Abstract

Monolayer graphene has poor absorption in the near-infrared region. Its layer is only as thick as a single atom so it cannot have a high absorptivity. In this paper, in order to form a hybrid system, the absorption characteristics of monolayer graphene covering a metal/dielectric/metal substrate has been theoretically analyzed. The magnetic polaritons in the metal/dielectric couple with the plasmonic resonance in the graphene to dramatically enhance the graphene absorptivity. This study analyzes the factors that enhance the absorptivity, including the geometric parameters and the relative positions of the graphene. The local electromagnetic field and the power dissipation density are illustrated to explain the underlying mechanisms further. These numerical results can provide potential application in the field of optical detection and optoelectronic devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable absorption as multi-wavelength at infrared on graphene/hBN/Al grating structure

Qinghui Pan, Guohua Zhang, Ruming Pan, Jiahui Zhang, Yong Shuai, and Heping Tan
Opt. Express 26(14) 18230-18237 (2018)

Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure

Lei Zhang, Linlong Tang, Wei Wei, Xinlu Cheng, Wei Wang, and Hong Zhang
Opt. Express 24(18) 20002-20009 (2016)

Resonance enhanced absorption in a graphene monolayer using deep metal gratings

B. Zhao, J. M. Zhao, and Z. M. Zhang
J. Opt. Soc. Am. B 32(6) 1176-1185 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Kang, M. C. Wang, and S. Nam, “Bioelectronics with two-dimensional materials,” Microelectron. Eng. 161, 18–35 (2016).
    [Crossref]
  2. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]
  3. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
    [Crossref] [PubMed]
  4. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  5. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
    [Crossref] [PubMed]
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  7. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
    [Crossref] [PubMed]
  8. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  9. T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
    [Crossref] [PubMed]
  10. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  11. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6-7), 485–496 (2005).
    [Crossref]
  12. X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
    [Crossref] [PubMed]
  13. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
    [Crossref] [PubMed]
  14. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
    [Crossref] [PubMed]
  15. N. M. R. Peres, “The electronic properties of graphene and its bilayer,” Vacuum 83(10), 1248–1252 (2009).
    [Crossref]
  16. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  17. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  18. S. Xiao, X. Zhu, B.-H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
    [Crossref]
  19. X. Li, L. Wang, C. Li, B. Chen, Q. Zhao, and G. Zhang, “Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles,” J. Power Sources 308, 65–74 (2016).
    [Crossref]
  20. Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids,” Chem. Commun. (Camb.) 51(5), 866–869 (2015).
    [Crossref] [PubMed]
  21. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  22. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
    [Crossref] [PubMed]
  23. D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, V. V. Temnov, H. I. Lee, and J. Mok, “Plasmonically induced magnetic field in graphene-coated nanowires,” Opt. Lett. 41(2), 396–399 (2016).
    [Crossref] [PubMed]
  24. A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
    [Crossref]
  25. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Resonance enhanced absorption in a graphene monolayer using deep metal gratings,” J. Opt. Soc. Am. B 32(6), 1176 (2015).
    [Crossref]
  26. X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
    [Crossref]
  27. B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
    [Crossref]
  28. W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
    [Crossref]
  29. W. Wei, J. Nong, L. Tang, Y. Zhu, and H. Shi, “Coupling of graphene plasmonics modes induced by near-field perturbation at terahertz frequencies,” Plasmonics 11(4), 1109–1118 (2015).
    [Crossref]
  30. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
    [Crossref] [PubMed]
  31. W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically tunable absorption enhancement with spectral and polarization selectivity through graphene plasmonic light trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
    [Crossref] [PubMed]
  32. L. Wang, X. Chen, and W. Lu, “Intrinsic photo-conductance triggered by the plasmonic effect in graphene for terahertz detection,” Nanotechnology 27(3), 035205 (2016).
    [Crossref] [PubMed]
  33. L. P. Wang and Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
    [Crossref]
  34. E. D. Palik, Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  35. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  36. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153450 (2007).
    [Crossref]
  37. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
    [Crossref]
  38. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
    [Crossref] [PubMed]
  39. H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
    [Crossref]
  40. Y. B. Chen and F. C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
    [Crossref] [PubMed]

2017 (1)

W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
[Crossref]

2016 (6)

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, V. V. Temnov, H. I. Lee, and J. Mok, “Plasmonically induced magnetic field in graphene-coated nanowires,” Opt. Lett. 41(2), 396–399 (2016).
[Crossref] [PubMed]

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically tunable absorption enhancement with spectral and polarization selectivity through graphene plasmonic light trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

L. Wang, X. Chen, and W. Lu, “Intrinsic photo-conductance triggered by the plasmonic effect in graphene for terahertz detection,” Nanotechnology 27(3), 035205 (2016).
[Crossref] [PubMed]

P. Kang, M. C. Wang, and S. Nam, “Bioelectronics with two-dimensional materials,” Microelectron. Eng. 161, 18–35 (2016).
[Crossref]

S. Xiao, X. Zhu, B.-H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

X. Li, L. Wang, C. Li, B. Chen, Q. Zhao, and G. Zhang, “Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles,” J. Power Sources 308, 65–74 (2016).
[Crossref]

2015 (5)

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids,” Chem. Commun. (Camb.) 51(5), 866–869 (2015).
[Crossref] [PubMed]

W. Wei, J. Nong, L. Tang, Y. Zhu, and H. Shi, “Coupling of graphene plasmonics modes induced by near-field perturbation at terahertz frequencies,” Plasmonics 11(4), 1109–1118 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Resonance enhanced absorption in a graphene monolayer using deep metal gratings,” J. Opt. Soc. Am. B 32(6), 1176 (2015).
[Crossref]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

2014 (5)

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
[Crossref] [PubMed]

H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

2013 (3)

Y. B. Chen and F. C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
[Crossref] [PubMed]

L. P. Wang and Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[Crossref]

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

2012 (3)

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2010 (5)

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

2009 (2)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

N. M. R. Peres, “The electronic properties of graphene and its bilayer,” Vacuum 83(10), 1248–1252 (2009).
[Crossref]

2008 (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

2007 (2)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153450 (2007).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (1)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

2005 (1)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6-7), 485–496 (2005).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ajayan, P. M.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Badioli, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Bai, J.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Bando, Y.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Banerjee, S. K.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Bernechea, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bonaccorso, F.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bychkov, I. V.

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Chen, B.

X. Li, L. Wang, C. Li, B. Chen, Q. Zhao, and G. Zhang, “Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles,” J. Power Sources 308, 65–74 (2016).
[Crossref]

Chen, L.

Chen, X.

L. Wang, X. Chen, and W. Lu, “Intrinsic photo-conductance triggered by the plasmonic effect in graphene for terahertz detection,” Nanotechnology 27(3), 035205 (2016).
[Crossref] [PubMed]

Chen, Y. B.

Cheng, R.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Chiu, F. C.

Clifford, J.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Colombo, L.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Ding, W.

Dresselhaus, M. S.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Duan, X.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153450 (2007).
[Crossref]

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Fan, S.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Fang, X.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Fang, Y.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Feng, R.

Fiori, G.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fischer, A.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Freitag, M.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Gao, W.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Garcia de Arquer, F. P.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Gatti, F.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Gaudreau, L.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Golberg, D.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Hoogland, S.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Howard, I.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Huang, Y.

W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
[Crossref]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Iannaccone, G.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jin, Z.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kang, P.

P. Kang, M. C. Wang, and S. Nam, “Bioelectronics with two-dimensional materials,” Microelectron. Eng. 161, 18–35 (2016).
[Crossref]

Klem, E.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Koide, Y.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Kong, J.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Kono, J.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Konstantatos, G.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Koppens, F. H.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Kuzmin, D. A.

Lee, H. I.

Levina, L.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Li, B.-H.

S. Xiao, X. Zhu, B.-H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

Li, C.

X. Li, L. Wang, C. Li, B. Chen, Q. Zhao, and G. Zhang, “Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles,” J. Power Sources 308, 65–74 (2016).
[Crossref]

Li, L.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Li, X.

X. Li, L. Wang, C. Li, B. Chen, Q. Zhao, and G. Zhang, “Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles,” J. Power Sources 308, 65–74 (2016).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Liao, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Liao, M.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Ling, X.

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Liu, B.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Liu, G.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Liu, L.

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
[Crossref] [PubMed]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Liu, W.

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically tunable absorption enhancement with spectral and polarization selectivity through graphene plasmonic light trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

Liu, X. L.

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

Liu, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Liu, Z.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Lu, W.

L. Wang, X. Chen, and W. Lu, “Intrinsic photo-conductance triggered by the plasmonic effect in graphene for terahertz detection,” Nanotechnology 27(3), 035205 (2016).
[Crossref] [PubMed]

Ma, Y.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Mok, J.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mortensen, N. A.

S. Xiao, X. Zhu, B.-H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6-7), 485–496 (2005).
[Crossref]

Mueller, T.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Nam, S.

P. Kang, M. C. Wang, and S. Nam, “Bioelectronics with two-dimensional materials,” Microelectron. Eng. 161, 18–35 (2016).
[Crossref]

Neumaier, D.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Nong, J.

W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
[Crossref]

W. Wei, J. Nong, L. Tang, Y. Zhu, and H. Shi, “Coupling of graphene plasmonics modes induced by near-field perturbation at terahertz frequencies,” Plasmonics 11(4), 1109–1118 (2015).
[Crossref]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Osmond, J.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Palacios, T.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Peres, N. M. R.

N. M. R. Peres, “The electronic properties of graphene and its bilayer,” Vacuum 83(10), 1248–1252 (2009).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Perruisseau-Carrier, J.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153450 (2007).
[Crossref]

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Qin, S.

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically tunable absorption enhancement with spectral and polarization selectivity through graphene plasmonic light trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

Qiu, J.

Qu, Y.

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids,” Chem. Commun. (Camb.) 51(5), 866–869 (2015).
[Crossref] [PubMed]

Sargent, E. H.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Seabaugh, A.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Shavrov, V. G.

Shi, G.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Shi, H.

W. Wei, J. Nong, L. Tang, Y. Zhu, and H. Shi, “Coupling of graphene plasmonics modes induced by near-field perturbation at terahertz frequencies,” Plasmonics 11(4), 1109–1118 (2015).
[Crossref]

Shu, J.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Tang, L.

W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
[Crossref]

W. Wei, J. Nong, L. Tang, Y. Zhu, and H. Shi, “Coupling of graphene plasmonics modes induced by near-field perturbation at terahertz frequencies,” Plasmonics 11(4), 1109–1118 (2015).
[Crossref]

Tao, Z.

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids,” Chem. Commun. (Camb.) 51(5), 866–869 (2015).
[Crossref] [PubMed]

Temnov, V. V.

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Vajtai, R.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wang, H.

H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

Wang, L.

L. Wang, X. Chen, and W. Lu, “Intrinsic photo-conductance triggered by the plasmonic effect in graphene for terahertz detection,” Nanotechnology 27(3), 035205 (2016).
[Crossref] [PubMed]

X. Li, L. Wang, C. Li, B. Chen, Q. Zhao, and G. Zhang, “Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles,” J. Power Sources 308, 65–74 (2016).
[Crossref]

H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[Crossref]

Wang, M. C.

P. Kang, M. C. Wang, and S. Nam, “Bioelectronics with two-dimensional materials,” Microelectron. Eng. 161, 18–35 (2016).
[Crossref]

Wei, D.

W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
[Crossref]

Wei, W.

W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
[Crossref]

W. Wei, J. Nong, L. Tang, Y. Zhu, and H. Shi, “Coupling of graphene plasmonics modes induced by near-field perturbation at terahertz frequencies,” Plasmonics 11(4), 1109–1118 (2015).
[Crossref]

Wu, Y.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Xia, F.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Xiao, S.

S. Xiao, X. Zhu, B.-H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

Xie, L.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Xiong, P.

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids,” Chem. Commun. (Camb.) 51(5), 866–869 (2015).
[Crossref] [PubMed]

Xu, H.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Xu, Q.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Xu, X.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Yan, H.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Yang, J.

W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
[Crossref]

Yang, Y.

H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

Yao, J.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Yuan, X.

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically tunable absorption enhancement with spectral and polarization selectivity through graphene plasmonic light trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zeng, W.

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids,” Chem. Commun. (Camb.) 51(5), 866–869 (2015).
[Crossref] [PubMed]

Zhai, T.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Zhang, G.

W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
[Crossref]

X. Li, L. Wang, C. Li, B. Chen, Q. Zhao, and G. Zhang, “Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles,” J. Power Sources 308, 65–74 (2016).
[Crossref]

Zhang, H.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Zhang, J.

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically tunable absorption enhancement with spectral and polarization selectivity through graphene plasmonic light trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

Zhang, Q.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Resonance enhanced absorption in a graphene monolayer using deep metal gratings,” J. Opt. Soc. Am. B 32(6), 1176 (2015).
[Crossref]

L. P. Wang and Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[Crossref]

Zhao, B.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Resonance enhanced absorption in a graphene monolayer using deep metal gratings,” J. Opt. Soc. Am. B 32(6), 1176 (2015).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

Zhao, J. M.

Zhao, Q.

X. Li, L. Wang, C. Li, B. Chen, Q. Zhao, and G. Zhang, “Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles,” J. Power Sources 308, 65–74 (2016).
[Crossref]

Zhao, Y.

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids,” Chem. Commun. (Camb.) 51(5), 866–869 (2015).
[Crossref] [PubMed]

Zhou, H.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Zhu, W.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Zhu, X.

S. Xiao, X. Zhu, B.-H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

Zhu, Y.

W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
[Crossref]

W. Wei, J. Nong, L. Tang, Y. Zhu, and H. Shi, “Coupling of graphene plasmonics modes induced by near-field perturbation at terahertz frequencies,” Plasmonics 11(4), 1109–1118 (2015).
[Crossref]

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids,” Chem. Commun. (Camb.) 51(5), 866–869 (2015).
[Crossref] [PubMed]

Zhu, Z.

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically tunable absorption enhancement with spectral and polarization selectivity through graphene plasmonic light trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

ACS Nano (2)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

ACS Photonics (2)

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

Appl. Phys. Lett. (1)

H. Wang, Y. Yang, and L. Wang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105(7), 071907 (2014).
[Crossref]

Chem. Commun. (Camb.) (1)

Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, and Y. Zhu, “Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids,” Chem. Commun. (Camb.) 51(5), 866–869 (2015).
[Crossref] [PubMed]

Front. Phys. (1)

S. Xiao, X. Zhu, B.-H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11(2), 117801 (2016).
[Crossref]

J. Heat Transfer (1)

L. P. Wang and Z. M. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[Crossref]

J. Opt. (1)

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

J. Power Sources (1)

X. Li, L. Wang, C. Li, B. Chen, Q. Zhao, and G. Zhang, “Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles,” J. Power Sources 308, 65–74 (2016).
[Crossref]

J. Raman Spectrosc. (1)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6-7), 485–496 (2005).
[Crossref]

Microelectron. Eng. (1)

P. Kang, M. C. Wang, and S. Nam, “Bioelectronics with two-dimensional materials,” Microelectron. Eng. 161, 18–35 (2016).
[Crossref]

Nano Lett. (2)

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Nanomaterials (Basel) (1)

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically tunable absorption enhancement with spectral and polarization selectivity through graphene plasmonic light trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

L. Wang, X. Chen, and W. Lu, “Intrinsic photo-conductance triggered by the plasmonic effect in graphene for terahertz detection,” Nanotechnology 27(3), 035205 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref] [PubMed]

Nat. Mater. (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Nature (1)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

W. Wei, J. Nong, Y. Zhu, L. Tang, G. Zhang, J. Yang, Y. Huang, and D. Wei, “Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing,” Opt. Commun. 395, 147–153 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153450 (2007).
[Crossref]

Plasmonics (1)

W. Wei, J. Nong, L. Tang, Y. Zhu, and H. Shi, “Coupling of graphene plasmonics modes induced by near-field perturbation at terahertz frequencies,” Plasmonics 11(4), 1109–1118 (2015).
[Crossref]

Science (3)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Small (1)

X. Ling and J. Zhang, “First-layer effect in graphene-enhanced Raman scattering,” Small 6(18), 2020–2025 (2010).
[Crossref] [PubMed]

Vacuum (1)

N. M. R. Peres, “The electronic properties of graphene and its bilayer,” Vacuum 83(10), 1248–1252 (2009).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the hybrid system with graphene covering a metal/dielectric/metal grating illustrating the period, P, incidence angle, θ, trench width, b, grating height, h, and dielectric thickness, t. The LC circuit model for the hybrid system is used to predict the resonance wavelength.
Fig. 2
Fig. 2 (a) Absorptivity spectra for normal incidence for the graphene hybrid system with a plane grating and monolayer graphene. (b) The difference value of the two structures total impedance. (c) Absorptive contours for the graphene hybrid system for various wavelengths and incidence angles. The parameters are P = 150 nm, b = 10 nm, h = 20 nm, μ = 0.3 eV and t = 20 nm.
Fig. 3
Fig. 3 Magnetic field (color maps) and Poynting vectors (arrows) excited by the MP resonance and power dissipation density at 1.02 μm. (a) Graphene hybrid system. (b) Power dissipation density of graphene hybrid system along the surface of the grating trench. (c) Plane grating. (d) Power dissipation density without graphene.
Fig. 4
Fig. 4 Absorptivities for various geometric parameters for normal incidence using the parameters given in Fig. 2 as the base case. The triangles indicate the resonance wavelengths predicted by the LC circuit model. (a) Trench width, (b) Grating period, (c) Dielectric thickness and (d) Grating height.
Fig. 5
Fig. 5 (a) Absorptivity of graphene on the top of the dielectric layer between the dielectric layer and the top metallic grating and graphene in the middle of the dielectric layer based on the geometric parameters given in Fig. 2. (b) Power dissipation density at the dielectric layer surface with just the dielectric layer. (c) Power dissipation density at the dielectric surface with the dielectric layer and the interlayer.
Fig. 6
Fig. 6 Absorptivities with various chemical potentials and 2D periodic structures with the same base case parameters as given in Fig. 2. (a) Absorptivity of a hybrid system for various chemical potentials. (b) A 2D periodic structure which square grating structures in the x and y directions with widths of P-b = 140 nm. (c) Absorption spectra with different polarization angles from 0° (TM) to 90° (TE)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=1+ σ s ε 0 ωΔ i
σ s = σ inter + σ intra
σ inter = e 2 4 [ G( ω 2 )+ 4ω π i η=0 G(η)G( ω 2 ) (ω) 2 4 η 2 dη ]
σ intra = i ω+i τ 1 e 2 π 2 2 k B Tln[ 2cosh( μ 2 k B T ) ]
L Au = L Au,k + L Au,m = pb ε 0 ω 2 lδ ε Au ε Au 2 + ε Au 2 + μ 0 (pb)t 2l
L G = c 2 (pb) ωl σ σ 2 + σ 2
Z tot = iω L Au L G ( L Au + L G ) ω 2 C g L Au L G +iω L Au 2i ω C m
ω= 1 C g L Au + 1 C m L Au + 1 2 C g L G + 8 C g C m L Au 2 L G ( L Au + L G )+ ( C m L Au 2 2 C g L Au L G 2 C m L Au L G ) 2 2 C g C m L Au 2 L G

Metrics