Abstract

We present a design for optimal interfacing (I/O coupling) with slow-light structures consisting of coupled cavities. The I/O couplers are based on adding a small set of cavities with varying coupling coefficients at edges of the coupled cavities waveguide in order to match its impedance with that of the I/O waveguides. I/O efficiencies exceeding 99.9% are shown to be possible over a bandwidth which is larger than 50% of that of the coupled cavities waveguide. Consequently, the reflections at the edges of the slow-light structure are practically eliminated. We discuss the properties of the perfectly impedance matched slow-light structure as an effective (super-structure) cavity and study the impact of the number of cavities comprising the I/O coupler. We also consider in details the impact of errors and disorder in the I/O coupling sections.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Disorder in coupled-resonator optical waveguides

Carlo Ferrari, Francesco Morichetti, and Andrea Melloni
J. Opt. Soc. Am. B 26(4) 858-866 (2009)

Implementing structural slow light on short length scales: the photonic speed bump

Rémi Faggiani, Jianji Yang, Richard Hostein, and Philippe Lalanne
Optica 4(4) 393-399 (2017)

Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (CROWs)

Hsi-Chun Liu and Amnon Yariv
Opt. Express 19(18) 17653-17668 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC, 2009).
  2. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [Crossref] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  5. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
    [Crossref]
  6. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
    [Crossref]
  7. R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18–19), 1908–1915 (2009).
    [Crossref]
  8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
    [Crossref] [PubMed]
  9. H. N. Yum, M. E. Kim, Y. J. Jang, and M. S. Shahriar, “Distortion free pulse delay system using a pair of tunable white light cavities,” Opt. Express 19(7), 6705–6713 (2011).
    [Crossref] [PubMed]
  10. D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
    [Crossref]
  11. H. N. Yum, M. Salit, G. S. Pati, S. Tseng, P. R. Hemmer, and M. S. Shahriar, “Fast-light in a photorefractive crystal for gravitational wave detection,” Opt. Express 16(25), 20448–20456 (2008).
    [Crossref] [PubMed]
  12. M. S. Shahriar and M. Salit, “Application of fast-light in gravitational wave detection with interferometers and resonators,” J. Mod. Opt. 55(19–20), 3133–3147 (2008).
    [Crossref]
  13. D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A 94(2), 023828 (2016).
    [Crossref]
  14. H. Yum, X. Liu, Y. J. Jang, M. E. Kim, and S. M. Shahriar, “Pulse Delay Via Tunable White Light Cavities Using Fiber-Optic Resonators,” J. Lightwave Technol. 29(18), 2698–2705 (2011).
    [Crossref]
  15. J. Scheuer and M. S. Shahriar, “Trap-door optical buffering using a flat-top coupled microring filter: the superluminal cavity approach,” Opt. Lett. 38(18), 3534–3537 (2013).
    [Crossref] [PubMed]
  16. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
    [Crossref] [PubMed]
  17. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
    [Crossref]
  18. C. K. Madsen, “General IIR optical filter design for WDM applications using all-pass filters,” J. Lightwave Technol. 18(6), 860–868 (2000).
    [Crossref]
  19. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [Crossref]
  20. B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11(2), 215–217 (1999).
    [Crossref]
  21. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21(9), 1665–1673 (2004).
    [Crossref]
  22. R. S. Tucker, P. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [Crossref]
  23. J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
    [Crossref] [PubMed]
  24. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
    [Crossref]
  25. J. Scheuer and A. Yariv, “Sagnac Effect in Coupled-Resonator Slow-Light Waveguide Structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
    [Crossref] [PubMed]
  26. J. Scheuer and M. Sumetsky, “Optical-fiber microcoil waveguides and resonators and their applications for interferometry and sensing,” Laser Photonics Rev. 5(4), 465–478 (2011).
    [Crossref]
  27. A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
    [Crossref]
  28. Y. Xu, R. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17(3), 387–400 (2000).
    [Crossref]
  29. P. Chamorro-Posada, P. Martin-Ramos, J. Sanchez-Curto, J. C. Garcıa-Escartın, J. A. Calzada, C. Palencia, and A. Duran, “Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains,” J. Opt. 14(1), 015205 (2012).
    [Crossref]
  30. C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled resonator optical waveguides,” J. Opt. Soc. Am. B 26(4), 858–866 (2009).
    [Crossref]
  31. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6 Pt 2), 066608 (2002).
    [Crossref] [PubMed]
  32. P. Velha, J. P. Hugonin, and P. Lalanne, “Compact and efficient injection of light into band-edge slow-modes,” Opt. Express 15(10), 6102–6112 (2007).
    [Crossref] [PubMed]
  33. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007).
    [Crossref] [PubMed]
  34. A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
    [Crossref] [PubMed]
  35. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Contra-directional coupling into slotted photonic crystals for spectrometric applications,” Opt. Lett. 39(15), 4345–4348 (2014).
    [Crossref] [PubMed]
  36. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31(1), 50–52 (2006).
    [Crossref] [PubMed]
  37. M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005).
    [Crossref] [PubMed]
  38. A. Melloni and M. Martinelli, “Synthesis of direct coupled resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20(2), 296–303 (2002).
    [Crossref]
  39. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7(12), 1447–1449 (1995).
    [Crossref]
  40. C. Madsen and J. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol. 14(3), 437–447 (1996).
    [Crossref]
  41. V. Van, “Circuit-Based Method for Synthesizing Serially Coupled Microring Filters,” J. Lightwave Technol. 24(7), 2912–2919 (2006).
    [Crossref]
  42. M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31(17), 2571–2573 (2006).
    [Crossref] [PubMed]
  43. M. Sumetsky and B. Eggleton, “Modeling and optimization of complex photonic resonant cavity circuits,” Opt. Express 11(4), 381–391 (2003).
    [Crossref] [PubMed]
  44. P. Sanchis, J. García, A. Martínez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97(1), 013101 (2005).
    [Crossref]
  45. P. Chak and J. E. Sipe, “Minimizing finite-size effects in artificial resonance tunneling structures,” Opt. Lett. 31(17), 2568–2570 (2006).
    [Crossref] [PubMed]
  46. R. Faggiani, J. Yang, R. Hostein, and P. Lalanne, “Implementing structural slow light on short length scales: the photonic speed bump,” Optica 4(4), 393–399 (2017).
    [Crossref]
  47. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).
    [Crossref]
  48. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21(9), 1665–1673 (2004).
    [Crossref]
  49. S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32(3), 289–291 (2007).
    [Crossref] [PubMed]
  50. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15(20), 13129–13138 (2007).
    [Crossref] [PubMed]
  51. S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
    [Crossref]
  52. B. Z. Steinberg, A. Boag, and R. Lisitsin, “Sensitivity analysis of narrowband photonic crystal filters and waveguides to structure variations and inaccuracy,” J. Opt. Soc. Am. A 20(1), 138–146 (2003).
    [Crossref] [PubMed]
  53. L. Magid, Electromagnetic Fields, Energy, and Waves (Wiley, 1972).
  54. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
    [Crossref] [PubMed]
  55. J. B. Khurgin, “Power dissipation in slow light devices: a comparative analysis,” Opt. Lett. 32(2), 163–165 (2007).
    [Crossref] [PubMed]
  56. J. B. Khurgin, “Dispersion and loss limitations on the performance of optical delay lines based on coupled resonant structures,” Opt. Lett. 32(2), 133–135 (2007).
    [Crossref] [PubMed]
  57. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D. 40(9), 2666–2670 (2007).
    [Crossref]
  58. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, “Surface nanoscale axial photonics: robust fabrication of high-quality-factor microresonators,” Opt. Lett. 36(24), 4824–4826 (2011).
    [Crossref] [PubMed]
  59. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, X. Liu, E. M. Monberg, and T. F. Taunay, “Photo-induced SNAP: fabrication, trimming, and tuning of microresonator chains,” Opt. Express 20(10), 10684–10691 (2012).
    [Crossref] [PubMed]
  60. M. Sumetsky, “Theory of SNAP devices: basic equations and comparison with the experiment,” Opt. Express 20(20), 22537–22554 (2012).
    [Crossref] [PubMed]
  61. M. Sumetsky and Y. Dulashko, “SNAP: Fabrication of long coupled microresonator chains with sub-angstrom precision,” Opt. Express 20(25), 27896–27901 (2012).
    [Crossref] [PubMed]
  62. M. Sumetsky, K. Abedin, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, and E. Monberg, “Coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators,” Opt. Lett. 37(6), 990–992 (2012).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A 94(2), 023828 (2016).
[Crossref]

2014 (2)

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Contra-directional coupling into slotted photonic crystals for spectrometric applications,” Opt. Lett. 39(15), 4345–4348 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (7)

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
[Crossref] [PubMed]

P. Chamorro-Posada, P. Martin-Ramos, J. Sanchez-Curto, J. C. Garcıa-Escartın, J. A. Calzada, C. Palencia, and A. Duran, “Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains,” J. Opt. 14(1), 015205 (2012).
[Crossref]

M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, X. Liu, E. M. Monberg, and T. F. Taunay, “Photo-induced SNAP: fabrication, trimming, and tuning of microresonator chains,” Opt. Express 20(10), 10684–10691 (2012).
[Crossref] [PubMed]

M. Sumetsky, “Theory of SNAP devices: basic equations and comparison with the experiment,” Opt. Express 20(20), 22537–22554 (2012).
[Crossref] [PubMed]

M. Sumetsky and Y. Dulashko, “SNAP: Fabrication of long coupled microresonator chains with sub-angstrom precision,” Opt. Express 20(25), 27896–27901 (2012).
[Crossref] [PubMed]

M. Sumetsky, K. Abedin, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, and E. Monberg, “Coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators,” Opt. Lett. 37(6), 990–992 (2012).
[Crossref] [PubMed]

2011 (4)

2009 (2)

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18–19), 1908–1915 (2009).
[Crossref]

C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled resonator optical waveguides,” J. Opt. Soc. Am. B 26(4), 858–866 (2009).
[Crossref]

2008 (6)

J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[Crossref] [PubMed]

H. N. Yum, M. Salit, G. S. Pati, S. Tseng, P. R. Hemmer, and M. S. Shahriar, “Fast-light in a photorefractive crystal for gravitational wave detection,” Opt. Express 16(25), 20448–20456 (2008).
[Crossref] [PubMed]

M. S. Shahriar and M. Salit, “Application of fast-light in gravitational wave detection with interferometers and resonators,” J. Mod. Opt. 55(19–20), 3133–3147 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[Crossref]

2007 (7)

2006 (6)

2005 (6)

P. Sanchis, J. García, A. Martínez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97(1), 013101 (2005).
[Crossref]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
[Crossref] [PubMed]

M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005).
[Crossref] [PubMed]

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[Crossref]

R. S. Tucker, P. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
[Crossref]

2004 (2)

2003 (4)

M. Sumetsky and B. Eggleton, “Modeling and optimization of complex photonic resonant cavity circuits,” Opt. Express 11(4), 381–391 (2003).
[Crossref] [PubMed]

B. Z. Steinberg, A. Boag, and R. Lisitsin, “Sensitivity analysis of narrowband photonic crystal filters and waveguides to structure variations and inaccuracy,” J. Opt. Soc. Am. A 20(1), 138–146 (2003).
[Crossref] [PubMed]

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

2002 (2)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6 Pt 2), 066608 (2002).
[Crossref] [PubMed]

A. Melloni and M. Martinelli, “Synthesis of direct coupled resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20(2), 296–303 (2002).
[Crossref]

2000 (2)

1999 (3)

B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1998 (1)

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

1996 (1)

C. Madsen and J. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol. 14(3), 437–447 (1996).
[Crossref]

1995 (1)

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7(12), 1447–1449 (1995).
[Crossref]

Abedin, K.

Agarwal, A.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Bandaru, P. R.

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[Crossref]

Barwicz, T.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6 Pt 2), 066608 (2002).
[Crossref] [PubMed]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Boag, A.

Boyd, R. W.

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18–19), 1908–1915 (2009).
[Crossref]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Boyd, S. P.

Calzada, J. A.

P. Chamorro-Posada, P. Martin-Ramos, J. Sanchez-Curto, J. C. Garcıa-Escartın, J. A. Calzada, C. Palencia, and A. Duran, “Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains,” J. Opt. 14(1), 015205 (2012).
[Crossref]

Canciamilla, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

Carlie, N.

Chak, P.

Chamorro-Posada, P.

P. Chamorro-Posada, P. Martin-Ramos, J. Sanchez-Curto, J. C. Garcıa-Escartın, J. A. Calzada, C. Palencia, and A. Duran, “Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains,” J. Opt. 14(1), 015205 (2012).
[Crossref]

Chang, H.

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A 94(2), 023828 (2016).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

Chang-Hasnain, C. J.

Chu, S. T.

B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Citrin, D. S.

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[Crossref]

Dahan, D.

Di Falco, A.

DiGiovanni, D. J.

Dulashko, Y.

Duran, A.

P. Chamorro-Posada, P. Martin-Ramos, J. Sanchez-Curto, J. C. Garcıa-Escartın, J. A. Calzada, C. Palencia, and A. Duran, “Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains,” J. Opt. 14(1), 015205 (2012).
[Crossref]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Eggleton, B.

Eisenstein, G.

Faggiani, R.

Feng, N.-N.

Ferrari, C.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled resonator optical waveguides,” J. Opt. Soc. Am. B 26(4), 858–866 (2009).
[Crossref]

Fini, J. M.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

García, J.

P. Sanchis, J. García, A. Martínez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97(1), 013101 (2005).
[Crossref]

Garcia-Escartin, J. C.

P. Chamorro-Posada, P. Martin-Ramos, J. Sanchez-Curto, J. C. Garcıa-Escartın, J. A. Calzada, C. Palencia, and A. Duran, “Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains,” J. Opt. 14(1), 015205 (2012).
[Crossref]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Hemmer, P. R.

Hostein, R.

Hu, J.

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Hugonin, J. P.

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6 Pt 2), 066608 (2002).
[Crossref] [PubMed]

Ippen, E.

B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Ippen, E. P.

Jang, Y. J.

Joannopoulos, J.

Joannopoulos, J. D.

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
[Crossref] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6 Pt 2), 066608 (2002).
[Crossref] [PubMed]

Johnson, S.

Johnson, S. G.

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
[Crossref] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6 Pt 2), 066608 (2002).
[Crossref] [PubMed]

Kaneko, T.

B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Kärtner, F. X.

Khurgin, J. B.

Kim, M. E.

Kimerling, L.

Kokubun, Y.

B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Krauss, T. F.

Ku, P.

Kurt, H.

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[Crossref]

Lagarias, J. C.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).
[Crossref]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Lalanne, P.

Lee, R.

Lee, R. K.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6 Pt 2), 066608 (2002).
[Crossref] [PubMed]

Lisitsin, R.

Little, B. E.

B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Liu, X.

Luckay, H. A.

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A 94(2), 023828 (2016).
[Crossref]

Madsen, C.

C. Madsen and J. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol. 14(3), 437–447 (1996).
[Crossref]

Madsen, C. K.

Martí, J.

P. Sanchis, J. García, A. Martínez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97(1), 013101 (2005).
[Crossref]

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
[Crossref]

A. Melloni and M. Martinelli, “Synthesis of direct coupled resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20(2), 296–303 (2002).
[Crossref]

Martínez, A.

P. Sanchis, J. García, A. Martínez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97(1), 013101 (2005).
[Crossref]

Martin-Ramos, P.

P. Chamorro-Posada, P. Martin-Ramos, J. Sanchez-Curto, J. C. Garcıa-Escartın, J. A. Calzada, C. Palencia, and A. Duran, “Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains,” J. Opt. 14(1), 015205 (2012).
[Crossref]

McNab, S. J.

Melloni, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled resonator optical waveguides,” J. Opt. Soc. Am. B 26(4), 858–866 (2009).
[Crossref]

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
[Crossref]

A. Melloni and M. Martinelli, “Synthesis of direct coupled resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20(2), 296–303 (2002).
[Crossref]

Monberg, E.

Monberg, E. M.

Mookherjea, S.

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[Crossref]

S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32(3), 289–291 (2007).
[Crossref] [PubMed]

Morichetti, F.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled resonator optical waveguides,” J. Opt. Soc. Am. B 26(4), 858–866 (2009).
[Crossref]

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
[Crossref]

Mutapcic, A.

Myneni, K.

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A 94(2), 023828 (2016).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

Noda, S.

O’Brien, D.

O’Faolain, L.

Oh, A.

Orta, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7(12), 1447–1449 (1995).
[Crossref]

Oskooi, A.

Palencia, C.

P. Chamorro-Posada, P. Martin-Ramos, J. Sanchez-Curto, J. C. Garcıa-Escartın, J. A. Calzada, C. Palencia, and A. Duran, “Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains,” J. Opt. 14(1), 015205 (2012).
[Crossref]

Pan, W.

B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Park, J. S.

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[Crossref]

Pati, G. S.

Petit, L.

Poon, J. K. S.

Popovíc, M. A.

Povinelli, M.

Rakich, P. T.

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Reeds, J. A.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).
[Crossref]

Richardson, K.

Ripin, D.

B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Rosenberger, A. T.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

Salit, M.

M. S. Shahriar and M. Salit, “Application of fast-light in gravitational wave detection with interferometers and resonators,” J. Mod. Opt. 55(19–20), 3133–3147 (2008).
[Crossref]

H. N. Yum, M. Salit, G. S. Pati, S. Tseng, P. R. Hemmer, and M. S. Shahriar, “Fast-light in a photorefractive crystal for gravitational wave detection,” Opt. Express 16(25), 20448–20456 (2008).
[Crossref] [PubMed]

Sanchez-Curto, J.

P. Chamorro-Posada, P. Martin-Ramos, J. Sanchez-Curto, J. C. Garcıa-Escartın, J. A. Calzada, C. Palencia, and A. Duran, “Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains,” J. Opt. 14(1), 015205 (2012).
[Crossref]

Sanchis, P.

P. Sanchis, J. García, A. Martínez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97(1), 013101 (2005).
[Crossref]

Savi, P.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7(12), 1447–1449 (1995).
[Crossref]

Scherer, A.

Scheuer, J.

Scullion, M. G.

Settle, M. D.

Shahriar, M. S.

Shahriar, S. M.

Sipe, J. E.

P. Chak and J. E. Sipe, “Minimizing finite-size effects in artificial resonance tunneling structures,” Opt. Lett. 31(17), 2568–2570 (2006).
[Crossref] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6 Pt 2), 066608 (2002).
[Crossref] [PubMed]

Smith, D. D.

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A 94(2), 023828 (2016).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

Smith, H. I.

Socci, L.

Steinberg, B. Z.

Sumetsky, M.

Tascone, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7(12), 1447–1449 (1995).
[Crossref]

Taunay, T. F.

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

Trinchero, D.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7(12), 1447–1449 (1995).
[Crossref]

Tseng, S.

Tucker, R. S.

Van, V.

Velha, P.

Vlasov, Y. A.

Watts, M. R.

White, T. P.

Wright, M. H.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).
[Crossref]

Wright, P. E.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).
[Crossref]

Xu, Y.

Yang, J.

Yang, S. H.

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[Crossref]

Yariv, A.

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Yuan, X.

Yum, H.

Yum, H. N.

Zhao, J.

C. Madsen and J. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol. 14(3), 437–447 (1996).
[Crossref]

Appl. Phys. Lett. (1)

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photonics Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7(12), 1447–1449 (1995).
[Crossref]

J. Appl. Phys. (1)

P. Sanchis, J. García, A. Martínez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97(1), 013101 (2005).
[Crossref]

J. Lightwave Technol. (7)

J. Mod. Opt. (2)

M. S. Shahriar and M. Salit, “Application of fast-light in gravitational wave detection with interferometers and resonators,” J. Mod. Opt. 55(19–20), 3133–3147 (2008).
[Crossref]

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18–19), 1908–1915 (2009).
[Crossref]

J. Opt. (1)

P. Chamorro-Posada, P. Martin-Ramos, J. Sanchez-Curto, J. C. Garcıa-Escartın, J. A. Calzada, C. Palencia, and A. Duran, “Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains,” J. Opt. 14(1), 015205 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

J. Phys. D. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D. 40(9), 2666–2670 (2007).
[Crossref]

Laser Photonics Rev. (2)

J. Scheuer and M. Sumetsky, “Optical-fiber microcoil waveguides and resonators and their applications for interferometry and sensing,” Laser Photonics Rev. 5(4), 465–478 (2011).
[Crossref]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photonics Rev. 6(1), 74–96 (2012).
[Crossref]

Nat. Photonics (3)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[Crossref]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Express (11)

H. N. Yum, M. Salit, G. S. Pati, S. Tseng, P. R. Hemmer, and M. S. Shahriar, “Fast-light in a photorefractive crystal for gravitational wave detection,” Opt. Express 16(25), 20448–20456 (2008).
[Crossref] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
[Crossref] [PubMed]

H. N. Yum, M. E. Kim, Y. J. Jang, and M. S. Shahriar, “Distortion free pulse delay system using a pair of tunable white light cavities,” Opt. Express 19(7), 6705–6713 (2011).
[Crossref] [PubMed]

P. Velha, J. P. Hugonin, and P. Lalanne, “Compact and efficient injection of light into band-edge slow-modes,” Opt. Express 15(10), 6102–6112 (2007).
[Crossref] [PubMed]

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
[Crossref] [PubMed]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15(20), 13129–13138 (2007).
[Crossref] [PubMed]

M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005).
[Crossref] [PubMed]

M. Sumetsky and B. Eggleton, “Modeling and optimization of complex photonic resonant cavity circuits,” Opt. Express 11(4), 381–391 (2003).
[Crossref] [PubMed]

M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, X. Liu, E. M. Monberg, and T. F. Taunay, “Photo-induced SNAP: fabrication, trimming, and tuning of microresonator chains,” Opt. Express 20(10), 10684–10691 (2012).
[Crossref] [PubMed]

M. Sumetsky, “Theory of SNAP devices: basic equations and comparison with the experiment,” Opt. Express 20(20), 22537–22554 (2012).
[Crossref] [PubMed]

M. Sumetsky and Y. Dulashko, “SNAP: Fabrication of long coupled microresonator chains with sub-angstrom precision,” Opt. Express 20(25), 27896–27901 (2012).
[Crossref] [PubMed]

Opt. Lett. (13)

M. Sumetsky, K. Abedin, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, and E. Monberg, “Coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators,” Opt. Lett. 37(6), 990–992 (2012).
[Crossref] [PubMed]

J. B. Khurgin, “Power dissipation in slow light devices: a comparative analysis,” Opt. Lett. 32(2), 163–165 (2007).
[Crossref] [PubMed]

J. B. Khurgin, “Dispersion and loss limitations on the performance of optical delay lines based on coupled resonant structures,” Opt. Lett. 32(2), 133–135 (2007).
[Crossref] [PubMed]

M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, “Surface nanoscale axial photonics: robust fabrication of high-quality-factor microresonators,” Opt. Lett. 36(24), 4824–4826 (2011).
[Crossref] [PubMed]

M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31(17), 2571–2573 (2006).
[Crossref] [PubMed]

S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32(3), 289–291 (2007).
[Crossref] [PubMed]

P. Chak and J. E. Sipe, “Minimizing finite-size effects in artificial resonance tunneling structures,” Opt. Lett. 31(17), 2568–2570 (2006).
[Crossref] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Contra-directional coupling into slotted photonic crystals for spectrometric applications,” Opt. Lett. 39(15), 4345–4348 (2014).
[Crossref] [PubMed]

Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31(1), 50–52 (2006).
[Crossref] [PubMed]

J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007).
[Crossref] [PubMed]

J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[Crossref] [PubMed]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[Crossref] [PubMed]

J. Scheuer and M. S. Shahriar, “Trap-door optical buffering using a flat-top coupled microring filter: the superluminal cavity approach,” Opt. Lett. 38(18), 3534–3537 (2013).
[Crossref] [PubMed]

Opt. Photonics News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of Slow Light in Telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[Crossref]

Opt. Quantum Electron. (1)

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003).
[Crossref]

Optica (1)

Phys. Rev. A (2)

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, H. A. Luckay, H. Chang, and K. Myneni, “Quantum-noise-limited sensitivity enhancement of a passive optical cavity by a fast-light medium,” Phys. Rev. A 94(2), 023828 (2016).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6 Pt 2), 066608 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. Scheuer and A. Yariv, “Sagnac Effect in Coupled-Resonator Slow-Light Waveguide Structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
[Crossref] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

SIAM J. Optim. (1)

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM J. Optim. 9(1), 112–147 (1998).
[Crossref]

Other (2)

L. Magid, Electromagnetic Fields, Energy, and Waves (Wiley, 1972).

J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic a CROW structure with a tapered I/O coupling scheme. (b) Dispersion relation of an infinite CROW structure. In this plot κ = 10−2.
Fig. 2
Fig. 2 Transmission properties of infinite (solid black) and finite CROW structures calculated by transfer matrices (solid blue) and by FP model (green circles).
Fig. 3
Fig. 3 Transmission function (a) and slow-down factor (b) of an infinite CROW (dashed black) and of finite structures (10 resonators) with tapered I/O sections consisting of 2 (solid blue), 3 (solid green) and 4 (solid red) couplers
Fig. 4
Fig. 4 Comparison between filter theory based and numerically optimized I/O sections design; (a) the spectral transmission of CROWs with filter theory based (blue) and numerically optimized (red) I/O sections. (b) The slow down factors of finite CROWs with filter theory based (blue), numerically optimized (red) and infinite CROW (dashed black).
Fig. 5
Fig. 5 Comparison between the spectral transmission (a) and intensity profiles (b) of impedance matched CROWS with three coupler numerical optimization (blue) and the approach of [45] (blue). Inset: zoom-in on the central part of the transmission band
Fig. 6
Fig. 6 Field distribution in a finite CROW with (a) and without (b) impedance matching sections. The forwards and backwards propagating fields in the microrings are marked by blue squares and green circles respectively. (c) Schematics of the impedance matched CROW with indication of positions corresponding to the resonator index in panel (a).
Fig. 7
Fig. 7 Intensity profiles of finite CROW structures at several frequencies for the matched (a) and non-matched (b) cases. The legends on the left correspond to both panels.
Fig. 8
Fig. 8 Field intensity distribution in a finite CROW with impedance matching sections design based on filter theory.
Fig. 9
Fig. 9 Field reflection coefficient as a function of the coupling coefficients of the I/O sections. The red circle marks the minimal reflection point.

Tables (1)

Tables Icon

Table 1 Coupling coefficients of I/O sections of different length.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

cos( K )= sin( Δω/ 2Δ ν FSR )/ κ ,
Z CROW =2 Z 0 S( Δω ),
r= 2S( Δω )1 2S( Δω )+1 .
Δ ν band =4 κ Δ ν FSR /π ,
v g =L dω/ dK ,
Δ t res =L/ v g = ( dω/ dK ) 1 .
τ CROW = N CROW / ( 2 κ Δ ν FSR ) .
E=A( e iKn +Γ e iKn ),

Metrics