Abstract

Functional polymer films are key components in the display industry, and the theoretical prediction of the optical properties of stretched polymer films is important. In this study, we try to establish the theoretical calculation process without an empirical database to predict the refractive index, including wavelength dispersions and optical retardation of stretched polymer films using several commercial simulation tools. The polarizability tensor and molecular volume for periodic units of polymers are accurately simulated, resulting in the accurate prediction of the mean refractive index and its dispersion for raw polymer materials. The birefringence of stretched films is also calculated to predict reasonably accurate optical properties of stretched films. The simulation method is an effective way that requires a relatively short time and low cost to develop new types of polymer films.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dependence of the birefringence of polystyrene film on the stretching conditions

Hee Jung Ryu, Jiyong Hwang, Jongyoon Kim, and Ji-Hoon Lee
Appl. Opt. 57(2) 268-272 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater. 1(1), 29–36 (2009).
    [Crossref]
  2. E. Lee and J.-K. Song, “High efficiency organic light-emitting display using selective spectral photo-recycling,” Appl. Phys., A Mater. Sci. Process. 109(2), 431–436 (2012).
    [Crossref]
  3. S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
    [Crossref] [PubMed]
  4. J. W. Goodby, P. J. Collings, T. Kato, C. Tschierske, H. Gleeson, and P. Raynes, Handbook of Liquid Crystals, 2nd Edition, Vol. 8 (Wiley-VCH, 2014), Chap. 3.
  5. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, Inc., 1999), Chap. 9.
  6. J. K. Lim and J. K. Song, “Polymerized micro-patterned optical birefringence film and its fabrication using multi beam mixing,” Opt. Express 19(27), 26956–26961 (2011).
    [Crossref] [PubMed]
  7. S.-T. Wu, “Phase-matched compensation films for liquid crystal displays,” Mater. Chem. Phys. 42(3), 163–168 (1995).
    [Crossref]
  8. R. Lu, X. Zhu, S.-T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-view liquid crystal displays,” J. Disp. Technol. 1(1), 3–14 (2005).
    [Crossref]
  9. J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
    [Crossref]
  10. S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display,” J. Inf. Display 16(1), 1–10 (2015).
    [Crossref]
  11. S. S. Kim, B. H. Berkeley, K.-H. Kim, and J. K. Song, “New technologies for advanced LCD-TV performance,” J. Soc. Inf. Disp. 12(4), 353–359 (2004).
    [Crossref]
  12. D. W. Van Krevelen, In Properties of Polymers: Correlation with Chemical Structure, (Elsevier, 1972), Chap. 11.
  13. A. A. Askadskii, “Structure-property relationships in polymers: a quantitative analysis,” Polym. Sci. Ser. B 37, 66 (1995).
  14. A. K. Agrawal and S. A. Jenekhe, “Thin-film processing and optical properties of conjugated rigid-rod polyquinolines for nonlinear optical applications,” Chem. Mater. 4(1), 95–104 (1992).
    [Crossref]
  15. R. García-Domenech and J. V. de Julián-Ortiz, “Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices,” J. Phys. Chem. B 106(6), 1501–1507 (2002).
    [Crossref]
  16. J. Bicerano, Prediction of Polymer Properties, 2nd ed. (Marcel Dekker, 1996).
  17. O. Mekenyan, S. Dimitrov, and D. Bonchev, “Graph—theoretical approach to the calculation of physico-chemical properties of polymers,” Eur. Polym. J. 19(12), 1185–1193 (1983).
    [Crossref]
  18. X. Yu, B. Yi, and X. Wang, “Prediction of refractive index of vinyl polymers by using density functional theory,” J. Comput. Chem. 28(14), 2336–2341 (2007).
    [Crossref] [PubMed]
  19. B. Erman and P. J. Flory, “Experimental results relating stress and birefringence to strain in poly(dimethylsiloxane) networks. Comparisons with theory,” Macromolecules 16(10), 1607–1613 (1983).
    [Crossref]
  20. J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96(11), 6253–6258 (2004).
    [Crossref]
  21. A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
    [Crossref]
  22. A. K. Srivastava, S. Yang, and J. H. Lee, “Negative dispersion retarder using two negative birefringence films,” Opt. Express 23(10), 13108–13114 (2015).
    [Crossref] [PubMed]
  23. J. Hwang, S. Yang, Y. J. Choi, Y. Lee, K. U. Jeong, and J. H. Lee, “Single layer retarder with negative dispersion of birefringence and wide field-of-view,” Opt. Express 24(17), 19934–19939 (2016).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

A. K. Srivastava, S. Yang, and J. H. Lee, “Negative dispersion retarder using two negative birefringence films,” Opt. Express 23(10), 13108–13114 (2015).
[Crossref] [PubMed]

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display,” J. Inf. Display 16(1), 1–10 (2015).
[Crossref]

2012 (1)

E. Lee and J.-K. Song, “High efficiency organic light-emitting display using selective spectral photo-recycling,” Appl. Phys., A Mater. Sci. Process. 109(2), 431–436 (2012).
[Crossref]

2011 (1)

2009 (1)

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater. 1(1), 29–36 (2009).
[Crossref]

2007 (1)

X. Yu, B. Yi, and X. Wang, “Prediction of refractive index of vinyl polymers by using density functional theory,” J. Comput. Chem. 28(14), 2336–2341 (2007).
[Crossref] [PubMed]

2005 (2)

R. Lu, X. Zhu, S.-T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-view liquid crystal displays,” J. Disp. Technol. 1(1), 3–14 (2005).
[Crossref]

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

2004 (2)

J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96(11), 6253–6258 (2004).
[Crossref]

S. S. Kim, B. H. Berkeley, K.-H. Kim, and J. K. Song, “New technologies for advanced LCD-TV performance,” J. Soc. Inf. Disp. 12(4), 353–359 (2004).
[Crossref]

2002 (1)

R. García-Domenech and J. V. de Julián-Ortiz, “Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices,” J. Phys. Chem. B 106(6), 1501–1507 (2002).
[Crossref]

1998 (1)

A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
[Crossref]

1995 (2)

A. A. Askadskii, “Structure-property relationships in polymers: a quantitative analysis,” Polym. Sci. Ser. B 37, 66 (1995).

S.-T. Wu, “Phase-matched compensation films for liquid crystal displays,” Mater. Chem. Phys. 42(3), 163–168 (1995).
[Crossref]

1992 (1)

A. K. Agrawal and S. A. Jenekhe, “Thin-film processing and optical properties of conjugated rigid-rod polyquinolines for nonlinear optical applications,” Chem. Mater. 4(1), 95–104 (1992).
[Crossref]

1983 (2)

B. Erman and P. J. Flory, “Experimental results relating stress and birefringence to strain in poly(dimethylsiloxane) networks. Comparisons with theory,” Macromolecules 16(10), 1607–1613 (1983).
[Crossref]

O. Mekenyan, S. Dimitrov, and D. Bonchev, “Graph—theoretical approach to the calculation of physico-chemical properties of polymers,” Eur. Polym. J. 19(12), 1185–1193 (1983).
[Crossref]

Agrawal, A. K.

A. K. Agrawal and S. A. Jenekhe, “Thin-film processing and optical properties of conjugated rigid-rod polyquinolines for nonlinear optical applications,” Chem. Mater. 4(1), 95–104 (1992).
[Crossref]

Askadskii, A. A.

A. A. Askadskii, “Structure-property relationships in polymers: a quantitative analysis,” Polym. Sci. Ser. B 37, 66 (1995).

Baird, G.

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

Berkeley, B. H.

S. S. Kim, B. H. Berkeley, K.-H. Kim, and J. K. Song, “New technologies for advanced LCD-TV performance,” J. Soc. Inf. Disp. 12(4), 353–359 (2004).
[Crossref]

Bonchev, D.

O. Mekenyan, S. Dimitrov, and D. Bonchev, “Graph—theoretical approach to the calculation of physico-chemical properties of polymers,” Eur. Polym. J. 19(12), 1185–1193 (1983).
[Crossref]

Choi, Y. J.

de Julián-Ortiz, J. V.

R. García-Domenech and J. V. de Julián-Ortiz, “Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices,” J. Phys. Chem. B 106(6), 1501–1507 (2002).
[Crossref]

Dimitrov, S.

O. Mekenyan, S. Dimitrov, and D. Bonchev, “Graph—theoretical approach to the calculation of physico-chemical properties of polymers,” Eur. Polym. J. 19(12), 1185–1193 (1983).
[Crossref]

Erman, B.

B. Erman and P. J. Flory, “Experimental results relating stress and birefringence to strain in poly(dimethylsiloxane) networks. Comparisons with theory,” Macromolecules 16(10), 1607–1613 (1983).
[Crossref]

Flory, P. J.

B. Erman and P. J. Flory, “Experimental results relating stress and birefringence to strain in poly(dimethylsiloxane) networks. Comparisons with theory,” Macromolecules 16(10), 1607–1613 (1983).
[Crossref]

García-Domenech, R.

R. García-Domenech and J. V. de Julián-Ortiz, “Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices,” J. Phys. Chem. B 106(6), 1501–1507 (2002).
[Crossref]

Hong, Q.

R. Lu, X. Zhu, S.-T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-view liquid crystal displays,” J. Disp. Technol. 1(1), 3–14 (2005).
[Crossref]

Hwang, J.

Jenekhe, S. A.

A. K. Agrawal and S. A. Jenekhe, “Thin-film processing and optical properties of conjugated rigid-rod polyquinolines for nonlinear optical applications,” Chem. Mater. 4(1), 95–104 (1992).
[Crossref]

Jeong, K. U.

Kang, S. W.

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

Karelson, M.

A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
[Crossref]

Katritzky, A. R.

A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
[Crossref]

Kim, A.-K.

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display,” J. Inf. Display 16(1), 1–10 (2015).
[Crossref]

Kim, K. H.

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater. 1(1), 29–36 (2009).
[Crossref]

Kim, K.-H.

S. S. Kim, B. H. Berkeley, K.-H. Kim, and J. K. Song, “New technologies for advanced LCD-TV performance,” J. Soc. Inf. Disp. 12(4), 353–359 (2004).
[Crossref]

Kim, S. D.

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

Kim, S. S.

S. S. Kim, B. H. Berkeley, K.-H. Kim, and J. K. Song, “New technologies for advanced LCD-TV performance,” J. Soc. Inf. Disp. 12(4), 353–359 (2004).
[Crossref]

Lee, B.

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

Lee, E.

E. Lee and J.-K. Song, “High efficiency organic light-emitting display using selective spectral photo-recycling,” Appl. Phys., A Mater. Sci. Process. 109(2), 431–436 (2012).
[Crossref]

Lee, J. H.

Lee, Y.

Li, J.

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96(11), 6253–6258 (2004).
[Crossref]

Lim, J. K.

Lin, Y.-H.

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

Lu, R.

R. Lu, X. Zhu, S.-T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-view liquid crystal displays,” J. Disp. Technol. 1(1), 3–14 (2005).
[Crossref]

Mekenyan, O.

O. Mekenyan, S. Dimitrov, and D. Bonchev, “Graph—theoretical approach to the calculation of physico-chemical properties of polymers,” Eur. Polym. J. 19(12), 1185–1193 (1983).
[Crossref]

Oh, S.-W.

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display,” J. Inf. Display 16(1), 1–10 (2015).
[Crossref]

Park, B. W.

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display,” J. Inf. Display 16(1), 1–10 (2015).
[Crossref]

Ren, H.

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

Sild, S.

A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
[Crossref]

Song, J. K.

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

J. K. Lim and J. K. Song, “Polymerized micro-patterned optical birefringence film and its fabrication using multi beam mixing,” Opt. Express 19(27), 26956–26961 (2011).
[Crossref] [PubMed]

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater. 1(1), 29–36 (2009).
[Crossref]

S. S. Kim, B. H. Berkeley, K.-H. Kim, and J. K. Song, “New technologies for advanced LCD-TV performance,” J. Soc. Inf. Disp. 12(4), 353–359 (2004).
[Crossref]

Song, J.-K.

E. Lee and J.-K. Song, “High efficiency organic light-emitting display using selective spectral photo-recycling,” Appl. Phys., A Mater. Sci. Process. 109(2), 431–436 (2012).
[Crossref]

Srivastava, A. K.

Wang, X.

X. Yu, B. Yi, and X. Wang, “Prediction of refractive index of vinyl polymers by using density functional theory,” J. Comput. Chem. 28(14), 2336–2341 (2007).
[Crossref] [PubMed]

Wu, S.-T.

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

R. Lu, X. Zhu, S.-T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-view liquid crystal displays,” J. Disp. Technol. 1(1), 3–14 (2005).
[Crossref]

J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96(11), 6253–6258 (2004).
[Crossref]

S.-T. Wu, “Phase-matched compensation films for liquid crystal displays,” Mater. Chem. Phys. 42(3), 163–168 (1995).
[Crossref]

Wu, T. X.

R. Lu, X. Zhu, S.-T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-view liquid crystal displays,” J. Disp. Technol. 1(1), 3–14 (2005).
[Crossref]

Yang, S.

Yi, B.

X. Yu, B. Yi, and X. Wang, “Prediction of refractive index of vinyl polymers by using density functional theory,” J. Comput. Chem. 28(14), 2336–2341 (2007).
[Crossref] [PubMed]

Yoon, T.-H.

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display,” J. Inf. Display 16(1), 1–10 (2015).
[Crossref]

Yu, X.

X. Yu, B. Yi, and X. Wang, “Prediction of refractive index of vinyl polymers by using density functional theory,” J. Comput. Chem. 28(14), 2336–2341 (2007).
[Crossref] [PubMed]

Zhu, X.

R. Lu, X. Zhu, S.-T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-view liquid crystal displays,” J. Disp. Technol. 1(1), 3–14 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

E. Lee and J.-K. Song, “High efficiency organic light-emitting display using selective spectral photo-recycling,” Appl. Phys., A Mater. Sci. Process. 109(2), 431–436 (2012).
[Crossref]

Chem. Mater. (1)

A. K. Agrawal and S. A. Jenekhe, “Thin-film processing and optical properties of conjugated rigid-rod polyquinolines for nonlinear optical applications,” Chem. Mater. 4(1), 95–104 (1992).
[Crossref]

Eur. Polym. J. (1)

O. Mekenyan, S. Dimitrov, and D. Bonchev, “Graph—theoretical approach to the calculation of physico-chemical properties of polymers,” Eur. Polym. J. 19(12), 1185–1193 (1983).
[Crossref]

J. Appl. Phys. (1)

J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys. 96(11), 6253–6258 (2004).
[Crossref]

J. Chem. Inf. Comput. Sci. (1)

A. R. Katritzky, S. Sild, and M. Karelson, “Correlation and prediction of the refractive indices of polymers by QSPR,” J. Chem. Inf. Comput. Sci. 38(6), 1171–1176 (1998).
[Crossref]

J. Comput. Chem. (1)

X. Yu, B. Yi, and X. Wang, “Prediction of refractive index of vinyl polymers by using density functional theory,” J. Comput. Chem. 28(14), 2336–2341 (2007).
[Crossref] [PubMed]

J. Disp. Technol. (1)

R. Lu, X. Zhu, S.-T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-view liquid crystal displays,” J. Disp. Technol. 1(1), 3–14 (2005).
[Crossref]

J. Inf. Display (1)

S.-W. Oh, A.-K. Kim, B. W. Park, and T.-H. Yoon, “Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display,” J. Inf. Display 16(1), 1–10 (2015).
[Crossref]

J. Phys. Chem. B (1)

R. García-Domenech and J. V. de Julián-Ortiz, “Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices,” J. Phys. Chem. B 106(6), 1501–1507 (2002).
[Crossref]

J. Soc. Inf. Disp. (2)

S. S. Kim, B. H. Berkeley, K.-H. Kim, and J. K. Song, “New technologies for advanced LCD-TV performance,” J. Soc. Inf. Disp. 12(4), 353–359 (2004).
[Crossref]

J. Li, G. Baird, Y.-H. Lin, H. Ren, and S.-T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13(12), 1017–1026 (2005).
[Crossref]

Macromolecules (1)

B. Erman and P. J. Flory, “Experimental results relating stress and birefringence to strain in poly(dimethylsiloxane) networks. Comparisons with theory,” Macromolecules 16(10), 1607–1613 (1983).
[Crossref]

Mater. Chem. Phys. (1)

S.-T. Wu, “Phase-matched compensation films for liquid crystal displays,” Mater. Chem. Phys. 42(3), 163–168 (1995).
[Crossref]

Nat. Commun. (1)

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

NPG Asia Mater. (1)

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater. 1(1), 29–36 (2009).
[Crossref]

Opt. Express (3)

Polym. Sci. Ser. B (1)

A. A. Askadskii, “Structure-property relationships in polymers: a quantitative analysis,” Polym. Sci. Ser. B 37, 66 (1995).

Other (4)

D. W. Van Krevelen, In Properties of Polymers: Correlation with Chemical Structure, (Elsevier, 1972), Chap. 11.

J. Bicerano, Prediction of Polymer Properties, 2nd ed. (Marcel Dekker, 1996).

J. W. Goodby, P. J. Collings, T. Kato, C. Tschierske, H. Gleeson, and P. Raynes, Handbook of Liquid Crystals, 2nd Edition, Vol. 8 (Wiley-VCH, 2014), Chap. 3.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, Inc., 1999), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Simulation flow for optical properties of stretched polymer films.
Fig. 2
Fig. 2 Electronic structure optimization for COP by monitoring electrostatic potential energy (left), and optimized structure of PET and PVA (middle and right).
Fig. 3
Fig. 3 (a) Young’s modulus and (b) glass transition temperature for COP as a function of MW.
Fig. 4
Fig. 4 (a) Simulated refractive indices versus experimental data for various polymers. (b) Simulated and measured dispersion of refractive indices for COP, PET, and PVA films.
Fig. 5
Fig. 5 (a) Molecular packing state with increasing stretching ratio, (b) definitions for stretching ratio and Poisson’s ratio, (c)–(d) order parameters and molecular volumes as a function of stretching ratio for COP, PVA, and PET.
Fig. 6
Fig. 6 (a)-(b) Simulation for the relative film thickness and the density of polymer films as a function of stretching ratio. (c)Simulated retardation of COP, PET, and PVA films as functions of wavelength and stretching ratio (legend: stretching ratio).
Fig. 7
Fig. 7 (a) Illustration of experimental set-up for polymer stretching, and PET and COP films before and after stretching. (b–c) Experimental and simulated birefringence for a 1.5- times-stretched PET (80 μm) and COP (40 μm) films at various wavelengths.

Tables (1)

Tables Icon

Table 1 Molecular polarizability tensor calculated for COP, PET, and PVA. <α>, <α>: mean polarizability of y- and z-axes, and of all three primary axes, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n i 2 1 n 2 +2 = 4πN α i 3 ,
n i 2 (λ)1 n 2 (λ)+2 = 4π 3 ρ N A M W α i (λ)= 4π 3 V mol α i (λ),
α X =α+ 2 3 S[ α xx 1 2 ( α yy + α zz ) ], and
α Y = α Z =α 1 3 S[ α xx 1 2 ( α yy + α zz ) ],
Δy y = Δz z = ( 1+ Δx x ) R P 1

Metrics