Abstract

This work proposes a mid-infrared polarization rotator that incorporates a twisted nematic liquid crystal (TNLC) cell with a photo-controllable alignment layer. The TNLC device with a sufficient phase retardation can act as an achromic polarization rotation device over a wide wavelengths range and thus can rotate the polarization of a mid-IR laser beam. The photo-alignment technique enables TNLCs with arbitrary twisting angles to be generated by the use of visible polarized addressing light to control the directors of the photo-alignment layer. Therefore, arbitrary rotation angles of the polarization axis of a linearly polarized mid-IR laser beam can be realized. Moreover, the rewritable property and reliability of this polarization rotator are experimentally verified. The flexibility of polarization control for broadband mid-IR opens up a large range of potential mid-IR applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating

Chun-Ta Wang, Hao-Hsiang Hou, Ping-Chien Chang, Cheng-Chang Li, Hung-Chang Jau, Yung-Jr Hung, and Tsung-Hsien Lin
Opt. Express 24(20) 22892-22898 (2016)

Asymmetrical polarization-dependent scattering and reflection in a sole cell of polymer network-90° twisted nematic liquid crystals

Cheng-Kai Liu, Wei-Hsuan Chen, and Ko-Ting Cheng
Opt. Express 25(19) 22388-22403 (2017)

Study of optical rotation generated by the twisted nematic liquid crystal film: based on circular birefringence effect

Xiangshen Meng, Xiaoyan Qiu, Guoqing Li, Wenjiang Ye, Yueqiang Lin, Xiaodong Liu, Minglei Cai, Xiaoyan Wang, Jian Li, and Zhenghong He
Appl. Opt. 58(19) 5301-5309 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
    [Crossref] [PubMed]
  2. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
    [Crossref]
  3. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a mid-infrared silicon Raman amplifier,” Opt. Express 15(22), 14355–14362 (2007).
    [Crossref] [PubMed]
  4. B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
    [Crossref]
  5. K. Vizbaras and M.-C. Amann, “Room-temperature 3.73 μm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
    [Crossref]
  6. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
    [Crossref] [PubMed]
  7. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  8. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
    [Crossref]
  9. H. Cheng, S. Chena, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  10. I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, “Mid-infrared wire-grid polarizer with silicides,” Opt. Lett. 33(3), 258–260 (2008).
    [Crossref] [PubMed]
  11. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, 2006).
  12. Z. Zhuang, S.-W. Suh, and J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett. 24(10), 694–696 (1999).
    [Crossref] [PubMed]
  13. H. Ren and S.-T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
    [Crossref]
  14. C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
    [Crossref]
  15. S. T. Wu, Q. H. Wang, M. D. Kempe, and J. A. Kornfield, “Perdeuterated cyanobiphenyl liquid crystals for infrared applications,” J. Appl. Phys. 92(12), 7146–7148 (2002).
    [Crossref]
  16. M. Hird, “Fluorinated liquid crystals-properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
    [Crossref] [PubMed]
  17. F. Peng, Y.-H. Lee, H. Chen, Z. Li, A. E. Bostwick, R. J. Twieg, and S.-T. Wu, “Low absorption chlorinated liquid crystals for infrared applications,” Opt. Mater. Express 5(6), 1281–1288 (2015).
    [Crossref]
  18. Y. Chen, H. Xianyu, J. Sun, P. Kula, R. Dabrowski, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Low absorption liquid crystals for mid-wave infrared applications,” Opt. Express 19(11), 10843–10848 (2011).
    [Crossref] [PubMed]
  19. S.-T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26(2), 262120 (1987).
    [Crossref]
  20. J.-Y. Lai, C.-W. Hsu, E.-C. Liu, Y.-C. Chen, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “A 3.5 μm continuous-wave laser pointer,” Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper AW1K.8.
    [Crossref]
  21. C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
    [Crossref]
  22. Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
    [Crossref] [PubMed]
  23. H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
    [Crossref] [PubMed]
  24. J. Sun, A. K. Srivastava, W. Zhang, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically rewritable 3D liquid crystal displays,” Opt. Lett. 39(21), 6209–6212 (2014).
    [Crossref] [PubMed]
  25. N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Ya. Zeldovich, D. M. Steeves, and B. R. Kimball, “Broadband waveplate lenses,” Opt. Express 24(7), 7091–7102 (2016).
    [Crossref] [PubMed]
  26. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, V. G. Chigrinov, and H. S. Kwok, “Study of azo dye surface command photoalignment material for photonics applications,” Appl. Opt. 49(10), 1720–1727 (2010).
    [Crossref] [PubMed]
  27. J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (1)

2013 (3)

2012 (4)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

K. Vizbaras and M.-C. Amann, “Room-temperature 3.73 μm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

2011 (1)

2010 (3)

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, V. G. Chigrinov, and H. S. Kwok, “Study of azo dye surface command photoalignment material for photonics applications,” Appl. Opt. 49(10), 1720–1727 (2010).
[Crossref] [PubMed]

2009 (2)

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[Crossref] [PubMed]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a mid-infrared silicon Raman amplifier,” Opt. Express 15(22), 14355–14362 (2007).
[Crossref] [PubMed]

H. Ren and S.-T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
[Crossref]

M. Hird, “Fluorinated liquid crystals-properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
[Crossref] [PubMed]

2004 (1)

2002 (1)

S. T. Wu, Q. H. Wang, M. D. Kempe, and J. A. Kornfield, “Perdeuterated cyanobiphenyl liquid crystals for infrared applications,” J. Appl. Phys. 92(12), 7146–7148 (2002).
[Crossref]

1999 (1)

1987 (1)

S.-T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26(2), 262120 (1987).
[Crossref]

1975 (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

Akioka, S.

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Alici, K. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Amann, M.-C.

K. Vizbaras and M.-C. Amann, “Room-temperature 3.73 μm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

Anne, M. L.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Bagavathiappan, S.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Belkin, M. A.

Belyanin, A.

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Borlaug, D.

Bostwick, A. E.

Boussard-Pledel, C.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Bureau, B.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Capasso, F.

Charrier, J.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Chen, H.

Chen, Y.

Chena, S.

H. Cheng, S. Chena, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Cheng, H.

H. Cheng, S. Chena, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chigrinov, V. G.

Colas, F.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Compère, C.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Dabidian, N.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Dabrowski, R.

Diehl, L.

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Du, F.

Gkortsas, V. M.

Gooch, C. H.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

Grant, P.

Haffouz, S.

Ham, D.

Hird, M.

M. Hird, “Fluorinated liquid crystals-properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
[Crossref] [PubMed]

Huang, C.-M.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[Crossref]

Huang, C.-Y.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[Crossref]

Hyodo, K.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Inoue, S.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jalali, B.

Jayakumar, T.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Kärtner, F. X.

Keirsse, J.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Kempe, M. D.

S. T. Wu, Q. H. Wang, M. D. Kempe, and J. A. Kornfield, “Perdeuterated cyanobiphenyl liquid crystals for infrared applications,” J. Appl. Phys. 92(12), 7146–7148 (2002).
[Crossref]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Kimball, B. R.

Kintaka, K.

Kornfield, J. A.

S. T. Wu, Q. H. Wang, M. D. Kempe, and J. A. Kornfield, “Perdeuterated cyanobiphenyl liquid crystals for infrared applications,” J. Appl. Phys. 92(12), 7146–7148 (2002).
[Crossref]

Kula, P.

Kuznetsova, L.

Kwok, H. S.

Lahiri, B. B.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Le Person, J.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Lee, C.-R.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[Crossref]

Lee, Y.-H.

Lhermite, H.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Li, J.

H. Cheng, S. Chena, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Li, X.

Li, Z.

F. Peng, Y.-H. Lee, H. Chen, Z. Li, A. E. Bostwick, R. J. Twieg, and S.-T. Wu, “Low absorption chlorinated liquid crystals for infrared applications,” Opt. Mater. Express 5(6), 1281–1288 (2015).
[Crossref]

H. Cheng, S. Chena, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Lin, Y.-H.

Liu, H. C.

Liu, Y.

Lo, K.-Y.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[Crossref]

Loreal, O.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Lu, Y.-Q.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Nazabal, V.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Nersisyan, S. R.

Nishii, J.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Patel, J. S.

Peng, F.

Philip, J.

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Raghunathan, V.

Ren, H.

Rice, R. R.

Roberts, D. E.

Saito, M.

Schneider, H.

Serak, S. V.

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Song, C. Y.

Srivastava, A. K.

Steeves, D. M.

Suh, S.-W.

Sun, J.

Tabiryan, N. V.

Tarry, H. A.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

Tian, J.

H. Cheng, S. Chena, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Tripathi, S.

Tsai, H.-Y.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[Crossref]

Twieg, R. J.

Vizbaras, K.

K. Vizbaras and M.-C. Amann, “Room-temperature 3.73 μm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

Wang, C. Y.

Wang, L.

Wang, Q. H.

S. T. Wu, Q. H. Wang, M. D. Kempe, and J. A. Kornfield, “Perdeuterated cyanobiphenyl liquid crystals for infrared applications,” J. Appl. Phys. 92(12), 7146–7148 (2002).
[Crossref]

Wang, Y.-H.

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[Crossref]

Wasilewski, Z. R.

Wu, C.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Wu, S. T.

S. T. Wu, Q. H. Wang, M. D. Kempe, and J. A. Kornfield, “Perdeuterated cyanobiphenyl liquid crystals for infrared applications,” J. Appl. Phys. 92(12), 7146–7148 (2002).
[Crossref]

Wu, S.-T.

Xianyu, H.

Xie, B.

H. Cheng, S. Chena, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Xu, S.

Yamada, I.

Yamagishi, Y.

Yanakata, K.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Yu, P.

H. Cheng, S. Chena, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Zeldovich, B. Ya.

Zhang, W.

Zhuang, Z.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Cheng, S. Chena, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Ren and S.-T. Wu, “Liquid-crystal-based linear polarization rotator,” Appl. Phys. Lett. 90(12), 121123 (2007).
[Crossref]

C.-Y. Huang, H.-Y. Tsai, Y.-H. Wang, C.-M. Huang, K.-Y. Lo, and C.-R. Lee, “Linear polarization rotators based on dye-doped liquid crystal cells,” Appl. Phys. Lett. 96(19), 191103 (2010).
[Crossref]

Chem. Soc. Rev. (1)

M. Hird, “Fluorinated liquid crystals-properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007).
[Crossref] [PubMed]

Infrared Phys. Technol. (1)

B. B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: a review,” Infrared Phys. Technol. 55(4), 221–235 (2012).
[Crossref]

J. Appl. Phys. (1)

S. T. Wu, Q. H. Wang, M. D. Kempe, and J. A. Kornfield, “Perdeuterated cyanobiphenyl liquid crystals for infrared applications,” J. Appl. Phys. 92(12), 7146–7148 (2002).
[Crossref]

J. Phys. D Appl. Phys. (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

Nat. Photonics (2)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Commun. (1)

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Opt. Eng. (1)

S.-T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26(2), 262120 (1987).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. Express (1)

Semicond. Sci. Technol. (1)

K. Vizbaras and M.-C. Amann, “Room-temperature 3.73 μm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

Sensors (Basel) (1)

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Other (2)

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, 2006).

J.-Y. Lai, C.-W. Hsu, E.-C. Liu, Y.-C. Chen, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “A 3.5 μm continuous-wave laser pointer,” Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper AW1K.8.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Transmission spectrum in mid-IR regime, of 38 μm-thick E7 layer; (b) experimental setup for photo-alignment and mid-IR polarization measurement.
Fig. 2
Fig. 2 Dynamic switching time of proposed device with 405 nm laser light.
Fig. 3
Fig. 3 (a) Images of TNLC cell with various twisted structures between a polarizer (at 0°) and an analyzer (at 90°, 120°, 150°, and 180°), observed on a backlight module, and (b) output brightness of TNLC cell with various twisted structures under crossed polarizers
Fig. 4
Fig. 4 Polar graphs of transmittance of linearly polarized mid-IR laser light after it has passed through (a) 0°, (b) 30°, (c) 60°, and (d) 90° TNLC cells.
Fig. 5
Fig. 5 (a) Dependence of twisting angle of TNLC cell on number of switching cycles, and (b) microscopic images of 90° TNLC cell under crossed and parallel polarizers after second and 30th switching.
Fig. 6
Fig. 6 (a) Polar graph of transmittance of linearly polarized mid-IR laser light through 0° and 90° TNLC cells (250 μm), (b) microscopic images of 90o TNLC cell (250 μm) under crossed and parallel polarizers, and (c) dynamic switching times of the 38 and 250 μm-thick TNLC cells with 405 nm laser light.

Metrics