Abstract

For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 μm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 μm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode VCSEL chip for 100-Gb/s transmission over 100  m multimode fiber

Hsuan-Yun Kao, Yu-Chieh Chi, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Huai-Yung Wang, Jian Jang Huang, Jau-Ji Jou, Tien-Tsorng Shih, Hao-Chung Kuo, Wood-Hi Cheng, Chao-Hsin Wu, and Gong-Ru Lin
Photon. Res. 5(5) 507-515 (2017)

Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64  Gbit/s over 100–300  m in OM4 MMF

Hsuan-Yun Kao, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Yu-Chieh Chi, Huai-Yung Wang, Hao-Chung Kuo, Chao-Hsin Wu, Wood-Hi Cheng, and Gong-Ru Lin
Photon. Res. 6(7) 666-673 (2018)

High-Speed 850 nm Quasi-Single-Mode VCSELs for Extended-Reach Optical Interconnects

Rashid Safaisini, Krzysztof Szczerba, Petter Westbergh, Erik Haglund, Benjamin Kögel, Johan S. Gustavsson, Magnus Karlsson, Peter Andrekson, and Anders Larsson
J. Opt. Commun. Netw. 5(7) 686-695 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Safaisini, E. Haglund, A. Larsson, J. S. Gustavsson, E. P. Haglund, and P. Westbergh, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49(16), 1021–1023 (2013).
    [Crossref]
  2. “IEEE P802.3bs 400 Gb/s Ethernet task force,” (2016). http://www.ieee802.org/3/bs/
  3. D. J. Law, W. W. Diab, A. Healey, S. B. Carlson, and V. Maguire, “IEEE 802.3 industry connections Ethernet bandwidth assessment,” (IEEE 802.3 Industry Connections Bandwidth Assessment, 2012). http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdf
  4. P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
    [Crossref]
  5. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
    [Crossref]
  6. C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Chi, C.-H. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication (Anaheim, CA, USA, 2016), paper Th4D.2.
    [Crossref]
  7. H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).
  8. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64Gb/s transmission over 57m MMF using an NRZ modulated 850nm VCSEL,” in Conference on Optical Fiber Communication (San Francisco, CA, USA, 2014), paper Th3C. 2.
    [Crossref]
  9. B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
    [Crossref]
  10. A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions,” IEEE Photonics Technol. Lett. 21(10), 645–647 (2009).
    [Crossref]
  11. R. Safaisini, K. Szczerba, P. Westbergh, E. Haglund, B. Kögel, J. S. Gustavsson, M. Karlsson, P. Andrekson, and A. Larsson, “High-speed 850 nm quasi-single-mode VCSELs for extended-reach optical interconnects,” J. Opt. Commun. Netw. 5(7), 686–695 (2013).
    [Crossref]
  12. K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for high-speed short-range optical communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
    [Crossref]
  13. M. Jungo, F. M. Di Sopra, D. Erni, and W. Baechtold, “Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” Appl. Phys. Lett. 91(9), 5550–5557 (2002).
  14. P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 1–8 (2014).
  15. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. Ledentsov, and D. Bimberg, “Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs,” Proc. SPIE 8639, 86390V (2013).
    [Crossref]
  16. Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photonics Technol. Lett. 16(2), 368–370 (2004).
    [Crossref]
  17. M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 25(18), 1823–1825 (2013).
    [Crossref]
  18. P. Westbergh, A. Larsson, E. Haglund, R. Safaisini, and J. S. Gustavsson, “20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL,” Electron. Lett. 50(1), 40–42 (2014).
    [Crossref]
  19. R. Michalzik and K. J. Ebeling, “Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes,” IEEE J. Quantum Electron. 31(8), 1371–1379 (1995).
    [Crossref]
  20. M. H. Macdougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photonics Technol. Lett. 10(1), 9–11 (1998).
    [Crossref]
  21. Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by Helium implantation and zinc diffusion,” Electron. Lett. 28(3), 274–276 (1992).
    [Crossref]
  22. I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4(10), 841–846 (1989).
    [Crossref]
  23. J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photonics Technol. Lett. 20(13), 1121–1123 (2008).
    [Crossref]
  24. N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-µm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication Conf. (Anaheim, CA, USA, 2006), paper OFA4.
  25. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
    [Crossref]
  26. D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
    [Crossref]
  27. P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850 nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
    [Crossref]
  28. S.-Y. Lin, Y.-C. Su, Y.-C. Li, H.-L. Wang, G.-C. Lin, S.-M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
    [Crossref] [PubMed]
  29. K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31(22), 3525–3534 (2013).
    [Crossref]
  30. F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber,” in Conference on Optical Fiber Communication (San Diego, CA, USA, 2008), paper OWB5.
    [Crossref]
  31. J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100 Gbps PAM-4 Transmission over 100m OM4 and wideband fiber using 850nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication (Dusseldorf, Germany, 2016), paper Th.1.C.5.
  32. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
    [Crossref] [PubMed]
  33. F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19(3), 206–212 (2013).
    [Crossref]
  34. R. Puerta, M. Agustin, L. Chorchos, J. Tonski, J.-R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, “107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber,” in Conference on Optical Fiber Communication (Anaheim, CA, USA, 2016), paper Th5B.5.
    [Crossref]
  35. I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
    [Crossref]
  36. C. Kottke, C. Caspar, V. Jungnickel, R. Freund, M. Agustin, and N. Ledentsov, “High speed 160 Gb/s DMT VCSEL transmission using pre-equalization,” in Conference on Optical Fiber Communication (Los Angeles, CA, USA, 2017), paper W4I.7.
    [Crossref]
  37. P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
    [Crossref]
  38. E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson, “Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter,” Proc. SPIE 8276, 82760L (2012).
    [Crossref]
  39. K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
    [Crossref]
  40. P. V. Mena, J. J. Morikuni, S. M. Kang, A. V. Harton, and K. W. Wyatt, “A simple rate-equation-based thermal VCSEL model,” J. Lightwave Technol. 17(5), 865–872 (1999).
    [Crossref]
  41. A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photonics Technol. Lett. 17(9), 1767–1769 (2005).
    [Crossref]
  42. J. Piprek, T. TrÖger, B. SchrÖter, J. Kolodzey, and C. S. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors,” IEEE Photonics Technol. Lett. 10(1), 81–83 (1998).
    [Crossref]
  43. M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22(13), 15724–15736 (2014).
    [Crossref] [PubMed]
  44. S. E. Hashemi, Relative intensity noise (RIN) in high-speed VCSELs for short reach communication, (Chalmers, 2012)
  45. “Series G: Transmission systems and media, digital systems and networks,” http://www.certificate.net/Portals/1/Standards/ITU/g-107.doc
  46. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
    [Crossref] [PubMed]

2016 (1)

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

2015 (2)

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

2014 (3)

M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22(13), 15724–15736 (2014).
[Crossref] [PubMed]

P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 1–8 (2014).

P. Westbergh, A. Larsson, E. Haglund, R. Safaisini, and J. S. Gustavsson, “20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL,” Electron. Lett. 50(1), 40–42 (2014).
[Crossref]

2013 (8)

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 25(18), 1823–1825 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. Ledentsov, and D. Bimberg, “Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs,” Proc. SPIE 8639, 86390V (2013).
[Crossref]

R. Safaisini, K. Szczerba, P. Westbergh, E. Haglund, B. Kögel, J. S. Gustavsson, M. Karlsson, P. Andrekson, and A. Larsson, “High-speed 850 nm quasi-single-mode VCSELs for extended-reach optical interconnects,” J. Opt. Commun. Netw. 5(7), 686–695 (2013).
[Crossref]

R. Safaisini, E. Haglund, A. Larsson, J. S. Gustavsson, E. P. Haglund, and P. Westbergh, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49(16), 1021–1023 (2013).
[Crossref]

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19(3), 206–212 (2013).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850 nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
[Crossref]

S.-Y. Lin, Y.-C. Su, Y.-C. Li, H.-L. Wang, G.-C. Lin, S.-M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
[Crossref] [PubMed]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31(22), 3525–3534 (2013).
[Crossref]

2012 (4)

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
[Crossref] [PubMed]

E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson, “Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter,” Proc. SPIE 8276, 82760L (2012).
[Crossref]

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for high-speed short-range optical communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
[Crossref]

2010 (1)

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

2009 (3)

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions,” IEEE Photonics Technol. Lett. 21(10), 645–647 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

2008 (2)

E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[Crossref] [PubMed]

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photonics Technol. Lett. 20(13), 1121–1123 (2008).
[Crossref]

2006 (1)

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

2005 (1)

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photonics Technol. Lett. 17(9), 1767–1769 (2005).
[Crossref]

2004 (1)

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photonics Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

2002 (1)

M. Jungo, F. M. Di Sopra, D. Erni, and W. Baechtold, “Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” Appl. Phys. Lett. 91(9), 5550–5557 (2002).

1999 (1)

1998 (2)

J. Piprek, T. TrÖger, B. SchrÖter, J. Kolodzey, and C. S. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors,” IEEE Photonics Technol. Lett. 10(1), 81–83 (1998).
[Crossref]

M. H. Macdougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photonics Technol. Lett. 10(1), 9–11 (1998).
[Crossref]

1995 (1)

R. Michalzik and K. J. Ebeling, “Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes,” IEEE J. Quantum Electron. 31(8), 1371–1379 (1995).
[Crossref]

1992 (1)

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by Helium implantation and zinc diffusion,” Electron. Lett. 28(3), 274–276 (1992).
[Crossref]

1989 (1)

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4(10), 841–846 (1989).
[Crossref]

Agrell, E.

Agustin, M.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

Al-Omari, A. N.

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photonics Technol. Lett. 17(9), 1767–1769 (2005).
[Crossref]

Amann, M.-C.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

Andrekson, P.

Andrekson, P. A.

Baechtold, W.

M. Jungo, F. M. Di Sopra, D. Erni, and W. Baechtold, “Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” Appl. Phys. Lett. 91(9), 5550–5557 (2002).

Baks, C. W.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Bardin, T.

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by Helium implantation and zinc diffusion,” Electron. Lett. 28(3), 274–276 (1992).
[Crossref]

Bimberg, D.

P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 1–8 (2014).

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. Ledentsov, and D. Bimberg, “Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs,” Proc. SPIE 8639, 86390V (2013).
[Crossref]

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 25(18), 1823–1825 (2013).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850 nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

Bohm, G.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

Bond, A. E.

M. H. Macdougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photonics Technol. Lett. 10(1), 9–11 (1998).
[Crossref]

Chang-Hasnain, C.

Chao, L.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

Chen, C.-C.

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photonics Technol. Lett. 20(13), 1121–1123 (2008).
[Crossref]

Chen, H.-Y.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Chen, J.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Chen, K.-Z.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Chen, S.-M.

Chen, X.-N.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

Cheng, M.-C.

Chi, K.-L.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Chi, Y.-C.

Chiu, S.-W.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Choquette, K. D.

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 25(18), 1823–1825 (2013).
[Crossref]

Dapkus, P. D.

M. H. Macdougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photonics Technol. Lett. 10(1), 9–11 (1998).
[Crossref]

Deng, L.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19(3), 206–212 (2013).
[Crossref]

Di Sopra, F. M.

M. Jungo, F. M. Di Sopra, D. Erni, and W. Baechtold, “Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” Appl. Phys. Lett. 91(9), 5550–5557 (2002).

Doany, F. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Dziura, T. G.

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by Helium implantation and zinc diffusion,” Electron. Lett. 28(3), 274–276 (1992).
[Crossref]

Ebeling, K. J.

R. Michalzik and K. J. Ebeling, “Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes,” IEEE J. Quantum Electron. 31(8), 1371–1379 (1995).
[Crossref]

Erni, D.

M. Jungo, F. M. Di Sopra, D. Erni, and W. Baechtold, “Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” Appl. Phys. Lett. 91(9), 5550–5557 (2002).

Fernandez, R.

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by Helium implantation and zinc diffusion,” Electron. Lett. 28(3), 274–276 (1992).
[Crossref]

Fryslie, S. T. M.

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 25(18), 1823–1825 (2013).
[Crossref]

Geen, M.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Geske, J.

M. H. Macdougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photonics Technol. Lett. 10(1), 9–11 (1998).
[Crossref]

Gholami, A.

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions,” IEEE Photonics Technol. Lett. 21(10), 645–647 (2009).
[Crossref]

Guol, S.-H.

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photonics Technol. Lett. 20(13), 1121–1123 (2008).
[Crossref]

Gustavsson, J. S.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

P. Westbergh, A. Larsson, E. Haglund, R. Safaisini, and J. S. Gustavsson, “20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL,” Electron. Lett. 50(1), 40–42 (2014).
[Crossref]

R. Safaisini, E. Haglund, A. Larsson, J. S. Gustavsson, E. P. Haglund, and P. Westbergh, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49(16), 1021–1023 (2013).
[Crossref]

R. Safaisini, K. Szczerba, P. Westbergh, E. Haglund, B. Kögel, J. S. Gustavsson, M. Karlsson, P. Andrekson, and A. Larsson, “High-speed 850 nm quasi-single-mode VCSELs for extended-reach optical interconnects,” J. Opt. Commun. Netw. 5(7), 686–695 (2013).
[Crossref]

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for high-speed short-range optical communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
[Crossref]

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson, “Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter,” Proc. SPIE 8276, 82760L (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photonics Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

Haglund, Å.

E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson, “Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter,” Proc. SPIE 8276, 82760L (2012).
[Crossref]

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for high-speed short-range optical communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photonics Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

Haglund, E.

P. Westbergh, A. Larsson, E. Haglund, R. Safaisini, and J. S. Gustavsson, “20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL,” Electron. Lett. 50(1), 40–42 (2014).
[Crossref]

R. Safaisini, E. Haglund, A. Larsson, J. S. Gustavsson, E. P. Haglund, and P. Westbergh, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49(16), 1021–1023 (2013).
[Crossref]

R. Safaisini, K. Szczerba, P. Westbergh, E. Haglund, B. Kögel, J. S. Gustavsson, M. Karlsson, P. Andrekson, and A. Larsson, “High-speed 850 nm quasi-single-mode VCSELs for extended-reach optical interconnects,” J. Opt. Commun. Netw. 5(7), 686–695 (2013).
[Crossref]

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson, “Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter,” Proc. SPIE 8276, 82760L (2012).
[Crossref]

Haglund, E. P.

R. Safaisini, E. Haglund, A. Larsson, J. S. Gustavsson, E. P. Haglund, and P. Westbergh, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49(16), 1021–1023 (2013).
[Crossref]

Harrison, I.

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4(10), 841–846 (1989).
[Crossref]

Harton, A. V.

Henini, M.

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4(10), 841–846 (1989).
[Crossref]

Ho, H. P.

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4(10), 841–846 (1989).
[Crossref]

Hofmann, W.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

Hsieh, D.-H.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Huang, C.-H.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Hughes, O. H.

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4(10), 841–846 (1989).
[Crossref]

Ih, C. S.

J. Piprek, T. TrÖger, B. SchrÖter, J. Kolodzey, and C. S. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors,” IEEE Photonics Technol. Lett. 10(1), 81–83 (1998).
[Crossref]

Jensen, J. B.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19(3), 206–212 (2013).
[Crossref]

Joel, A.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

Jungo, M.

M. Jungo, F. M. Di Sopra, D. Erni, and W. Baechtold, “Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” Appl. Phys. Lett. 91(9), 5550–5557 (2002).

Kang, S. M.

Karinou, F.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19(3), 206–212 (2013).
[Crossref]

Karlsson, M.

Karout, J.

Kögel, B.

R. Safaisini, K. Szczerba, P. Westbergh, E. Haglund, B. Kögel, J. S. Gustavsson, M. Karlsson, P. Andrekson, and A. Larsson, “High-speed 850 nm quasi-single-mode VCSELs for extended-reach optical interconnects,” J. Opt. Commun. Netw. 5(7), 686–695 (2013).
[Crossref]

E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson, “Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter,” Proc. SPIE 8276, 82760L (2012).
[Crossref]

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

Kolodzey, J.

J. Piprek, T. TrÖger, B. SchrÖter, J. Kolodzey, and C. S. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors,” IEEE Photonics Technol. Lett. 10(1), 81–83 (1998).
[Crossref]

Kropp, J.-R.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

Kuchta, D. M.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Kuo, C.

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photonics Technol. Lett. 20(13), 1121–1123 (2008).
[Crossref]

Kuo, H.-C.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Lai, F.-I.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Larisch, G.

P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 1–8 (2014).

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. Ledentsov, and D. Bimberg, “Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs,” Proc. SPIE 8639, 86390V (2013).
[Crossref]

Larsson, A.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

P. Westbergh, A. Larsson, E. Haglund, R. Safaisini, and J. S. Gustavsson, “20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL,” Electron. Lett. 50(1), 40–42 (2014).
[Crossref]

R. Safaisini, E. Haglund, A. Larsson, J. S. Gustavsson, E. P. Haglund, and P. Westbergh, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49(16), 1021–1023 (2013).
[Crossref]

R. Safaisini, K. Szczerba, P. Westbergh, E. Haglund, B. Kögel, J. S. Gustavsson, M. Karlsson, P. Andrekson, and A. Larsson, “High-speed 850 nm quasi-single-mode VCSELs for extended-reach optical interconnects,” J. Opt. Commun. Netw. 5(7), 686–695 (2013).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31(22), 3525–3534 (2013).
[Crossref]

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for high-speed short-range optical communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
[Crossref]

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson, “Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter,” Proc. SPIE 8276, 82760L (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photonics Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

Lau, E. K.

Lawrence, R.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Lear, K. L.

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photonics Technol. Lett. 17(9), 1767–1769 (2005).
[Crossref]

Ledentsov, N.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. Ledentsov, and D. Bimberg, “Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs,” Proc. SPIE 8639, 86390V (2013).
[Crossref]

Ledentsov, N. N.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 25(18), 1823–1825 (2013).
[Crossref]

Li, H.

P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 1–8 (2014).

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. Ledentsov, and D. Bimberg, “Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs,” Proc. SPIE 8639, 86390V (2013).
[Crossref]

Li, Y.-C.

Lin, C. K.

M. H. Macdougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photonics Technol. Lett. 10(1), 9–11 (1998).
[Crossref]

Lin, G.-C.

Lin, G.-R.

Lin, S.-Y.

Lin, W.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Lopez, R. R.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19(3), 206–212 (2013).
[Crossref]

Lott, J. A.

P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 1–8 (2014).

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. Ledentsov, and D. Bimberg, “Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs,” Proc. SPIE 8639, 86390V (2013).
[Crossref]

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 25(18), 1823–1825 (2013).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850 nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
[Crossref]

Lu, H.-H.

Lu, I.-C.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Macdougal, M. H.

M. H. Macdougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photonics Technol. Lett. 10(1), 9–11 (1998).
[Crossref]

Maute, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

Mena, P. V.

Michalzik, R.

R. Michalzik and K. J. Ebeling, “Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes,” IEEE J. Quantum Electron. 31(8), 1371–1379 (1995).
[Crossref]

Modh, P.

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photonics Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

Molin, D.

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions,” IEEE Photonics Technol. Lett. 21(10), 645–647 (2009).
[Crossref]

Monroy, I. T.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19(3), 206–212 (2013).
[Crossref]

Morikuni, J. J.

Moser, P.

P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 1–8 (2014).

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. Ledentsov, and D. Bimberg, “Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs,” Proc. SPIE 8639, 86390V (2013).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850 nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
[Crossref]

Mutig, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

Nadtochiy, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

Ortsiefer, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

Parekh, D.

Peng, P.-C.

Piprek, J.

J. Piprek, T. TrÖger, B. SchrÖter, J. Kolodzey, and C. S. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors,” IEEE Photonics Technol. Lett. 10(1), 81–83 (1998).
[Crossref]

Prince, K.

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19(3), 206–212 (2013).
[Crossref]

Proesel, J. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Rosskopf, J.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

Rylyakov, A. V.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

Safaisini, R.

P. Westbergh, A. Larsson, E. Haglund, R. Safaisini, and J. S. Gustavsson, “20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL,” Electron. Lett. 50(1), 40–42 (2014).
[Crossref]

R. Safaisini, E. Haglund, A. Larsson, J. S. Gustavsson, E. P. Haglund, and P. Westbergh, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49(16), 1021–1023 (2013).
[Crossref]

R. Safaisini, K. Szczerba, P. Westbergh, E. Haglund, B. Kögel, J. S. Gustavsson, M. Karlsson, P. Andrekson, and A. Larsson, “High-speed 850 nm quasi-single-mode VCSELs for extended-reach optical interconnects,” J. Opt. Commun. Netw. 5(7), 686–695 (2013).
[Crossref]

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Schow, C. L.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

SchrÖter, B.

J. Piprek, T. TrÖger, B. SchrÖter, J. Kolodzey, and C. S. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors,” IEEE Photonics Technol. Lett. 10(1), 81–83 (1998).
[Crossref]

Shi, J.-W.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photonics Technol. Lett. 20(13), 1121–1123 (2008).
[Crossref]

Shi, Y.-X.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

Sillard, P.

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions,” IEEE Photonics Technol. Lett. 21(10), 645–647 (2009).
[Crossref]

Skold, M.

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

Stepniak, G.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

Su, Y.-C.

Sung, H.-K.

Szczerba, K.

Tan, M. P.

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 25(18), 1823–1825 (2013).
[Crossref]

TrÖger, T.

J. Piprek, T. TrÖger, B. SchrÖter, J. Kolodzey, and C. S. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors,” IEEE Photonics Technol. Lett. 10(1), 81–83 (1998).
[Crossref]

Tsai, C.-T.

Tuck, B.

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4(10), 841–846 (1989).
[Crossref]

Turkiewicz, J. P.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

Vukusic, J.

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photonics Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

Wang, H.-L.

Wang, H.-Y.

Wang, S. C.

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by Helium implantation and zinc diffusion,” Electron. Lett. 28(3), 274–276 (1992).
[Crossref]

Wei, C.-C.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

Westbergh, P.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

P. Westbergh, A. Larsson, E. Haglund, R. Safaisini, and J. S. Gustavsson, “20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL,” Electron. Lett. 50(1), 40–42 (2014).
[Crossref]

R. Safaisini, E. Haglund, A. Larsson, J. S. Gustavsson, E. P. Haglund, and P. Westbergh, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49(16), 1021–1023 (2013).
[Crossref]

R. Safaisini, K. Szczerba, P. Westbergh, E. Haglund, B. Kögel, J. S. Gustavsson, M. Karlsson, P. Andrekson, and A. Larsson, “High-speed 850 nm quasi-single-mode VCSELs for extended-reach optical interconnects,” J. Opt. Commun. Netw. 5(7), 686–695 (2013).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31(22), 3525–3534 (2013).
[Crossref]

K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for high-speed short-range optical communications,” J. Opt. Commun. Netw. 4(11), 885–894 (2012).
[Crossref]

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson, “Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter,” Proc. SPIE 8276, 82760L (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

Wolf, P.

P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 1–8 (2014).

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. Ledentsov, and D. Bimberg, “Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs,” Proc. SPIE 8639, 86390V (2013).
[Crossref]

Wu, M. C.

Wu, Y.-S.

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photonics Technol. Lett. 20(13), 1121–1123 (2008).
[Crossref]

Wyatt, K. W.

Yang, Y. J.

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by Helium implantation and zinc diffusion,” Electron. Lett. 28(3), 274–276 (1992).
[Crossref]

Yang, Y.-J.

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photonics Technol. Lett. 20(13), 1121–1123 (2008).
[Crossref]

Zhang, S.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

Zhao, X.

Zhu, N. H.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

Appl. Phys. Lett. (1)

M. Jungo, F. M. Di Sopra, D. Erni, and W. Baechtold, “Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” Appl. Phys. Lett. 91(9), 5550–5557 (2002).

Electron. Lett. (5)

R. Safaisini, E. Haglund, A. Larsson, J. S. Gustavsson, E. P. Haglund, and P. Westbergh, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49(16), 1021–1023 (2013).
[Crossref]

P. Westbergh, A. Larsson, E. Haglund, R. Safaisini, and J. S. Gustavsson, “20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL,” Electron. Lett. 50(1), 40–42 (2014).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46(14), 1014–1016 (2010).
[Crossref]

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by Helium implantation and zinc diffusion,” Electron. Lett. 28(3), 274–276 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Michalzik and K. J. Ebeling, “Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes,” IEEE J. Quantum Electron. 31(8), 1371–1379 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850 nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702212 (2013).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21(6), 444 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (10)

K.-L. Chi, Y.-X. Shi, X.-N. Chen, J. Chen, Y.-J. Yang, J.-R. Kropp, N. Ledentsov, M. Agustin, N. N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-mode 850-nm VCSELs for 54-Gb/s on-off keying transmission over 1-km multi-mode fiber,” IEEE Photonics Technol. Lett. 28(12), 1367–1370 (2016).
[Crossref]

A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photonics Technol. Lett. 17(9), 1767–1769 (2005).
[Crossref]

J. Piprek, T. TrÖger, B. SchrÖter, J. Kolodzey, and C. S. Ih, “Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors,” IEEE Photonics Technol. Lett. 10(1), 81–83 (1998).
[Crossref]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s data transmission using BCB passivated 1.55-/spl mu/m InGaAlAs-InP VCSELs,” IEEE Photonics Technol. Lett. 18(2), 424–426 (2006).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photonics Technol. Lett. 27(6), 577–580 (2015).
[Crossref]

J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photonics Technol. Lett. 20(13), 1121–1123 (2008).
[Crossref]

M. H. Macdougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photonics Technol. Lett. 10(1), 9–11 (1998).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photonics Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 25(18), 1823–1825 (2013).
[Crossref]

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions,” IEEE Photonics Technol. Lett. 21(10), 645–647 (2009).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (2)

Opt. Express (4)

Opt. Fiber Technol. (1)

F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19(3), 206–212 (2013).
[Crossref]

Proc. SPIE (3)

E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson, “Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter,” Proc. SPIE 8276, 82760L (2012).
[Crossref]

P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001, 1–8 (2014).

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. Ledentsov, and D. Bimberg, “Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs,” Proc. SPIE 8639, 86390V (2013).
[Crossref]

Semicond. Sci. Technol. (1)

I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4(10), 841–846 (1989).
[Crossref]

Other (12)

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-µm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication Conf. (Anaheim, CA, USA, 2006), paper OFA4.

C. Kottke, C. Caspar, V. Jungnickel, R. Freund, M. Agustin, and N. Ledentsov, “High speed 160 Gb/s DMT VCSEL transmission using pre-equalization,” in Conference on Optical Fiber Communication (Los Angeles, CA, USA, 2017), paper W4I.7.
[Crossref]

R. Puerta, M. Agustin, L. Chorchos, J. Tonski, J.-R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, “107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber,” in Conference on Optical Fiber Communication (Anaheim, CA, USA, 2016), paper Th5B.5.
[Crossref]

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber,” in Conference on Optical Fiber Communication (San Diego, CA, USA, 2008), paper OWB5.
[Crossref]

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100 Gbps PAM-4 Transmission over 100m OM4 and wideband fiber using 850nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication (Dusseldorf, Germany, 2016), paper Th.1.C.5.

“IEEE P802.3bs 400 Gb/s Ethernet task force,” (2016). http://www.ieee802.org/3/bs/

D. J. Law, W. W. Diab, A. Healey, S. B. Carlson, and V. Maguire, “IEEE 802.3 industry connections Ethernet bandwidth assessment,” (IEEE 802.3 Industry Connections Bandwidth Assessment, 2012). http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdf

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Chi, C.-H. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication (Anaheim, CA, USA, 2016), paper Th4D.2.
[Crossref]

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64Gb/s transmission over 57m MMF using an NRZ modulated 850nm VCSEL,” in Conference on Optical Fiber Communication (San Francisco, CA, USA, 2014), paper Th3C. 2.
[Crossref]

S. E. Hashemi, Relative intensity noise (RIN) in high-speed VCSELs for short reach communication, (Chalmers, 2012)

“Series G: Transmission systems and media, digital systems and networks,” http://www.certificate.net/Portals/1/Standards/ITU/g-107.doc

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The 2-D, 3-D -structures and microscopic image of oxide confined cross-section area of MM/FM/SM VCSEL chips.
Fig. 2
Fig. 2 The fabrication process of the VCSEL chip. (a) Epitaxial device structure on wafer. (b) p-type metal deposition and pattering. (c) Cylindrical mesa etching. (d) wet-oxidation for cross-section area confinement. (e) n-type metallic contact deposition. (f) Hole formation for contact pad finalization.
Fig. 3
Fig. 3 The experimental setup of propose VCSEL chips based on 16-QAM OFDM over 100-m MMF.
Fig. 4
Fig. 4 The (a) optical spectra, (b) L-I curve, (c) V-I curve and corresponding differential resistance of MM, FM and SM VCSELs.
Fig. 5
Fig. 5 (a) The small-signal frequency responses of MM, FM and SM VCSEL chips at different bias current ratios; (b) The comparison in dependence of the applied bias current on RIN response.
Fig. 6
Fig. 6 The SNR and BER responses of MM/FM/SM VCSEL chips carried and BtB transmitted 16/20/17-GHz 16-QAM OFDM data.
Fig. 7
Fig. 7 The RF spectra, subcarrier SNRs responses and constellation plots of the electrical, MM, FM, and SM VCSEL chips carried 80 Gbit/s 16-QAM OFDM data after BtB transmission.
Fig. 8
Fig. 8 (a) The BtB transmitted BERs of the MM, FM, SM VCSEL chips carried 16-QAM OFDM data at different bandwidths; (b) The SNRs responses of MM/FM/SM VCSEL chip carried 84/96/92-Gbit/s 16-QAM OFDM data and related constellation plots.
Fig. 9
Fig. 9 The RF spectra, SNRs responses and constellation plots of the 100-m MMF transmitted 80-Gbit/s data carried by the MM, FM and SM VCSEL chips.
Fig. 10
Fig. 10 The SNRs, constellation plots and BERs of the 100-m OM4-MMF transmitted 64/80/80-Gbit/s data carried by the MM/FM/SM VCSEL chip before and after pre-leveling.
Fig. 11
Fig. 11 BER versus receiving power of the MM/FM/SM VCSEL chip output with and without pre-leveling under BtB and 100-m OM4-MMF transmissions.

Tables (1)

Tables Icon

Table 1 Parameters for MM/FM/SM VCSEL chips

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ RMS = [ i=1 n P i ( λ i i=1 n P i λ i / i=1 n P i ) 2 ]/ i=1 n P i ,

Metrics