Abstract

We assess the importance of Stimulated Brillouin scattering (SBS) anti-Stokes wave on reflection tolerance in remotely seeded wavelength-division multiplexing passive optical networks (WDM PON). Experimental validation of the extended model for the externally seeded SBS is presented towards assessing the conditions in which the anti-Stokes contribution becomes relevant in the variant scenario of remotely carrier-seeded PON. We identify relevant operating conditions in which the latter can no longer be reliably neglected, and analyze the remote seed power budget implications of such contribution. Considering typical launch powers in PON systems we found that, even for seed launch powers below SBS threshold, non-optimized upstream (US) power spectral density may lead to a considerable anti-Stokes contribution to the SBS gain. In effect, in order to maintain a reference optical return loss (ORL) of 32 dB in such scenario, anti-Stokes wave contribution imposed rigorous remote seed power budget restrictions depending on fiber parameters.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang
Opt. Express 20(19) 21089-21100 (2012)

Experimental demonstration of a 10 Gb/s RSOA-based 16-QAM subcarrier multiplexed WDM PON

Jonathan M. Buset, Ziad A. El-Sahn, and David V. Plant
Opt. Express 22(1) 1-8 (2014)

37.5  km Urban Field Trial of OFDMA-PON Using Colorless ONUs With Dynamic Bandwidth Allocation and TCM [Invited]

Christian Ruprecht, Yingkan Chen, Daniel Fritzsche, Johannes von Hoyningen-Huene, Norbert Hanik, Erik Weis, Dirk Breuer, and Werner Rosenkranz
J. Opt. Commun. Netw. 7(1) A153-A161 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
    [Crossref]
  2. Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” IEEE/OSA J. Lightwave Technol. 28(18), 2621–2626 (2010).
    [Crossref]
  3. T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18(2), 585–592 (2012).
    [Crossref]
  4. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
    [Crossref]
  5. A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, and A. F. Evans, “Stimulated Brillouin scattering in Raman-pumped fibers: a theoretical approach,” J. Lightwave Technol. 20(8), 1635–1643 (2002).
    [Crossref]
  6. Q. Feng, W. Li, Q. Zheng, J. Han, J. Xiao, Z. He, M. Luo, Q. Yang, and S. Yu, “Impacts of backscattering noises on upstream signals in full-duplex bidirectional PONs,” Opt. Express 23(12), 15575–15586 (2015).
    [Crossref] [PubMed]
  7. M. O. van Deventer, J. J. G. M. van der Tol, and A. J. Boot, “Power penalties due to Brillouin and Rayleigh scattering in a bidirectional coherent transmission system,” IEEE Photonics Technol. Lett. 6(2), 291–294 (1994).
    [Crossref]
  8. B. Ruffin, “Stimulated Brillouin Scattering: An Overview of Measurements, System Impairments, and Applications,” in Proceedings of NIST Symposium on Optical Fiber Measurements, pp. 28–30, (2004).
    [Crossref]
  9. R. W. Boyd, Nonlinear Optics, Ed. 3, Ch. 9 (Elsevier, 2008).
  10. R. Tkach and A. Chraplyvy, “Fibre Brillouin amplifiers,” Opt. Quantum Electron. 21(1), S105–S112 (1989).
    [Crossref]
  11. M. Dossou, P. Szriftgiser, and A. Goffi, “Theoretical study of Stimulated Brillouin Scattering (SBS) in polymer optical fibres,” in Proceedings Symposium IEEE/LEOS (2008).
  12. R. B. Ellis, F. Weiss, and O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43(7), 405–407 (2007).
    [Crossref]
  13. G.989.2: 40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification.
  14. C. Arellano, K. D. Langer, and J. Prat, “Reflections and Multiple Rayleigh Backscattering in WDM Single-Fiber Loopback Access Networks,” J. Lightwave Technol. 27(1), 12–18 (2009).
    [Crossref]
  15. F. Zhang, S. Fu, J. Wu, K. Xu, J. Lin, and P. Shum, “A Wavelength-Division-Multiplexed Passive Optical Network with Simultaneous Centralized Light Source and Broadcast Capability,” IEEE Photonics J. 2(3), 445–453 (2010).
    [Crossref]
  16. K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photonics Technol. Lett. 24(3), 209–211 (2012).
    [Crossref]
  17. H. K. Shim, H. Kim, and Y. C. Chung, “20-Gb/s Polar RZ 4-PAM Transmission Over 20-km SSMF Using RSOA and Direct Detection,” IEEE Photonics Technol. Lett. 27(10), 1116–1119 (2015).
    [Crossref]
  18. Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
    [Crossref]
  19. K. Y. Cho, U. H. Hong, A. Agata, T. Sano, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10-Gb/s, 80-km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” OFC/NFOEC, Los Angeles, CA, 2012, pp. 1–3.
  20. Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
    [Crossref]
  21. Q. Guo and A. V. Tran, “Mitigation of Rayleigh noise and dispersion in REAM-based WDM-PON using spectrum-shaping codes,” Opt. Express 20(26), B452–B461 (2012).
    [Crossref] [PubMed]
  22. A. Ahmad, Z. A. Kadir, U. S. Ismail, Z. A. Manaf, M. N. Rahman, Z. M. Yusof, and M. S. M. Salleh, “Optimization of remote seeding source and gain in minimizing backreflections effects on colorless ONU in 10 Gbps bidirectional WDM PON system,” inProceedings of IEEE International Conference on Photonics (IEEE, 2013), pp. 262–264.
    [Crossref]
  23. A. Shahpari, R. M. Ferreira, R. S. Luis, Z. Vujicic, F. P. Guiomar, J. D. Reis, and A. L. Teixeira, “Coherent Access: A Review,” J. Lightwave Technol. 35(4), 1050–1058 (2017).
    [Crossref]
  24. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [Crossref] [PubMed]
  25. Y. Zeldovich, N. F. Pilipetsky and V. V. Shkunov, Principles of Phase Conjugation (Spriger-Verlag, 1985).
  26. G. P. Agrawal, Nonlinear Fiber Optics, Ch. 9 (A. Press, 2001).
  27. S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Grüner-Nielsen, and S. Herstrøm, “Modeling Brillouin Gain Spectrum of Solid and Microstructured Optical Fibers Using a Finite Element Method,” IEEE/OSA,” J. Lightwave Technol. 29(1), 22–30 (2011).
    [Crossref]
  28. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” IEEE/OSA J. Lightwave Technol. 12(4), 585–590 (1994).
    [Crossref]
  29. X. Sun, K. Xu, Y. Pei, J. Wu, and J. Lin, “Characterization of SBS gain and loss spectra using Fresnel reflections and interaction of two sidebands,” in OFC/NFOEC San Diego CA, 2010, pp.1–3.
  30. A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin Spectral Scanning Using the Wavelength Dependence of the Frequency Shift,” IEEE Sens. J. 11(2), 382–383 (2011).
    [Crossref]
  31. P. Flubacher, A. J. Leadbetter, J. A. Morrison, and B. P. Stoicheff, “The low-temperature heat capacity and the Raman and Brillouin spectra of vitreous silica,” J. Phys. Chem. Solids 12(1), 53–65 (1959).
    [Crossref]
  32. A. Loayssa, D. Benito, and M. J. Garde, “High-resolution measurement of stimulated Brillouin scattering spectra in single-mode fibres,” in IEE Proceedings - Optoelectronics (IEEE, 2001), pp. 143–148.
  33. G. Keiser, Optical Fiber Communications, (McGraw Hill, 2000).
  34. Z. Vujicic, A. Shahpari, B. Neto, N. Pavlovic, A. Almeida, A. Tavares, M. Ribeiro, S. Ziaie, R. Ferreira, R. Bastos, and A. Teixiera, “Considerations on Performance, Cost and Power Consumption of Candidate 100G EPON Architectures [Invited],” in ICTON Trento, Italy (2016).
  35. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
    [Crossref]

2017 (1)

2015 (3)

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

H. K. Shim, H. Kim, and Y. C. Chung, “20-Gb/s Polar RZ 4-PAM Transmission Over 20-km SSMF Using RSOA and Direct Detection,” IEEE Photonics Technol. Lett. 27(10), 1116–1119 (2015).
[Crossref]

Q. Feng, W. Li, Q. Zheng, J. Han, J. Xiao, Z. He, M. Luo, Q. Yang, and S. Yu, “Impacts of backscattering noises on upstream signals in full-duplex bidirectional PONs,” Opt. Express 23(12), 15575–15586 (2015).
[Crossref] [PubMed]

2014 (1)

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

2012 (3)

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photonics Technol. Lett. 24(3), 209–211 (2012).
[Crossref]

Q. Guo and A. V. Tran, “Mitigation of Rayleigh noise and dispersion in REAM-based WDM-PON using spectrum-shaping codes,” Opt. Express 20(26), B452–B461 (2012).
[Crossref] [PubMed]

T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18(2), 585–592 (2012).
[Crossref]

2011 (2)

2010 (3)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” IEEE/OSA J. Lightwave Technol. 28(18), 2621–2626 (2010).
[Crossref]

F. Zhang, S. Fu, J. Wu, K. Xu, J. Lin, and P. Shum, “A Wavelength-Division-Multiplexed Passive Optical Network with Simultaneous Centralized Light Source and Broadcast Capability,” IEEE Photonics J. 2(3), 445–453 (2010).
[Crossref]

2009 (1)

2008 (1)

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

2007 (1)

R. B. Ellis, F. Weiss, and O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43(7), 405–407 (2007).
[Crossref]

2004 (1)

2002 (1)

1994 (2)

M. O. van Deventer, J. J. G. M. van der Tol, and A. J. Boot, “Power penalties due to Brillouin and Rayleigh scattering in a bidirectional coherent transmission system,” IEEE Photonics Technol. Lett. 6(2), 291–294 (1994).
[Crossref]

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” IEEE/OSA J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

1990 (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

1989 (1)

R. Tkach and A. Chraplyvy, “Fibre Brillouin amplifiers,” Opt. Quantum Electron. 21(1), S105–S112 (1989).
[Crossref]

1959 (1)

P. Flubacher, A. J. Leadbetter, J. A. Morrison, and B. P. Stoicheff, “The low-temperature heat capacity and the Raman and Brillouin spectra of vitreous silica,” J. Phys. Chem. Solids 12(1), 53–65 (1959).
[Crossref]

Agata, A.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photonics Technol. Lett. 24(3), 209–211 (2012).
[Crossref]

Ahmad, A.

A. Ahmad, Z. A. Kadir, U. S. Ismail, Z. A. Manaf, M. N. Rahman, Z. M. Yusof, and M. S. M. Salleh, “Optimization of remote seeding source and gain in minimizing backreflections effects on colorless ONU in 10 Gbps bidirectional WDM PON system,” inProceedings of IEEE International Conference on Photonics (IEEE, 2013), pp. 262–264.
[Crossref]

Anton, O. M.

R. B. Ellis, F. Weiss, and O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43(7), 405–407 (2007).
[Crossref]

Arellano, C.

Bao, X.

Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” IEEE/OSA J. Lightwave Technol. 28(18), 2621–2626 (2010).
[Crossref]

Boot, A. J.

M. O. van Deventer, J. J. G. M. van der Tol, and A. J. Boot, “Power penalties due to Brillouin and Rayleigh scattering in a bidirectional coherent transmission system,” IEEE Photonics Technol. Lett. 6(2), 291–294 (1994).
[Crossref]

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” IEEE/OSA J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Chattopadhyay, T.

T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18(2), 585–592 (2012).
[Crossref]

Chen, L.

Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” IEEE/OSA J. Lightwave Technol. 28(18), 2621–2626 (2010).
[Crossref]

Cho, K. Y.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photonics Technol. Lett. 24(3), 209–211 (2012).
[Crossref]

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Chraplyvy, A.

R. Tkach and A. Chraplyvy, “Fibre Brillouin amplifiers,” Opt. Quantum Electron. 21(1), S105–S112 (1989).
[Crossref]

Chujo, W.

Chung, Y. C.

H. K. Shim, H. Kim, and Y. C. Chung, “20-Gb/s Polar RZ 4-PAM Transmission Over 20-km SSMF Using RSOA and Direct Detection,” IEEE Photonics Technol. Lett. 27(10), 1116–1119 (2015).
[Crossref]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photonics Technol. Lett. 24(3), 209–211 (2012).
[Crossref]

Dasgupta, S.

Dong, Y.

Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” IEEE/OSA J. Lightwave Technol. 28(18), 2621–2626 (2010).
[Crossref]

Dossou, M.

M. Dossou, P. Szriftgiser, and A. Goffi, “Theoretical study of Stimulated Brillouin Scattering (SBS) in polymer optical fibres,” in Proceedings Symposium IEEE/LEOS (2008).

Ellis, R. B.

R. B. Ellis, F. Weiss, and O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43(7), 405–407 (2007).
[Crossref]

Evans, A. F.

Feng, Q.

Ferreira, R. M.

Flubacher, P.

P. Flubacher, A. J. Leadbetter, J. A. Morrison, and B. P. Stoicheff, “The low-temperature heat capacity and the Raman and Brillouin spectra of vitreous silica,” J. Phys. Chem. Solids 12(1), 53–65 (1959).
[Crossref]

Fu, S.

F. Zhang, S. Fu, J. Wu, K. Xu, J. Lin, and P. Shum, “A Wavelength-Division-Multiplexed Passive Optical Network with Simultaneous Centralized Light Source and Broadcast Capability,” IEEE Photonics J. 2(3), 445–453 (2010).
[Crossref]

Goffi, A.

M. Dossou, P. Szriftgiser, and A. Goffi, “Theoretical study of Stimulated Brillouin Scattering (SBS) in polymer optical fibres,” in Proceedings Symposium IEEE/LEOS (2008).

Grüner-Nielsen, L.

Guiomar, F. P.

Guo, Q.

Han, J.

He, Z.

Herstrøm, S.

Hong, U. H.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photonics Technol. Lett. 24(3), 209–211 (2012).
[Crossref]

Ismail, U. S.

A. Ahmad, Z. A. Kadir, U. S. Ismail, Z. A. Manaf, M. N. Rahman, Z. M. Yusof, and M. S. M. Salleh, “Optimization of remote seeding source and gain in minimizing backreflections effects on colorless ONU in 10 Gbps bidirectional WDM PON system,” inProceedings of IEEE International Conference on Photonics (IEEE, 2013), pp. 262–264.
[Crossref]

Kadir, Z. A.

A. Ahmad, Z. A. Kadir, U. S. Ismail, Z. A. Manaf, M. N. Rahman, Z. M. Yusof, and M. S. M. Salleh, “Optimization of remote seeding source and gain in minimizing backreflections effects on colorless ONU in 10 Gbps bidirectional WDM PON system,” inProceedings of IEEE International Conference on Photonics (IEEE, 2013), pp. 262–264.
[Crossref]

Kamio, Y.

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

Kim, H.

H. K. Shim, H. Kim, and Y. C. Chung, “20-Gb/s Polar RZ 4-PAM Transmission Over 20-km SSMF Using RSOA and Direct Detection,” IEEE Photonics Technol. Lett. 27(10), 1116–1119 (2015).
[Crossref]

Kobyakov, A.

Koyamada, Y.

Langer, K. D.

Leadbetter, A. J.

P. Flubacher, A. J. Leadbetter, J. A. Morrison, and B. P. Stoicheff, “The low-temperature heat capacity and the Raman and Brillouin spectra of vitreous silica,” J. Phys. Chem. Solids 12(1), 53–65 (1959).
[Crossref]

Li, W.

Li, Y.

Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” IEEE/OSA J. Lightwave Technol. 28(18), 2621–2626 (2010).
[Crossref]

Lin, J.

F. Zhang, S. Fu, J. Wu, K. Xu, J. Lin, and P. Shum, “A Wavelength-Division-Multiplexed Passive Optical Network with Simultaneous Centralized Light Source and Broadcast Capability,” IEEE Photonics J. 2(3), 445–453 (2010).
[Crossref]

Liu, S.

Loayssa, A.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin Spectral Scanning Using the Wavelength Dependence of the Frequency Shift,” IEEE Sens. J. 11(2), 382–383 (2011).
[Crossref]

Luis, R. S.

A. Shahpari, R. M. Ferreira, R. S. Luis, Z. Vujicic, F. P. Guiomar, J. D. Reis, and A. L. Teixeira, “Coherent Access: A Review,” J. Lightwave Technol. 35(4), 1050–1058 (2017).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

Luo, M.

Luo, S.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

Manaf, Z. A.

A. Ahmad, Z. A. Kadir, U. S. Ismail, Z. A. Manaf, M. N. Rahman, Z. M. Yusof, and M. S. M. Salleh, “Optimization of remote seeding source and gain in minimizing backreflections effects on colorless ONU in 10 Gbps bidirectional WDM PON system,” inProceedings of IEEE International Conference on Photonics (IEEE, 2013), pp. 262–264.
[Crossref]

Mehendale, M.

Mendinueta, J. M. D.

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

Morrison, J. A.

P. Flubacher, A. J. Leadbetter, J. A. Morrison, and B. P. Stoicheff, “The low-temperature heat capacity and the Raman and Brillouin spectra of vitreous silica,” J. Phys. Chem. Solids 12(1), 53–65 (1959).
[Crossref]

Nakamura, M.

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

Nakamura, S.

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Olier, D.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin Spectral Scanning Using the Wavelength Dependence of the Frequency Shift,” IEEE Sens. J. 11(2), 382–383 (2011).
[Crossref]

Pavlovic, N. B.

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

Petropoulos, P.

Poletti, F.

Prat, J.

Puttnam, B. J.

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

Rahman, M. N.

A. Ahmad, Z. A. Kadir, U. S. Ismail, Z. A. Manaf, M. N. Rahman, Z. M. Yusof, and M. S. M. Salleh, “Optimization of remote seeding source and gain in minimizing backreflections effects on colorless ONU in 10 Gbps bidirectional WDM PON system,” inProceedings of IEEE International Conference on Photonics (IEEE, 2013), pp. 262–264.
[Crossref]

Reis, J. D.

Richardson, D. J.

Ruffin, B.

B. Ruffin, “Stimulated Brillouin Scattering: An Overview of Measurements, System Impairments, and Applications,” in Proceedings of NIST Symposium on Optical Fiber Measurements, pp. 28–30, (2004).
[Crossref]

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Sagues, M.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin Spectral Scanning Using the Wavelength Dependence of the Frequency Shift,” IEEE Sens. J. 11(2), 382–383 (2011).
[Crossref]

Salleh, M. S. M.

A. Ahmad, Z. A. Kadir, U. S. Ismail, Z. A. Manaf, M. N. Rahman, Z. M. Yusof, and M. S. M. Salleh, “Optimization of remote seeding source and gain in minimizing backreflections effects on colorless ONU in 10 Gbps bidirectional WDM PON system,” inProceedings of IEEE International Conference on Photonics (IEEE, 2013), pp. 262–264.
[Crossref]

Sano, T.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photonics Technol. Lett. 24(3), 209–211 (2012).
[Crossref]

Sato, S.

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Shahpari, A.

A. Shahpari, R. M. Ferreira, R. S. Luis, Z. Vujicic, F. P. Guiomar, J. D. Reis, and A. L. Teixeira, “Coherent Access: A Review,” J. Lightwave Technol. 35(4), 1050–1058 (2017).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

Shim, H. K.

H. K. Shim, H. Kim, and Y. C. Chung, “20-Gb/s Polar RZ 4-PAM Transmission Over 20-km SSMF Using RSOA and Direct Detection,” IEEE Photonics Technol. Lett. 27(10), 1116–1119 (2015).
[Crossref]

Shum, P.

F. Zhang, S. Fu, J. Wu, K. Xu, J. Lin, and P. Shum, “A Wavelength-Division-Multiplexed Passive Optical Network with Simultaneous Centralized Light Source and Broadcast Capability,” IEEE Photonics J. 2(3), 445–453 (2010).
[Crossref]

Sotobayashi, H.

Stoicheff, B. P.

P. Flubacher, A. J. Leadbetter, J. A. Morrison, and B. P. Stoicheff, “The low-temperature heat capacity and the Raman and Brillouin spectra of vitreous silica,” J. Phys. Chem. Solids 12(1), 53–65 (1959).
[Crossref]

Suzuki, M.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photonics Technol. Lett. 24(3), 209–211 (2012).
[Crossref]

Szriftgiser, P.

M. Dossou, P. Szriftgiser, and A. Goffi, “Theoretical study of Stimulated Brillouin Scattering (SBS) in polymer optical fibres,” in Proceedings Symposium IEEE/LEOS (2008).

Takushima, Y.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photonics Technol. Lett. 24(3), 209–211 (2012).
[Crossref]

Teixeira, A.

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

Teixeira, A. L.

Tkach, R.

R. Tkach and A. Chraplyvy, “Fibre Brillouin amplifiers,” Opt. Quantum Electron. 21(1), S105–S112 (1989).
[Crossref]

Tran, A. V.

Tsuda, S.

van der Tol, J. J. G. M.

M. O. van Deventer, J. J. G. M. van der Tol, and A. J. Boot, “Power penalties due to Brillouin and Rayleigh scattering in a bidirectional coherent transmission system,” IEEE Photonics Technol. Lett. 6(2), 291–294 (1994).
[Crossref]

van Deventer, M. O.

M. O. van Deventer, J. J. G. M. van der Tol, and A. J. Boot, “Power penalties due to Brillouin and Rayleigh scattering in a bidirectional coherent transmission system,” IEEE Photonics Technol. Lett. 6(2), 291–294 (1994).
[Crossref]

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” IEEE/OSA J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Vasilyev, M.

Vujicic, Z.

A. Shahpari, R. M. Ferreira, R. S. Luis, Z. Vujicic, F. P. Guiomar, J. D. Reis, and A. L. Teixeira, “Coherent Access: A Review,” J. Lightwave Technol. 35(4), 1050–1058 (2017).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

Wada, N.

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

Weiss, F.

R. B. Ellis, F. Weiss, and O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43(7), 405–407 (2007).
[Crossref]

Wu, J.

F. Zhang, S. Fu, J. Wu, K. Xu, J. Lin, and P. Shum, “A Wavelength-Division-Multiplexed Passive Optical Network with Simultaneous Centralized Light Source and Broadcast Capability,” IEEE Photonics J. 2(3), 445–453 (2010).
[Crossref]

Xia, Y.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

Xiao, J.

Xing, L.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

Xu, K.

F. Zhang, S. Fu, J. Wu, K. Xu, J. Lin, and P. Shum, “A Wavelength-Division-Multiplexed Passive Optical Network with Simultaneous Centralized Light Source and Broadcast Capability,” IEEE Photonics J. 2(3), 445–453 (2010).
[Crossref]

Yang, Q.

Yu, S.

Yusof, Z. M.

A. Ahmad, Z. A. Kadir, U. S. Ismail, Z. A. Manaf, M. N. Rahman, Z. M. Yusof, and M. S. M. Salleh, “Optimization of remote seeding source and gain in minimizing backreflections effects on colorless ONU in 10 Gbps bidirectional WDM PON system,” inProceedings of IEEE International Conference on Photonics (IEEE, 2013), pp. 262–264.
[Crossref]

Zhan, L.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

Zhang, F.

F. Zhang, S. Fu, J. Wu, K. Xu, J. Lin, and P. Shum, “A Wavelength-Division-Multiplexed Passive Optical Network with Simultaneous Centralized Light Source and Broadcast Capability,” IEEE Photonics J. 2(3), 445–453 (2010).
[Crossref]

Zheng, Q.

Zornoza, A.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin Spectral Scanning Using the Wavelength Dependence of the Frequency Shift,” IEEE Sens. J. 11(2), 382–383 (2011).
[Crossref]

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Electron. Lett. (1)

R. B. Ellis, F. Weiss, and O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43(7), 405–407 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18(2), 585–592 (2012).
[Crossref]

IEEE Photonics J. (1)

F. Zhang, S. Fu, J. Wu, K. Xu, J. Lin, and P. Shum, “A Wavelength-Division-Multiplexed Passive Optical Network with Simultaneous Centralized Light Source and Broadcast Capability,” IEEE Photonics J. 2(3), 445–453 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (5)

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s Long-Reach WDM PON Implemented by Using Directly Modulated RSOAs,” IEEE Photonics Technol. Lett. 24(3), 209–211 (2012).
[Crossref]

H. K. Shim, H. Kim, and Y. C. Chung, “20-Gb/s Polar RZ 4-PAM Transmission Over 20-km SSMF Using RSOA and Direct Detection,” IEEE Photonics Technol. Lett. 27(10), 1116–1119 (2015).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Demonstration of Wavelength Shared Coherent PON using RSOA and simplified DSP,” IEEE Photonics Technol. Lett. 26(21), 2142–2145 (2014).
[Crossref]

M. O. van Deventer, J. J. G. M. van der Tol, and A. J. Boot, “Power penalties due to Brillouin and Rayleigh scattering in a bidirectional coherent transmission system,” IEEE Photonics Technol. Lett. 6(2), 291–294 (1994).
[Crossref]

Z. Vujicic, R. S. Luis, J. M. D. Mendinueta, A. Shahpari, N. B. Pavlovic, B. J. Puttnam, Y. Kamio, M. Nakamura, N. Wada, and A. Teixeira, “Self-homodyne Detection Based Fully Coherent Reflective PON using RSOA and Simplified DSP,” IEEE Photonics Technol. Lett. 27(21), 2226–2229 (2015).
[Crossref]

IEEE Sens. J. (1)

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin Spectral Scanning Using the Wavelength Dependence of the Frequency Shift,” IEEE Sens. J. 11(2), 382–383 (2011).
[Crossref]

IEEE/OSA J. Lightwave Technol. (2)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” IEEE/OSA J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” IEEE/OSA J. Lightwave Technol. 28(18), 2621–2626 (2010).
[Crossref]

J. Lightwave Technol. (5)

J. Phys. Chem. Solids (1)

P. Flubacher, A. J. Leadbetter, J. A. Morrison, and B. P. Stoicheff, “The low-temperature heat capacity and the Raman and Brillouin spectra of vitreous silica,” J. Phys. Chem. Solids 12(1), 53–65 (1959).
[Crossref]

Opt. Express (2)

Opt. Quantum Electron. (1)

R. Tkach and A. Chraplyvy, “Fibre Brillouin amplifiers,” Opt. Quantum Electron. 21(1), S105–S112 (1989).
[Crossref]

Phys. Rev. A (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Other (12)

Y. Zeldovich, N. F. Pilipetsky and V. V. Shkunov, Principles of Phase Conjugation (Spriger-Verlag, 1985).

G. P. Agrawal, Nonlinear Fiber Optics, Ch. 9 (A. Press, 2001).

A. Ahmad, Z. A. Kadir, U. S. Ismail, Z. A. Manaf, M. N. Rahman, Z. M. Yusof, and M. S. M. Salleh, “Optimization of remote seeding source and gain in minimizing backreflections effects on colorless ONU in 10 Gbps bidirectional WDM PON system,” inProceedings of IEEE International Conference on Photonics (IEEE, 2013), pp. 262–264.
[Crossref]

A. Loayssa, D. Benito, and M. J. Garde, “High-resolution measurement of stimulated Brillouin scattering spectra in single-mode fibres,” in IEE Proceedings - Optoelectronics (IEEE, 2001), pp. 143–148.

G. Keiser, Optical Fiber Communications, (McGraw Hill, 2000).

Z. Vujicic, A. Shahpari, B. Neto, N. Pavlovic, A. Almeida, A. Tavares, M. Ribeiro, S. Ziaie, R. Ferreira, R. Bastos, and A. Teixiera, “Considerations on Performance, Cost and Power Consumption of Candidate 100G EPON Architectures [Invited],” in ICTON Trento, Italy (2016).

X. Sun, K. Xu, Y. Pei, J. Wu, and J. Lin, “Characterization of SBS gain and loss spectra using Fresnel reflections and interaction of two sidebands,” in OFC/NFOEC San Diego CA, 2010, pp.1–3.

M. Dossou, P. Szriftgiser, and A. Goffi, “Theoretical study of Stimulated Brillouin Scattering (SBS) in polymer optical fibres,” in Proceedings Symposium IEEE/LEOS (2008).

G.989.2: 40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification.

K. Y. Cho, U. H. Hong, A. Agata, T. Sano, Y. Horiuchi, H. Tanaka, M. Suzuki, and Y. C. Chung, “10-Gb/s, 80-km reach RSOA-based WDM PON employing QPSK signal and self-homodyne receiver,” OFC/NFOEC, Los Angeles, CA, 2012, pp. 1–3.

B. Ruffin, “Stimulated Brillouin Scattering: An Overview of Measurements, System Impairments, and Applications,” in Proceedings of NIST Symposium on Optical Fiber Measurements, pp. 28–30, (2004).
[Crossref]

R. W. Boyd, Nonlinear Optics, Ed. 3, Ch. 9 (Elsevier, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Remote carrier-seeded scenario in bidirectional wavelength - reuse DWDM PON and spectral distribution of its distributed reflection contributors to the system impairment.
Fig. 2
Fig. 2 Fundamental configuration of the Brillouin spectral characterization technique.
Fig. 3
Fig. 3 Experimental setup for the SBS spectral characterization.
Fig. 4
Fig. 4 Experimental validation of the extended SBS model for the (a) Stokes and (b) anti-Stokes spectra in DSF, considering different pump launch powers PP (0).
Fig. 5
Fig. 5 Experimental validation of the extended SBS model for the peak Stokes gain and anti-Stokes loss versus pump launch power PP (0).
Fig. 6
Fig. 6 Experimental validation (markers) of the extended SBS model (full lines) using the standard SBS model as a reference (dashed lines) [9], for the anti-Stokes probe input power contribution to the SBS Stokes output power considering several pump powers in an 8.8 km long DSF.
Fig. 7
Fig. 7 Simulated SBS Stokes power transfer γ versus exponential gain factor G (a) w/o anti-Stokes contribution and for several values of a, comparing the extended SBS model (Eqs. (4-6) with the transcendental equation from [9]; (b) for fixed value of a = 30 dB considering several values of b.
Fig. 8
Fig. 8 Experimental and simulated SBS Stokes power transfer γ as a function of exponential gain G for a fixed value of a = 30 dB, considering several values of b.
Fig. 9
Fig. 9 Maximum exponential gain factor G tolerated for several values of γ, considering parameters in Table 1, different fiber attenuation coefficients and a range of pump-to-Stokes and -anti-Stokes launch power ratios, a and b.
Fig. 10
Fig. 10 Remote seed power budget penalty versus anti-Stokes lauch power for 0 dBm of DS signal launch power and 32 dB of ORL, considering various SBS thresholds.

Tables (2)

Tables Icon

Table 1 Extracted SBS fiber parameters.

Tables Icon

Table 2 Measured and simulated SBS threshold, Pth.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ρ s = ε 0 γ e q s 2 A p A s * ( Ω B 2 Ω 2 iΩ Γ B )
ρ a = ε 0 γ e q a 2 A p * A a ( Ω B 2 Ω 2 iΩ Γ B )
g s,a = g 0s,a ( Γ B /2 ) 2 ( Ω B Ω ) 2 + ( Γ B /2 ) 2 g 0s,a = γ e ω 2 nν c 3 ρ 0 Γ B
d P P dz = g s A eff P P P S + g a A eff P P P a α P P
d P S dz = g s A eff P P P S +α P S
d P a dz = g a A eff P P P a +α P a
F j = 1 N i=1 N ( c j ( i ) m j ( i ) ) 2 ,j=1,2,...8
γ=[ P S ( 0 ) P S ( L ) ]/ P P ( 0 ) a= P P ( 0 )/ P S ( L ) b= P P ( 0 )/ P a ( L ) G= P P ( 0 ) g 0 L/ A eff
γ= P DS g 0 L/( G max A eff 10 ORL/10 )
P seed = G max A eff /( g 0 L 10 b/10 )

Metrics