration of the piezo-speaker driven by a sinusoidal voltage signal at 50 kHz. (a) TOF measurements showing the inability of this procedure to resolve the speaker movement. (b) Temporal evolution of the unwrapped spectral phase of the carrier, where the vibration can be resolved without problem.
Fig. 5
Fig. 5 Analysis of precision measurement in our EO dual-comb vibrometer. (a) Relative timing jitter between the reference and the target pulses for different averaging windows. (b) Phase jitter of the interferometric measurement for different averaging windows.

Metrics