Abstract

The paper presents a novel and economic manufacturing process for microlens arrays (MLAs). This process uses micromilling machining, PDMS casting, and hybrid bonding between a glass substrate and PDMS membrane to create a microfluidic chip which is used for manufacturing MLAs on a PDMS substrates. MLAs of various diameters were fabricated for experiments, including 1000 μm, 500 μm, and 200 μm. The sag height of the MLAs is easily adjusted by controlling the pressure inside the microchannel to deform the PDMS membrane. Multiple experiments were conducted to characterize the performance of MLAs, the results of which demonstrate: (1) this fabrication process is able to manufacture MLAs with various dimensions and the diameter of an MLAs is determined by the size of micromilling bit and cutting path; (2) the sag height and curvature of MLAs can be controlled by the PDMS membrane thickness and the hydraulic pressure inside the microchannel; (3) an optical system was built to investigate the uniformity of MLAs and the experiment results showed uniform focal length of MLAs; (4) the resulting MLAs magnify tiny objects and significantly enhance the fluorescence signal emitted from the microchannel

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable liquid-filled microlens array integrated with microfluidic network

Nikolas Chronis, Gang L. Liu, Ki-Hun Jeong, and Luke P. Lee
Opt. Express 11(19) 2370-2378 (2003)

Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method

Feng Chen, Hewei Liu, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou
Opt. Express 18(19) 20334-20343 (2010)

Fabrication of polymer microlens array with controllable focal length by modifying surface wettability

Qiao Xu, Bo Dai, Yu Huang, Huansi Wang, Zhuoqing Yang, Kaimin Wang, Songlin Zhuang, and Dawei Zhang
Opt. Express 26(4) 4172-4182 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A-Pure Appl. Opt. 6(1), 94 (2003).
  2. H. Urey and K. D. Powell, “Microlens-array-based exit-pupil expander for full-color displays,” Appl. Opt. 44(23), 4930–4936 (2005).
    [Crossref] [PubMed]
  3. K. Kurihara, I. D. Nikolov, S. Mitsugi, K. Nanri, and K. Goto, “Design and fabrication of microlens array for near-field vertical cavity surface emitting laser parallel optical head,” Opt. Rev. 10(2), 89–95 (2003).
    [Crossref]
  4. G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Shack Hartmann wave-front measurement with a large F-number plastic microlens array,” Appl. Opt. 35(1), 188–192 (1996).
    [Crossref] [PubMed]
  5. J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007).
    [Crossref] [PubMed]
  6. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(104), A673–A685 (2011).
    [Crossref] [PubMed]
  7. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
    [Crossref] [PubMed]
  8. C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
    [Crossref]
  9. Y. S. Cherng and G. D. J. Su, “Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process,” J. Micromech. Microeng. 24(1), 015016 (2013).
    [Crossref]
  10. V. Lin, H.-C. Wei, H.-T. Hsieh, J.-L. Hsieh, and G.-D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” Micro & Nano Lett. 6(7), 523–526 (2011).
    [Crossref]
  11. K. Naessens, H. Ottevaere, P. V. Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208, 159–164 (2003).
    [Crossref]
  12. S. Mihailov and S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon,” Appl. Opt. 32(31), 6211–6218 (1993).
    [Crossref] [PubMed]
  13. Q. Peng, Y. Guo, S. Liu, and Z. Cui, “Real-time gray-scale photolithography for fabrication of continuous microstructure,” Opt. Lett. 27(19), 1720–1722 (2002).
    [Crossref] [PubMed]
  14. W. Yu and X. Yuan, “UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask,” Opt. Express 11(18), 2253–2258 (2003).
    [Crossref] [PubMed]
  15. M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
    [Crossref]
  16. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Technol. Lett. 6(9), 1112–1114 (1994).
    [Crossref]
  17. S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2002).
    [Crossref]
  18. C. Y. Chang, S. Y. Yang, M. S. Wu, L. T. Jiang, and L. A. Wang, “A novel method for fabrication of plastic microlens array with aperture stops for projection photolithography,” Jpn. J. Appl. Phys. 46(5A), 2932–2935 (2007).
    [Crossref]
  19. S. M. Kuo and C. H. Lin, “The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,” J. Micromech. Microeng. 18(12), 125012 (2008).
    [Crossref]
  20. H. Sun, X. Wang, Y. Xiong, G. Liu, and K. Wang, “Fabrication of microlens based on overplating in electroforming,” J. Micromech. Microeng. 26(5), 055007 (2016).
    [Crossref]
  21. C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
    [Crossref] [PubMed]
  22. X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
    [Crossref] [PubMed]
  23. N. Chronis, G. Liu, K. H. Jeong, and L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [Crossref] [PubMed]
  24. J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
    [Crossref]
  25. K. H. Jeong, G. Liu, N. Chronis, and L. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
    [Crossref] [PubMed]
  26. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
    [Crossref] [PubMed]
  27. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
    [Crossref]
  28. D. J. Guckenberger, T. E. de Groot, A. M. Wan, D. J. Beebe, and E. W. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15(11), 2364–2378 (2015).
    [Crossref] [PubMed]
  29. K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
    [Crossref]
  30. P. C. Chen and L. H. Duong, “Novel solvent bonding method for thermoplastic microfluidic chips,” Sens. Actuator B-Chem. 237, 556–562 (2016).
    [Crossref]
  31. H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
    [Crossref]

2016 (2)

H. Sun, X. Wang, Y. Xiong, G. Liu, and K. Wang, “Fabrication of microlens based on overplating in electroforming,” J. Micromech. Microeng. 26(5), 055007 (2016).
[Crossref]

P. C. Chen and L. H. Duong, “Novel solvent bonding method for thermoplastic microfluidic chips,” Sens. Actuator B-Chem. 237, 556–562 (2016).
[Crossref]

2015 (1)

D. J. Guckenberger, T. E. de Groot, A. M. Wan, D. J. Beebe, and E. W. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15(11), 2364–2378 (2015).
[Crossref] [PubMed]

2014 (1)

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

2013 (2)

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Y. S. Cherng and G. D. J. Su, “Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process,” J. Micromech. Microeng. 24(1), 015016 (2013).
[Crossref]

2011 (3)

V. Lin, H.-C. Wei, H.-T. Hsieh, J.-L. Hsieh, and G.-D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” Micro & Nano Lett. 6(7), 523–526 (2011).
[Crossref]

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(104), A673–A685 (2011).
[Crossref] [PubMed]

2008 (1)

S. M. Kuo and C. H. Lin, “The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,” J. Micromech. Microeng. 18(12), 125012 (2008).
[Crossref]

2007 (3)

C. Y. Chang, S. Y. Yang, M. S. Wu, L. T. Jiang, and L. A. Wang, “A novel method for fabrication of plastic microlens array with aperture stops for projection photolithography,” Jpn. J. Appl. Phys. 46(5A), 2932–2935 (2007).
[Crossref]

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007).
[Crossref] [PubMed]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (2)

K. H. Jeong, G. Liu, N. Chronis, and L. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
[Crossref] [PubMed]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

2003 (7)

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A-Pure Appl. Opt. 6(1), 94 (2003).

K. Kurihara, I. D. Nikolov, S. Mitsugi, K. Nanri, and K. Goto, “Design and fabrication of microlens array for near-field vertical cavity surface emitting laser parallel optical head,” Opt. Rev. 10(2), 89–95 (2003).
[Crossref]

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

K. Naessens, H. Ottevaere, P. V. Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208, 159–164 (2003).
[Crossref]

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
[Crossref] [PubMed]

N. Chronis, G. Liu, K. H. Jeong, and L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[Crossref] [PubMed]

W. Yu and X. Yuan, “UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask,” Opt. Express 11(18), 2253–2258 (2003).
[Crossref] [PubMed]

2002 (4)

Q. Peng, Y. Guo, S. Liu, and Z. Cui, “Real-time gray-scale photolithography for fabrication of continuous microstructure,” Opt. Lett. 27(19), 1720–1722 (2002).
[Crossref] [PubMed]

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2002).
[Crossref]

K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[Crossref]

1996 (1)

1994 (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Technol. Lett. 6(9), 1112–1114 (1994).
[Crossref]

1993 (1)

Ahn, C. H.

K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[Crossref]

Anderson, P. A.

Baets, R.

K. Naessens, H. Ottevaere, P. V. Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208, 159–164 (2003).
[Crossref]

Beebe, D. J.

D. J. Guckenberger, T. E. de Groot, A. M. Wan, D. J. Beebe, and E. W. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15(11), 2364–2378 (2015).
[Crossref] [PubMed]

Bu, J.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A-Pure Appl. Opt. 6(1), 94 (2003).

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
[Crossref] [PubMed]

Chang, C. Y.

C. Y. Chang, S. Y. Yang, M. S. Wu, L. T. Jiang, and L. A. Wang, “A novel method for fabrication of plastic microlens array with aperture stops for projection photolithography,” Jpn. J. Appl. Phys. 46(5A), 2932–2935 (2007).
[Crossref]

Chang, J. Y.

Chao, C. K.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Chen, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

Chen, P. C.

P. C. Chen and L. H. Duong, “Novel solvent bonding method for thermoplastic microfluidic chips,” Sens. Actuator B-Chem. 237, 556–562 (2016).
[Crossref]

Chen, T.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Technol. Lett. 6(9), 1112–1114 (1994).
[Crossref]

Cherng, Y. S.

Y. S. Cherng and G. D. J. Su, “Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process,” J. Micromech. Microeng. 24(1), 015016 (2013).
[Crossref]

Chronis, N.

Cox, W. R.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Technol. Lett. 6(9), 1112–1114 (1994).
[Crossref]

Cui, Z.

Daele, P. V.

K. Naessens, H. Ottevaere, P. V. Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208, 159–164 (2003).
[Crossref]

de Groot, T. E.

D. J. Guckenberger, T. E. de Groot, A. M. Wan, D. J. Beebe, and E. W. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15(11), 2364–2378 (2015).
[Crossref] [PubMed]

Desta, Y.

K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[Crossref]

Ding, Y.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Duong, L. H.

P. C. Chen and L. H. Duong, “Novel solvent bonding method for thermoplastic microfluidic chips,” Sens. Actuator B-Chem. 237, 556–562 (2016).
[Crossref]

Fang, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

Ford, J. E.

Fox, D.

Goto, K.

K. Kurihara, I. D. Nikolov, S. Mitsugi, K. Nanri, and K. Goto, “Design and fabrication of microlens array for near-field vertical cavity surface emitting laser parallel optical head,” Opt. Rev. 10(2), 89–95 (2003).
[Crossref]

Guckenberger, D. J.

D. J. Guckenberger, T. E. de Groot, A. M. Wan, D. J. Beebe, and E. W. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15(11), 2364–2378 (2015).
[Crossref] [PubMed]

Guo, Y.

Hallas, J. M.

Hayes, D. J.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Technol. Lett. 6(9), 1112–1114 (1994).
[Crossref]

He, M.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A-Pure Appl. Opt. 6(1), 94 (2003).

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
[Crossref] [PubMed]

Hsieh, H. T.

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Hsieh, H.-T.

V. Lin, H.-C. Wei, H.-T. Hsieh, J.-L. Hsieh, and G.-D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” Micro & Nano Lett. 6(7), 523–526 (2011).
[Crossref]

Hsieh, J. L.

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Hsieh, J.-L.

V. Lin, H.-C. Wei, H.-T. Hsieh, J.-L. Hsieh, and G.-D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” Micro & Nano Lett. 6(7), 523–526 (2011).
[Crossref]

Jeong, K. H.

Jiang, C.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

Jiang, L. T.

C. Y. Chang, S. Y. Yang, M. S. Wu, L. T. Jiang, and L. A. Wang, “A novel method for fabrication of plastic microlens array with aperture stops for projection photolithography,” Jpn. J. Appl. Phys. 46(5A), 2932–2935 (2007).
[Crossref]

Jitsuno, T.

Kang, S.

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2002).
[Crossref]

Karp, J. H.

Kim, K.

K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[Crossref]

Kudryashov, V.

Kuo, S. M.

S. M. Kuo and C. H. Lin, “The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,” J. Micromech. Microeng. 18(12), 125012 (2008).
[Crossref]

Kurihara, K.

K. Kurihara, I. D. Nikolov, S. Mitsugi, K. Nanri, and K. Goto, “Design and fabrication of microlens array for near-field vertical cavity surface emitting laser parallel optical head,” Opt. Rev. 10(2), 89–95 (2003).
[Crossref]

Lan, H. C.

Lazare, S.

Lee, J. B.

K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[Crossref]

Lee, L.

Lee, N.

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2002).
[Crossref]

Lee, S. S.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Lee, S. W.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Li, X.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Lin, C. H.

S. M. Kuo and C. H. Lin, “The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,” J. Micromech. Microeng. 18(12), 125012 (2008).
[Crossref]

Lin, C. P.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Lin, V.

V. Lin, H.-C. Wei, H.-T. Hsieh, J.-L. Hsieh, and G.-D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” Micro & Nano Lett. 6(7), 523–526 (2011).
[Crossref]

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Liu, G.

Liu, S.

MacFarlane, D. L.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Technol. Lett. 6(9), 1112–1114 (1994).
[Crossref]

Manohara, H.

K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[Crossref]

Mihailov, S.

Mitsugi, S.

K. Kurihara, I. D. Nikolov, S. Mitsugi, K. Nanri, and K. Goto, “Design and fabrication of microlens array for near-field vertical cavity surface emitting laser parallel optical head,” Opt. Rev. 10(2), 89–95 (2003).
[Crossref]

Moon, S. D.

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2002).
[Crossref]

Murphy, M.

K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[Crossref]

Naessens, K.

K. Naessens, H. Ottevaere, P. V. Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208, 159–164 (2003).
[Crossref]

Nakai, S.

Nakatsuka, M.

Nanri, K.

K. Kurihara, I. D. Nikolov, S. Mitsugi, K. Nanri, and K. Goto, “Design and fabrication of microlens array for near-field vertical cavity surface emitting laser parallel optical head,” Opt. Rev. 10(2), 89–95 (2003).
[Crossref]

Narayan, V.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Technol. Lett. 6(9), 1112–1114 (1994).
[Crossref]

Ngo, N. Q.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A-Pure Appl. Opt. 6(1), 94 (2003).

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
[Crossref] [PubMed]

Nikolov, I. D.

K. Kurihara, I. D. Nikolov, S. Mitsugi, K. Nanri, and K. Goto, “Design and fabrication of microlens array for near-field vertical cavity surface emitting laser parallel optical head,” Opt. Rev. 10(2), 89–95 (2003).
[Crossref]

Ottevaere, H.

K. Naessens, H. Ottevaere, P. V. Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208, 159–164 (2003).
[Crossref]

Pan, J. W.

Park, C.

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Park, S.

K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[Crossref]

Peng, Q.

Powell, K. D.

Ren, H.

Shao, J.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Su, G. D. J.

Y. S. Cherng and G. D. J. Su, “Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process,” J. Micromech. Microeng. 24(1), 015016 (2013).
[Crossref]

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Su, G.-D. J.

V. Lin, H.-C. Wei, H.-T. Hsieh, J.-L. Hsieh, and G.-D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” Micro & Nano Lett. 6(7), 523–526 (2011).
[Crossref]

Sun, H.

H. Sun, X. Wang, Y. Xiong, G. Liu, and K. Wang, “Fabrication of microlens based on overplating in electroforming,” J. Micromech. Microeng. 26(5), 055007 (2016).
[Crossref]

Sun, W. S.

Tao, S. H.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A-Pure Appl. Opt. 6(1), 94 (2003).

Tatum, J. A.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Technol. Lett. 6(9), 1112–1114 (1994).
[Crossref]

Tian, H.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Tremblay, E. J.

Urey, H.

Varahramyan, K.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

Wan, A. M.

D. J. Guckenberger, T. E. de Groot, A. M. Wan, D. J. Beebe, and E. W. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15(11), 2364–2378 (2015).
[Crossref] [PubMed]

Wang, C.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

Wang, C. M.

Wang, K.

H. Sun, X. Wang, Y. Xiong, G. Liu, and K. Wang, “Fabrication of microlens based on overplating in electroforming,” J. Micromech. Microeng. 26(5), 055007 (2016).
[Crossref]

Wang, L.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

Wang, L. A.

C. Y. Chang, S. Y. Yang, M. S. Wu, L. T. Jiang, and L. A. Wang, “A novel method for fabrication of plastic microlens array with aperture stops for projection photolithography,” Jpn. J. Appl. Phys. 46(5A), 2932–2935 (2007).
[Crossref]

Wang, W.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

Wang, X.

H. Sun, X. Wang, Y. Xiong, G. Liu, and K. Wang, “Fabrication of microlens based on overplating in electroforming,” J. Micromech. Microeng. 26(5), 055007 (2016).
[Crossref]

Wei, H.-C.

V. Lin, H.-C. Wei, H.-T. Hsieh, J.-L. Hsieh, and G.-D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” Micro & Nano Lett. 6(7), 523–526 (2011).
[Crossref]

Wei, Y.

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Whitesides, G. M.

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Wu, B.

Wu, M. H.

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Wu, M. S.

C. Y. Chang, S. Y. Yang, M. S. Wu, L. T. Jiang, and L. A. Wang, “A novel method for fabrication of plastic microlens array with aperture stops for projection photolithography,” Jpn. J. Appl. Phys. 46(5A), 2932–2935 (2007).
[Crossref]

Wu, S. T.

Xiong, Y.

H. Sun, X. Wang, Y. Xiong, G. Liu, and K. Wang, “Fabrication of microlens based on overplating in electroforming,” J. Micromech. Microeng. 26(5), 055007 (2016).
[Crossref]

Yang, H.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Yang, S. Y.

C. Y. Chang, S. Y. Yang, M. S. Wu, L. T. Jiang, and L. A. Wang, “A novel method for fabrication of plastic microlens array with aperture stops for projection photolithography,” Jpn. J. Appl. Phys. 46(5A), 2932–2935 (2007).
[Crossref]

Yoon, G. Y.

Young, E. W.

D. J. Guckenberger, T. E. de Groot, A. M. Wan, D. J. Beebe, and E. W. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15(11), 2364–2378 (2015).
[Crossref] [PubMed]

Yu, W.

Yuan, X.

Yuan, X. C.

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
[Crossref] [PubMed]

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A-Pure Appl. Opt. 6(1), 94 (2003).

ACS Appl. Mater. Interfaces (2)

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Appl. Surf. Sci. (1)

K. Naessens, H. Ottevaere, P. V. Daele, and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. Sci. 208, 159–164 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Technol. Lett. 6(9), 1112–1114 (1994).
[Crossref]

J. Micromech. Microeng. (6)

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2002).
[Crossref]

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Y. S. Cherng and G. D. J. Su, “Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process,” J. Micromech. Microeng. 24(1), 015016 (2013).
[Crossref]

S. M. Kuo and C. H. Lin, “The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,” J. Micromech. Microeng. 18(12), 125012 (2008).
[Crossref]

H. Sun, X. Wang, Y. Xiong, G. Liu, and K. Wang, “Fabrication of microlens based on overplating in electroforming,” J. Micromech. Microeng. 26(5), 055007 (2016).
[Crossref]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]

J. Opt. A-Pure Appl. Opt. (1)

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Single-step fabrication of a microlens array in sol–gel material by direct laser writing and its application in optical coupling,” J. Opt. A-Pure Appl. Opt. 6(1), 94 (2003).

Jpn. J. Appl. Phys. (1)

C. Y. Chang, S. Y. Yang, M. S. Wu, L. T. Jiang, and L. A. Wang, “A novel method for fabrication of plastic microlens array with aperture stops for projection photolithography,” Jpn. J. Appl. Phys. 46(5A), 2932–2935 (2007).
[Crossref]

Lab Chip (1)

D. J. Guckenberger, T. E. de Groot, A. M. Wan, D. J. Beebe, and E. W. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15(11), 2364–2378 (2015).
[Crossref] [PubMed]

Langmuir (1)

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Micro & Nano Lett. (1)

V. Lin, H.-C. Wei, H.-T. Hsieh, J.-L. Hsieh, and G.-D. J. Su, “Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors,” Micro & Nano Lett. 6(7), 523–526 (2011).
[Crossref]

Microsyst. Technol. (1)

K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002).
[Crossref]

Opt. Commun. (1)

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Rev. (1)

K. Kurihara, I. D. Nikolov, S. Mitsugi, K. Nanri, and K. Goto, “Design and fabrication of microlens array for near-field vertical cavity surface emitting laser parallel optical head,” Opt. Rev. 10(2), 89–95 (2003).
[Crossref]

Sens. Actuator B-Chem. (1)

P. C. Chen and L. H. Duong, “Novel solvent bonding method for thermoplastic microfluidic chips,” Sens. Actuator B-Chem. 237, 556–562 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Conceptual diagram of proposed fabrication process: (a) Micromilling was used to fabricate the 1st mold insert on a PMMA substrate, with the diameter of the MLAs determined by the micro pillar features; (b) PDMS casting was applied to obtain a PDMS membrane for bonding to a glass substrate to form a microfluidic chip as the 2nd mold insert; (c) Liquid is injected into the microchannel to increase the pressure inside the chamber, causing the PDMS membrane to deform into a spherical shape; (d) UV adhesive casting is used to transfer the spherical shape from the PDMS membrane to a UV substrate as a solid 3rd mold insert; (e) PDMS casting is used to transfer the spherical shape from the UV substrate to a PDMS substrate as an MLAs. The final step could be replaced with electroplating to produce a metal mold insert for mass production; (f) final PDMS cast from UV mold insert.
Fig. 2
Fig. 2 (a) Bottom micromilled PMMA mold insert; (b) top micromilled PMMA mold insert; (c) The diameter of the pillars above the microchannels corresponds to the diameter of the MLAs, and the height of the pillars is related to the thickness of the membrane; (d) Following PDMS casting from the 1st mold insert, the features of concave and microchannels were transferred from the mold insert, as shown in (c).
Fig. 3
Fig. 3 (a) Bonded hybrid microfluidic chip including PDMS membrane on the top and glass substrate as the bottom; (b) cross-section view illustrating injection of liquid into the microchannel to increase pressure inside the chamber, deform the PDMS membrane, and produce a spherical shape.
Fig. 4
Fig. 4 (a) Red food dye was injected into the microfluidic chip to deform the PDMS membrane; (b) enlarged image showing MLAs on PDMS membrane, (c) the final MLAs on PDMS substrate, (d) MLAs with various sag height and curvature on the same substrate.
Fig. 5
Fig. 5 (a) Fluidic system measuring relationships among sag height, pressure, membrane thickness, and diameters of MLAs; (b) experiment setup.
Fig. 6
Fig. 6 (a) Conceptual diagram of optical system to investigate the uniformity of MLAs, which has laser, lens combination for beam expansion, polarizer, and CCD; (b) experiment setup.
Fig. 7
Fig. 7 (a) Cross-section images of MLAs showing different sag heights as function of pressure, ranging from 5 μm to 96 μm, corresponding to 10 kpa to 120 kpa; (b) cross-section profile of MLAs as a function of pressure.
Fig. 8
Fig. 8 Curves showing relationships among sag height, pressure, and membrane thickness: (a) MLAs with diameter of 1000 μm, (b) MLAs with diameter of 500 μm, (c) MLAs with diameter of 200 μm.
Fig. 9
Fig. 9 Comparison of sag height of MLAs as function of diameter
Fig. 10
Fig. 10 Curves showing relationships among focal length, pressure, and membrane thickness: (a) MLAs with diameter of 1000 μm, (b) MLAs with diameter of 500 μm, (c) MLAs with diameter of 200 μm.
Fig. 11
Fig. 11 Images showing magnification effects on tiny dots with 1-mm MLAs: (a) sag height of 150 μm, (b) sag height of 250 μm, (c) sag height of 400 μm.
Fig. 12
Fig. 12 Results of fluorescence tests using MLAs of various sag heights: (a) 235 μm, (b) 459 μm; (c) comparison of fluorescence intensity between MLAs with various sag heights.
Fig. 13
Fig. 13 Experiment result of uniformity of MLAs: (a) captured image from CCD, each dot represents the split laser beam passing through the microlens on the focal plane, and the numbers next to the red dots indicate the maximum intensities of each peak; (b) the uniform intensity shows the identical focal lens of the MLAs as well as the uniform curvature of individual microlenses.

Tables (1)

Tables Icon

Table 1 Difference between estimated and measured focal lengths for 1 mm MLAs with various sag heights

Metrics