Abstract

A photonics-based radar with generation and de-chirp processing of broadband linear frequency modulated continuous-wave (LFMCW) signal in optical domain is proposed for high-resolution and real-time inverse synthetic aperture radar (ISAR) imaging. In the proposed system, a broadband LFMCW signal is generated by a photonic frequency quadrupler based on a single integrated electro-optical modulator, and the echoes reflected from the targets are de-chirped to a low frequency signal by a microwave photonic frequency mixer. The proposed radar can operate at a high frequency with a large bandwidth, and thus achieve an ultra-high range resolution for ISAR imaging. Thanks to the wideband photonic de-chirp technique, the radar receiver could apply low-speed analog-to-digital conversion and mature digital signal processing, which makes real-time ISAR imaging possible. A K-band photonics-based radar with an instantaneous bandwidth of 8 GHz (18-26 GHz) is established and its performance for ISAR imaging is experimentally investigated. Results show that a recorded two-dimensional imaging resolution of ~2 cm × ~2 cm is achieved with a sampling rate of 100 MSa/s in the receiver. Besides, fast ISAR imaging with 100 frames per second is verified. The proposed radar is an effective solution to overcome the limitations on operation bandwidth and processing speed of current radar imaging technologies, which may enable applications where high-resolution and real-time radar imaging is required.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging

Xingwei Ye, Fangzheng Zhang, Yue Yang, and Shilong Pan
Photon. Res. 7(3) 265-272 (2019)

Photonics-based MIMO radar with high-resolution and fast detection capability

Fangzheng Zhang, Bindong Gao, and Shilong Pan
Opt. Express 26(13) 17529-17540 (2018)

High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter

Shaowen Peng, Shangyuan Li, Xiaoxiao Xue, Xuedi Xiao, Dexin Wu, Xiaoping Zheng, and Bingkun Zhou
Opt. Express 26(2) 1978-1987 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Almorox-Gonzalez, J. T. González-Partida, M. Burgos-García, C. D. L. Morena-Alvarez-Palencia, L. Arche-Andradas, and B. P. Dorta-Naranjo, “Portable high resolution LFM-CW radar sensor in millimeter-wave band,” in Proc. 2007 Int. Conf. Sensor Technologies Applications (2007).
    [Crossref]
  2. J. Ping, A. Ling, T. Quan, and C. Dat, “Generic unmanned aerial vehicle (UAV) for civilian application,” in I Proc. Conference on Sustainable utilization and Development in Engineering and Technology (2012), pp. 289–294.
  3. B. Valdes, Y. Alvarze, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
    [Crossref]
  4. V. C. Chen and M. Martorella, Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications (SciTech Publishing, 2014).
  5. O. Caner, Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms (John Wiley & Sons, 2012).
  6. D. A. Robertson, D. G. Macfarlane, R. I. Hunter, C. L. Cassidy, N. Liombart, E. Candini, T. Bryllert, M. Ferndahl, H. Lindstrom, J. Tenhunen, H. Vasama, J. Huopana, T. Selkala, and A. J. Vuotikka, “High resolution, wide field of view, real time 340GHz 3D imaging radar for security screening,” in Proc. SPIE Passive and Active Millimeter-Wave Imaging (2017), paper 101890C.
  7. B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).
  8. Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
    [Crossref]
  9. B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sens. J. 15(1), 290–299 (2015).
    [Crossref]
  10. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
    [Crossref]
  11. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  12. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  13. S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
    [Crossref]
  14. H. Gao, C. Lei, M. Chen, F. Xing, H. Chen, and S. Xie, “A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio,” Opt. Express 21(20), 23107–23115 (2013).
    [Crossref] [PubMed]
  15. W. Li and J. P. Yao, “Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 32(20), 3573–3579 (2014).
    [Crossref]
  16. P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express 24(16), 18460–18467 (2016).
    [Crossref] [PubMed]
  17. H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
    [Crossref] [PubMed]
  18. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  19. S. J. Strutz and K. J. Williams, “An 8–18-GHz all-optical microwave downconverter with channelization,” IEEE Trans. Microw. Theory Tech. 49(10), 1992–1995 (2001).
    [Crossref]
  20. V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express 19(2), 883–895 (2011).
    [Crossref] [PubMed]
  21. E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high conversion efficiency,” J. Lightwave Technol. 30(23), 3580–3585 (2012).
    [Crossref]
  22. C. Lin, P. Shih, J. Chen, W. Xue, P. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
    [Crossref]

2016 (2)

B. Valdes, Y. Alvarze, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express 24(16), 18460–18467 (2016).
[Crossref] [PubMed]

2015 (4)

H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
[Crossref] [PubMed]

B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sens. J. 15(1), 290–299 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

2014 (2)

W. Li and J. P. Yao, “Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 32(20), 3573–3579 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

2013 (2)

H. Gao, C. Lei, M. Chen, F. Xing, H. Chen, and S. Xie, “A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio,” Opt. Express 21(20), 23107–23115 (2013).
[Crossref] [PubMed]

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

2012 (1)

2011 (1)

2009 (1)

2008 (1)

C. Lin, P. Shih, J. Chen, W. Xue, P. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2001 (1)

S. J. Strutz and K. J. Williams, “An 8–18-GHz all-optical microwave downconverter with channelization,” IEEE Trans. Microw. Theory Tech. 49(10), 1992–1995 (2001).
[Crossref]

Almorox-Gonzalez, P.

P. Almorox-Gonzalez, J. T. González-Partida, M. Burgos-García, C. D. L. Morena-Alvarez-Palencia, L. Arche-Andradas, and B. P. Dorta-Naranjo, “Portable high resolution LFM-CW radar sensor in millimeter-wave band,” in Proc. 2007 Int. Conf. Sensor Technologies Applications (2007).
[Crossref]

Alvarze, Y.

B. Valdes, Y. Alvarze, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Arche-Andradas, L.

P. Almorox-Gonzalez, J. T. González-Partida, M. Burgos-García, C. D. L. Morena-Alvarez-Palencia, L. Arche-Andradas, and B. P. Dorta-Naranjo, “Portable high resolution LFM-CW radar sensor in millimeter-wave band,” in Proc. 2007 Int. Conf. Sensor Technologies Applications (2007).
[Crossref]

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Burgos-García, M.

P. Almorox-Gonzalez, J. T. González-Partida, M. Burgos-García, C. D. L. Morena-Alvarez-Palencia, L. Arche-Andradas, and B. P. Dorta-Naranjo, “Portable high resolution LFM-CW radar sensor in millimeter-wave band,” in Proc. 2007 Int. Conf. Sensor Technologies Applications (2007).
[Crossref]

Cai, Y. W.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chan, E. H. W.

Chen, H.

Chen, J.

H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
[Crossref] [PubMed]

C. Lin, P. Shih, J. Chen, W. Xue, P. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Chen, M.

Chen, Q.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Cheng, B. B.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Chi, S.

C. Lin, P. Shih, J. Chen, W. Xue, P. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Dai, Y. T.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Dat, C.

J. Ping, A. Ling, T. Quan, and C. Dat, “Generic unmanned aerial vehicle (UAV) for civilian application,” in I Proc. Conference on Sustainable utilization and Development in Engineering and Technology (2012), pp. 289–294.

Deng, X. J.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Dorta-Naranjo, B. P.

P. Almorox-Gonzalez, J. T. González-Partida, M. Burgos-García, C. D. L. Morena-Alvarez-Palencia, L. Arche-Andradas, and B. P. Dorta-Naranjo, “Portable high resolution LFM-CW radar sensor in millimeter-wave band,” in Proc. 2007 Int. Conf. Sensor Technologies Applications (2007).
[Crossref]

Gao, H.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

González-Partida, J. T.

P. Almorox-Gonzalez, J. T. González-Partida, M. Burgos-García, C. D. L. Morena-Alvarez-Palencia, L. Arche-Andradas, and B. P. Dorta-Naranjo, “Portable high resolution LFM-CW radar sensor in millimeter-wave band,” in Proc. 2007 Int. Conf. Sensor Technologies Applications (2007).
[Crossref]

Guo, Q.

Haas, B. M.

Huang, X.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Huo, Q. L.

Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
[Crossref]

Jiang, J.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Jing, G.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Las-Heras, F.

B. Valdes, Y. Alvarze, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lei, C.

Li, J.

B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sens. J. 15(1), 290–299 (2015).
[Crossref]

Li, Q.

Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
[Crossref]

Li, W.

Lin, C.

C. Lin, P. Shih, J. Chen, W. Xue, P. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Ling, A.

J. Ping, A. Ling, T. Quan, and C. Dat, “Generic unmanned aerial vehicle (UAV) for civilian application,” in I Proc. Conference on Sustainable utilization and Development in Engineering and Technology (2012), pp. 289–294.

Liu, J. G.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, N. J.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Liu, S. F.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Mantzavinos, S.

B. Valdes, Y. Alvarze, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Martinez-Lorenzo, J. A.

B. Valdes, Y. Alvarze, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Minasian, R. A.

Morena-Alvarez-Palencia, C. D. L.

P. Almorox-Gonzalez, J. T. González-Partida, M. Burgos-García, C. D. L. Morena-Alvarez-Palencia, L. Arche-Andradas, and B. P. Dorta-Naranjo, “Portable high resolution LFM-CW radar sensor in millimeter-wave band,” in Proc. 2007 Int. Conf. Sensor Technologies Applications (2007).
[Crossref]

Mu, X. H.

Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
[Crossref]

Murphy, T. E.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pagán, V. R.

Pan, S.

Pan, S. L.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Peng, P.

C. Lin, P. Shih, J. Chen, W. Xue, P. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Pi, Y. M.

B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sens. J. 15(1), 290–299 (2015).
[Crossref]

Ping, J.

J. Ping, A. Ling, T. Quan, and C. Dat, “Generic unmanned aerial vehicle (UAV) for civilian application,” in I Proc. Conference on Sustainable utilization and Development in Engineering and Technology (2012), pp. 289–294.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Quan, T.

J. Ping, A. Ling, T. Quan, and C. Dat, “Generic unmanned aerial vehicle (UAV) for civilian application,” in I Proc. Conference on Sustainable utilization and Development in Engineering and Technology (2012), pp. 289–294.

Rappaport, C. M.

B. Valdes, Y. Alvarze, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Shih, P.

C. Lin, P. Shih, J. Chen, W. Xue, P. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Strutz, S. J.

S. J. Strutz and K. J. Williams, “An 8–18-GHz all-optical microwave downconverter with channelization,” IEEE Trans. Microw. Theory Tech. 49(10), 1992–1995 (2001).
[Crossref]

Valdes, B.

B. Valdes, Y. Alvarze, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wang, C.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Wang, T. L.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Williams, K. J.

S. J. Strutz and K. J. Williams, “An 8–18-GHz all-optical microwave downconverter with channelization,” IEEE Trans. Microw. Theory Tech. 49(10), 1992–1995 (2001).
[Crossref]

Xie, S.

Xing, F.

Xu, K.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Xue, W.

C. Lin, P. Shih, J. Chen, W. Xue, P. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Xue, Y.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Yang, C.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Yang, D.

Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
[Crossref]

Yao, J.

Yao, J. P.

Zeng, G. H.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Zhang, B.

B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sens. J. 15(1), 290–299 (2015).
[Crossref]

Zhang, F.

Zhang, H.

Zhang, J.

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

Zhou, P.

Zhu, D.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Zhu, N. H.

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

Zou, W.

IEEE Antennas Propag. Mag. (1)

B. Valdes, Y. Alvarze, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: a comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58(4), 35–47 (2016).
[Crossref]

IEEE Microw. Mag. (2)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite payloads pay off,” IEEE Microw. Mag. 16(8), 61–73 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. Lin, P. Shih, J. Chen, W. Xue, P. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

IEEE Sens. J. (1)

B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sens. J. 15(1), 290–299 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. J. Strutz and K. J. Williams, “An 8–18-GHz all-optical microwave downconverter with channelization,” IEEE Trans. Microw. Theory Tech. 49(10), 1992–1995 (2001).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

B. B. Cheng, G. Jing, C. Wang, C. Yang, Y. W. Cai, Q. Chen, X. Huang, G. H. Zeng, J. Jiang, X. J. Deng, and J. Zhang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. THz Sci. Technol. 3(5), 606–616 (2013).

J. Lightwave Technol. (3)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Other (6)

Q. Li, D. Yang, X. H. Mu, and Q. L. Huo, “Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication,” in International Conference on Microwave and Millimeter Wave Technology (ICMMT, 2012).
[Crossref]

P. Almorox-Gonzalez, J. T. González-Partida, M. Burgos-García, C. D. L. Morena-Alvarez-Palencia, L. Arche-Andradas, and B. P. Dorta-Naranjo, “Portable high resolution LFM-CW radar sensor in millimeter-wave band,” in Proc. 2007 Int. Conf. Sensor Technologies Applications (2007).
[Crossref]

J. Ping, A. Ling, T. Quan, and C. Dat, “Generic unmanned aerial vehicle (UAV) for civilian application,” in I Proc. Conference on Sustainable utilization and Development in Engineering and Technology (2012), pp. 289–294.

V. C. Chen and M. Martorella, Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications (SciTech Publishing, 2014).

O. Caner, Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms (John Wiley & Sons, 2012).

D. A. Robertson, D. G. Macfarlane, R. I. Hunter, C. L. Cassidy, N. Liombart, E. Candini, T. Bryllert, M. Ferndahl, H. Lindstrom, J. Tenhunen, H. Vasama, J. Huopana, T. Selkala, and A. J. Vuotikka, “High resolution, wide field of view, real time 340GHz 3D imaging radar for security screening,” in Proc. SPIE Passive and Active Millimeter-Wave Imaging (2017), paper 101890C.

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (261 KB)      ISAR imaging of a rotating fan

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the proposed photonics-based radar. LD: laser diode; OC: optical coupler; DPMZM: dual-parallel Mach-Zehnder modulator; PD: photodetector; EA: electrical amplifier; PM: phase modulator; OBPF: optical band-pased filter; ELPF: electrical low-pass filter; ADC: analog-to-digital converter; DSP: digital signal processing. The detailed structure of the DPMZM and the principle of the de-chirping are also provided.
Fig. 2
Fig. 2 Generation of an LFMCW signal with an 8-GHz bandwidth and a 5-μs period. (a) The measured optical spectrum after the DPMZM, (b) the temporal waveform and (c) the recovered instantaneous frequency of the generated LFMCW signal.
Fig. 3
Fig. 3 (a) Configuration for detecting two trihedral corner reflectors which are separated by 2 cm along the radar line of sight, (b) spectrum of the de-chirped signal.
Fig. 4
Fig. 4 (a) The photograph of three small balls under test, (b) Imaging result of the three small balls packed with silver paper.
Fig. 5
Fig. 5 (a) Photograph of the electric fan with its five blades packed with silver papers, (b) (c) and (d) is the imaging result for the first, second and fifth frame, respectively. A video including the total 10 frames with a playback rate of 3 fps is given in Visualization 1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E DPMZM ( t ) J 2 ( m ) cos [ 2 π ( f c + 2 f IF ) t ] + J 2 ( m ) cos [ 2 π ( f c 2 f IF ) t ]
E OBPF ( t ) J 0 ( m ) cos [ 2 π ( f c + 2 f 0 + 2 k t ) t ] + J 1 ( m ) cos [ 2 π ( f c + 2 f 0 + 2 k t + 4 k Δ τ ) t + π 2 ]
L = c 2 Δ τ = c 2 Δ f 4 k = c T 2 B Δ f
L RES = c T 2 B Δ f min = c 2 B
C RES = c 2 θ f c1

Metrics