Abstract

Mid-infrared of the 3 - 5 μm spectral region has attracted considerable attention in various fields. We report a highly efficient and angle-tolerant mid-infrared filter based on a cascaded etalon resonator. Two hybrid etalon resonators are serially stacked to make a single peak resonance with a well-suppressed sideband. Each etalon resonator, which exploits a pair of cavities, includes not only a cavity featuring a resonance but also a functional cavity lowering the sideband of transmission spectrum. By taking advantage of double cavities, each etalon features a resonant characteristic with suppressed sideband. Consequently, the filter shows a peak transmission of 92% at resonance and well-suppressed sideband within the 3 - 5 μm spectral region. Transparent dielectric materials make the device highly efficient for both transmission and reflection. Furthermore, the filter utilizing a high-index cavity leads to an enhanced angular tolerance regardless of incident light polarization. The transmission of the filter exhibits center wavelength shifts of around 0.1 μm at an angle of 50° for both transverse electric and transverse magnetic modes, compared to normal incidence.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Angle-tolerant linear variable color filter based on a tapered etalon

Peng Ji, Chul-Soon Park, Song Gao, Sang-Shin Lee, and Duk-Yong Choi
Opt. Express 25(3) 2153-2161 (2017)

Angle-tolerant polarization-tuned color filter exploiting a nanostructured cavity

Wenjing Yue, Sang-Shin Lee, and Eun-Soo Kim
Opt. Express 24(15) 17115-17124 (2016)

High-efficiency guided-mode resonance filter

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson
Opt. Lett. 23(19) 1556-1558 (1998)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref] [PubMed]
  2. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  3. S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in Mid-Wavelength Infrared using porous Si membranes,” Sci. Rep. 6(1), 30211 (2016).
    [Crossref] [PubMed]
  4. P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photonics Rev. 8(2), L23–L28 (2014).
    [Crossref]
  5. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
    [Crossref] [PubMed]
  6. H. B. Gray, Chemical Bonds: An Introduction to Atomic and Molecular Structure (University Science Books, 1994).
  7. G. C. Holst and S. W. McHugh, “Review of thermal imaging system performance,” Proc. SPIE 1689, 78–84 (1992).
    [Crossref]
  8. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17(3), 1947–1962 (2009).
    [Crossref] [PubMed]
  9. D. Gibson and C. MacGregor, “A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment,” Sensors (Basel) 13(6), 7079–7103 (2013).
    [Crossref] [PubMed]
  10. Q. L. Tan, W. D. Zhang, C. Y. Xue, J. J. Xiong, Y. C. Ma, and F. Wen, “Design of mini-multi-gas monitoring system based on IR absorption,” Opt. Laser Technol. 40(5), 703–710 (2008).
    [Crossref]
  11. J. C. Choi, J. K. Lee, and S. H. Kong, “A multi-channel gas sensor using Fabry-Perot interferometer-based infrared spectrometer,” J. Sens. Sci. Technol. 21(6), 402–407 (2012).
    [Crossref]
  12. Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang, J. Liu, and J. Xiong, “Three-gas detection system with IR optical sensor based on NDIR technology,” Opt. Lasers Eng. 74, 103–108 (2015).
    [Crossref]
  13. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors (Basel) 12(12), 9635–9665 (2012).
    [Crossref] [PubMed]
  14. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  15. A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
    [Crossref] [PubMed]
  16. J. Le Perchec, R. E. de Lamaestre, M. Brun, N. Rochat, O. Gravrand, G. Badano, J. Hazart, and S. Nicoletti, “High rejection bandpass optical filters based on sub-wavelength metal patch arrays,” Opt. Express 19(17), 15720–15731 (2011).
    [Crossref] [PubMed]
  17. R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
    [Crossref]
  18. J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
    [Crossref]
  19. H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
    [Crossref] [PubMed]
  20. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref] [PubMed]
  21. T. Stolberg-Rohr and G. J. Hawkins, “Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared,” Opt. Express 23(1), 580–596 (2015).
    [Crossref] [PubMed]
  22. G. J. Hawkins, R. E. Sherwood, B. M. Barrett, M. Wallace, H. J. B. Orr, K. Matthews, and S. Bisht, “High-performance infrared narrow-bandpass filters for the Indian National Satellite System meteorological instrument (INSAT-3D),” Appl. Opt. 47(13), 2346–2356 (2008).
    [Crossref] [PubMed]
  23. J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
    [Crossref]
  24. K. T. Lee, C. Ji, D. Banerjee, and L. J. Guo, “Angular- and polarization-independent structural colors based on 1D photonic crystals,” Laser Photonics Rev. 9(3), 354–362 (2015).
    [Crossref]
  25. C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, “Compact multilayer film structure for angle insensitive color filtering,” Sci. Rep. 5(1), 9285 (2015).
    [Crossref] [PubMed]
  26. C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5(1), 8467 (2015).
    [Crossref] [PubMed]
  27. T. Wada, H. Makitsubo, and M. Mita, “Mono-material multilayer interference optical filter with sub-wavelength structure for infrared and terahertz optics,” Appl. Phys. Express 3(10), 102503 (2010).
    [Crossref]
  28. V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4(1), 4921 (2014).
    [Crossref] [PubMed]
  29. T. H. Noh, Y. T. Yoon, H. S. Lee, S. S. Lee, and D. Y. Choi, “Highly angle tolerant filter incorporating serially cascaded a-Si based etalons and its application to a compact receiver,” Opt. Express 21(1), 1301–1309 (2013).
    [Crossref] [PubMed]
  30. H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010), Ch. 2 and 9.
  31. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Ch. 7 and 14.
  32. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Ch. 6 and 7.

2016 (3)

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in Mid-Wavelength Infrared using porous Si membranes,” Sci. Rep. 6(1), 30211 (2016).
[Crossref] [PubMed]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

2015 (6)

K. T. Lee, C. Ji, D. Banerjee, and L. J. Guo, “Angular- and polarization-independent structural colors based on 1D photonic crystals,” Laser Photonics Rev. 9(3), 354–362 (2015).
[Crossref]

C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, “Compact multilayer film structure for angle insensitive color filtering,” Sci. Rep. 5(1), 9285 (2015).
[Crossref] [PubMed]

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5(1), 8467 (2015).
[Crossref] [PubMed]

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang, J. Liu, and J. Xiong, “Three-gas detection system with IR optical sensor based on NDIR technology,” Opt. Lasers Eng. 74, 103–108 (2015).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

T. Stolberg-Rohr and G. J. Hawkins, “Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared,” Opt. Express 23(1), 580–596 (2015).
[Crossref] [PubMed]

2014 (2)

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4(1), 4921 (2014).
[Crossref] [PubMed]

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photonics Rev. 8(2), L23–L28 (2014).
[Crossref]

2013 (4)

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

D. Gibson and C. MacGregor, “A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment,” Sensors (Basel) 13(6), 7079–7103 (2013).
[Crossref] [PubMed]

T. H. Noh, Y. T. Yoon, H. S. Lee, S. S. Lee, and D. Y. Choi, “Highly angle tolerant filter incorporating serially cascaded a-Si based etalons and its application to a compact receiver,” Opt. Express 21(1), 1301–1309 (2013).
[Crossref] [PubMed]

2012 (4)

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors (Basel) 12(12), 9635–9665 (2012).
[Crossref] [PubMed]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

J. C. Choi, J. K. Lee, and S. H. Kong, “A multi-channel gas sensor using Fabry-Perot interferometer-based infrared spectrometer,” J. Sens. Sci. Technol. 21(6), 402–407 (2012).
[Crossref]

2011 (2)

2010 (3)

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[Crossref]

T. Wada, H. Makitsubo, and M. Mita, “Mono-material multilayer interference optical filter with sub-wavelength structure for infrared and terahertz optics,” Appl. Phys. Express 3(10), 102503 (2010).
[Crossref]

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

1992 (1)

G. C. Holst and S. W. McHugh, “Review of thermal imaging system performance,” Proc. SPIE 1689, 78–84 (1992).
[Crossref]

Abbas, M. N.

Agarwal, A.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photonics Rev. 8(2), L23–L28 (2014).
[Crossref]

Atanackovic, P.

Badano, G.

Banerjee, D.

K. T. Lee, C. Ji, D. Banerjee, and L. J. Guo, “Angular- and polarization-independent structural colors based on 1D photonic crystals,” Laser Photonics Rev. 9(3), 354–362 (2015).
[Crossref]

Bardou, N.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[Crossref]

Barrett, B. M.

Bhargava, R.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[Crossref] [PubMed]

Bisht, S.

Brun, M.

Canham, L. T.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in Mid-Wavelength Infrared using porous Si membranes,” Sci. Rep. 6(1), 30211 (2016).
[Crossref] [PubMed]

Cardenas, J.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Chang, Y. C.

Chekulaev, D.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in Mid-Wavelength Infrared using porous Si membranes,” Sci. Rep. 6(1), 30211 (2016).
[Crossref] [PubMed]

Cheng, C. W.

Cheng, S.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors (Basel) 12(12), 9635–9665 (2012).
[Crossref] [PubMed]

Chiu, C. W.

Choi, D. Y.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5(1), 8467 (2015).
[Crossref] [PubMed]

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4(1), 4921 (2014).
[Crossref] [PubMed]

T. H. Noh, Y. T. Yoon, H. S. Lee, S. S. Lee, and D. Y. Choi, “Highly angle tolerant filter incorporating serially cascaded a-Si based etalons and its application to a compact receiver,” Opt. Express 21(1), 1301–1309 (2013).
[Crossref] [PubMed]

Choi, J. C.

J. C. Choi, J. K. Lee, and S. H. Kong, “A multi-channel gas sensor using Fabry-Perot interferometer-based infrared spectrometer,” J. Sens. Sci. Technol. 21(6), 402–407 (2012).
[Crossref]

Collin, S.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[Crossref]

Cunningham, B. T.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[Crossref] [PubMed]

de Lamaestre, R. E.

Deschamps, J.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[Crossref]

Duvall, S. G.

Eggleton, B. J.

Fain, R.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Fang, X.

C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, “Compact multilayer film structure for angle insensitive color filtering,” Sci. Rep. 5(1), 9285 (2015).
[Crossref] [PubMed]

Foley, J. M.

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

Gaeta, A. L.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Gibson, D.

D. Gibson and C. MacGregor, “A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment,” Sensors (Basel) 13(6), 7079–7103 (2013).
[Crossref] [PubMed]

Gravrand, O.

Griffith, A. G.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Grillet, C.

Guérineau, N.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[Crossref]

Guo, L. J.

K. T. Lee, C. Ji, D. Banerjee, and L. J. Guo, “Angular- and polarization-independent structural colors based on 1D photonic crystals,” Laser Photonics Rev. 9(3), 354–362 (2015).
[Crossref]

Haïdar, R.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hawkins, G. J.

Hazart, J.

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Holst, G. C.

G. C. Holst and S. W. McHugh, “Review of thermal imaging system performance,” Proc. SPIE 1689, 78–84 (1992).
[Crossref]

Hu, S.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors (Basel) 12(12), 9635–9665 (2012).
[Crossref] [PubMed]

Hudson, D.

Ip, J.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[Crossref] [PubMed]

Jackson, S. D.

Ji, A.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Ji, C.

K. T. Lee, C. Ji, D. Banerjee, and L. J. Guo, “Angular- and polarization-independent structural colors based on 1D photonic crystals,” Laser Photonics Rev. 9(3), 354–362 (2015).
[Crossref]

Jung, H.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photonics Rev. 8(2), L23–L28 (2014).
[Crossref]

Kaplan, A.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in Mid-Wavelength Infrared using porous Si membranes,” Sci. Rep. 6(1), 30211 (2016).
[Crossref] [PubMed]

Kim, E. S.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5(1), 8467 (2015).
[Crossref] [PubMed]

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4(1), 4921 (2014).
[Crossref] [PubMed]

Kimerling, L. C.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photonics Rev. 8(2), L23–L28 (2014).
[Crossref]

Kodali, A. K.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[Crossref] [PubMed]

Kong, S. H.

J. C. Choi, J. K. Lee, and S. H. Kong, “A multi-channel gas sensor using Fabry-Perot interferometer-based infrared spectrometer,” J. Sens. Sci. Technol. 21(6), 402–407 (2012).
[Crossref]

Labadie, L.

Lai, K. T.

Lau, R. K. W.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Le Perchec, J.

Lee, H. S.

Lee, J. K.

J. C. Choi, J. K. Lee, and S. H. Kong, “A multi-channel gas sensor using Fabry-Perot interferometer-based infrared spectrometer,” J. Sens. Sci. Technol. 21(6), 402–407 (2012).
[Crossref]

Lee, K. T.

K. T. Lee, C. Ji, D. Banerjee, and L. J. Guo, “Angular- and polarization-independent structural colors based on 1D photonic crystals,” Laser Photonics Rev. 9(3), 354–362 (2015).
[Crossref]

Lee, S. S.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5(1), 8467 (2015).
[Crossref] [PubMed]

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4(1), 4921 (2014).
[Crossref] [PubMed]

T. H. Noh, Y. T. Yoon, H. S. Lee, S. S. Lee, and D. Y. Choi, “Highly angle tolerant filter incorporating serially cascaded a-Si based etalons and its application to a compact receiver,” Opt. Express 21(1), 1301–1309 (2013).
[Crossref] [PubMed]

Lee, Y. H. D.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Lei, Y.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Li, F.

Li, H.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Li, K.

C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, “Compact multilayer film structure for angle insensitive color filtering,” Sci. Rep. 5(1), 9285 (2015).
[Crossref] [PubMed]

Lin, J.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Lin, P. T.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photonics Rev. 8(2), L23–L28 (2014).
[Crossref]

Lipson, M.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Liu, H.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors (Basel) 12(12), 9635–9665 (2012).
[Crossref] [PubMed]

Liu, J.

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang, J. Liu, and J. Xiong, “Three-gas detection system with IR optical sensor based on NDIR technology,” Opt. Lasers Eng. 74, 103–108 (2015).
[Crossref]

Liu, X.

C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, “Compact multilayer film structure for angle insensitive color filtering,” Sci. Rep. 5(1), 9285 (2015).
[Crossref] [PubMed]

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors (Basel) 12(12), 9635–9665 (2012).
[Crossref] [PubMed]

Ma, Y. C.

Q. L. Tan, W. D. Zhang, C. Y. Xue, J. J. Xiong, Y. C. Ma, and F. Wen, “Design of mini-multi-gas monitoring system based on IR absorption,” Opt. Laser Technol. 40(5), 703–710 (2008).
[Crossref]

MacGregor, C.

D. Gibson and C. MacGregor, “A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment,” Sensors (Basel) 13(6), 7079–7103 (2013).
[Crossref] [PubMed]

Madden, S. J.

Magi, E.

Makitsubo, H.

T. Wada, H. Makitsubo, and M. Mita, “Mono-material multilayer interference optical filter with sub-wavelength structure for infrared and terahertz optics,” Appl. Phys. Express 3(10), 102503 (2010).
[Crossref]

Matthews, K.

McHugh, S. W.

G. C. Holst and S. W. McHugh, “Review of thermal imaging system performance,” Proc. SPIE 1689, 78–84 (1992).
[Crossref]

Mita, M.

T. Wada, H. Makitsubo, and M. Mita, “Mono-material multilayer interference optical filter with sub-wavelength structure for infrared and terahertz optics,” Appl. Phys. Express 3(10), 102503 (2010).
[Crossref]

Moghe, Y.

Mohanty, A.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Moss, D. J.

Nicoletti, S.

Ning, H.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors (Basel) 12(12), 9635–9665 (2012).
[Crossref] [PubMed]

Noh, T. H.

O’Brien, C.

Okawachi, Y.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Orr, H. J. B.

Park, C. S.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5(1), 8467 (2015).
[Crossref] [PubMed]

Park, S. J.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in Mid-Wavelength Infrared using porous Si membranes,” Sci. Rep. 6(1), 30211 (2016).
[Crossref] [PubMed]

Pelouard, J. L.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[Crossref]

Phare, C. T.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Phillips, J. D.

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Read, A.

Rochat, N.

Sang, H.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schulmerich, M.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[Crossref] [PubMed]

Shen, W.

C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, “Compact multilayer film structure for angle insensitive color filtering,” Sci. Rep. 5(1), 9285 (2015).
[Crossref] [PubMed]

Sherwood, R. E.

Shih, M. H.

Shrestha, V. R.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5(1), 8467 (2015).
[Crossref] [PubMed]

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4(1), 4921 (2014).
[Crossref] [PubMed]

Stolberg-Rohr, T.

Tan, Q.

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang, J. Liu, and J. Xiong, “Three-gas detection system with IR optical sensor based on NDIR technology,” Opt. Lasers Eng. 74, 103–108 (2015).
[Crossref]

Tan, Q. L.

Q. L. Tan, W. D. Zhang, C. Y. Xue, J. J. Xiong, Y. C. Ma, and F. Wen, “Design of mini-multi-gas monitoring system based on IR absorption,” Opt. Laser Technol. 40(5), 703–710 (2008).
[Crossref]

Tang, H. X.

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photonics Rev. 8(2), L23–L28 (2014).
[Crossref]

Tang, L.

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang, J. Liu, and J. Xiong, “Three-gas detection system with IR optical sensor based on NDIR technology,” Opt. Lasers Eng. 74, 103–108 (2015).
[Crossref]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Tong, Q.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Vincent, G.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[Crossref]

Wada, T.

T. Wada, H. Makitsubo, and M. Mita, “Mono-material multilayer interference optical filter with sub-wavelength structure for infrared and terahertz optics,” Appl. Phys. Express 3(10), 102503 (2010).
[Crossref]

Wallace, M.

Wallner, O.

Wang, L.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Wen, F.

Q. L. Tan, W. D. Zhang, C. Y. Xue, J. J. Xiong, Y. C. Ma, and F. Wen, “Design of mini-multi-gas monitoring system based on IR absorption,” Opt. Laser Technol. 40(5), 703–710 (2008).
[Crossref]

Xie, C.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Xin, Z.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

Xiong, J.

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang, J. Liu, and J. Xiong, “Three-gas detection system with IR optical sensor based on NDIR technology,” Opt. Lasers Eng. 74, 103–108 (2015).
[Crossref]

Xiong, J. J.

Q. L. Tan, W. D. Zhang, C. Y. Xue, J. J. Xiong, Y. C. Ma, and F. Wen, “Design of mini-multi-gas monitoring system based on IR absorption,” Opt. Laser Technol. 40(5), 703–710 (2008).
[Crossref]

Xue, C.

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang, J. Liu, and J. Xiong, “Three-gas detection system with IR optical sensor based on NDIR technology,” Opt. Lasers Eng. 74, 103–108 (2015).
[Crossref]

Xue, C. Y.

Q. L. Tan, W. D. Zhang, C. Y. Xue, J. J. Xiong, Y. C. Ma, and F. Wen, “Design of mini-multi-gas monitoring system based on IR absorption,” Opt. Laser Technol. 40(5), 703–710 (2008).
[Crossref]

Yang, C.

C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, “Compact multilayer film structure for angle insensitive color filtering,” Sci. Rep. 5(1), 9285 (2015).
[Crossref] [PubMed]

Yang, M.

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang, J. Liu, and J. Xiong, “Three-gas detection system with IR optical sensor based on NDIR technology,” Opt. Lasers Eng. 74, 103–108 (2015).
[Crossref]

Yen, G.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[Crossref] [PubMed]

Yoon, Y. T.

Young, S. M.

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

Yu, M.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Zakar, A.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in Mid-Wavelength Infrared using porous Si membranes,” Sci. Rep. 6(1), 30211 (2016).
[Crossref] [PubMed]

Zerova, V. L.

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in Mid-Wavelength Infrared using porous Si membranes,” Sci. Rep. 6(1), 30211 (2016).
[Crossref] [PubMed]

Zhai, X.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Zhang, D.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors (Basel) 12(12), 9635–9665 (2012).
[Crossref] [PubMed]

Zhang, W.

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang, J. Liu, and J. Xiong, “Three-gas detection system with IR optical sensor based on NDIR technology,” Opt. Lasers Eng. 74, 103–108 (2015).
[Crossref]

Zhang, W. D.

Q. L. Tan, W. D. Zhang, C. Y. Xue, J. J. Xiong, Y. C. Ma, and F. Wen, “Design of mini-multi-gas monitoring system based on IR absorption,” Opt. Laser Technol. 40(5), 703–710 (2008).
[Crossref]

Zhang, X.

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, “Compact multilayer film structure for angle insensitive color filtering,” Sci. Rep. 5(1), 9285 (2015).
[Crossref] [PubMed]

Zhang, Y.

C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, “Compact multilayer film structure for angle insensitive color filtering,” Sci. Rep. 5(1), 9285 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

T. Wada, H. Makitsubo, and M. Mita, “Mono-material multilayer interference optical filter with sub-wavelength structure for infrared and terahertz optics,” Appl. Phys. Express 3(10), 102503 (2010).
[Crossref]

Appl. Phys. Lett. (2)

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010).
[Crossref]

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

IEEE Sens. J. (1)

J. Lin, Q. Tong, Y. Lei, Z. Xin, X. Zhang, A. Ji, H. Sang, and C. Xie, “An arrayed liquid crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection,” IEEE Sens. J. 16(8), 2397–2403 (2016).
[Crossref]

J. Sens. Sci. Technol. (1)

J. C. Choi, J. K. Lee, and S. H. Kong, “A multi-channel gas sensor using Fabry-Perot interferometer-based infrared spectrometer,” J. Sens. Sci. Technol. 21(6), 402–407 (2012).
[Crossref]

Laser Photonics Rev. (2)

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photonics Rev. 8(2), L23–L28 (2014).
[Crossref]

K. T. Lee, C. Ji, D. Banerjee, and L. J. Guo, “Angular- and polarization-independent structural colors based on 1D photonic crystals,” Laser Photonics Rev. 9(3), 354–362 (2015).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Nat. Commun. (1)

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

Q. L. Tan, W. D. Zhang, C. Y. Xue, J. J. Xiong, Y. C. Ma, and F. Wen, “Design of mini-multi-gas monitoring system based on IR absorption,” Opt. Laser Technol. 40(5), 703–710 (2008).
[Crossref]

Opt. Lasers Eng. (1)

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang, J. Liu, and J. Xiong, “Three-gas detection system with IR optical sensor based on NDIR technology,” Opt. Lasers Eng. 74, 103–108 (2015).
[Crossref]

Proc. SPIE (1)

G. C. Holst and S. W. McHugh, “Review of thermal imaging system performance,” Proc. SPIE 1689, 78–84 (1992).
[Crossref]

Sci. Rep. (5)

S. J. Park, A. Zakar, V. L. Zerova, D. Chekulaev, L. T. Canham, and A. Kaplan, “All-optical modulation in Mid-Wavelength Infrared using porous Si membranes,” Sci. Rep. 6(1), 30211 (2016).
[Crossref] [PubMed]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

C. Yang, W. Shen, Y. Zhang, K. Li, X. Fang, X. Zhang, and X. Liu, “Compact multilayer film structure for angle insensitive color filtering,” Sci. Rep. 5(1), 9285 (2015).
[Crossref] [PubMed]

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5(1), 8467 (2015).
[Crossref] [PubMed]

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity,” Sci. Rep. 4(1), 4921 (2014).
[Crossref] [PubMed]

Sensors (Basel) (2)

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” Sensors (Basel) 12(12), 9635–9665 (2012).
[Crossref] [PubMed]

D. Gibson and C. MacGregor, “A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment,” Sensors (Basel) 13(6), 7079–7103 (2013).
[Crossref] [PubMed]

Other (4)

H. B. Gray, Chemical Bonds: An Introduction to Atomic and Molecular Structure (University Science Books, 1994).

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010), Ch. 2 and 9.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), Ch. 7 and 14.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Ch. 6 and 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Configuration of the mid-IR filter capitalizing on the cascaded etalon resonator. (b) The complex refractive indices of (i) Ge and (ii) SiO materials, respectively. (c) (i) and (ii) scanning electron microscope (SEM) images of the manufactured filter in the case of d = 530 nm.
Fig. 2
Fig. 2 Calculated and measured spectra of transmission (θi = 0°) and reflection (θi = 8°) of the filter for the unpolarized incidence.
Fig. 3
Fig. 3 Contour maps of the (a) calculated and (b) measured transmission spectra in terms of the angle of incidence (θi), for (i) TE and (ii) TM polarizations.
Fig. 4
Fig. 4 Ray tracing in a single cavity layer sandwiched by two SiO layers.
Fig. 5
Fig. 5 Calculated spectral responses (a) for the individual cavities, (b) for the hybrid etalons pertaining to the proposed filter, and (c) for the cascaded etalon.
Fig. 6
Fig. 6 The magnitude of the field transmission coefficient according to the thickness of the SiO layer for Etalon I. The coefficient is investigated for the SiO layer of (a) negligibly thin thickness and (b) a thickness of h2.
Fig. 7
Fig. 7 Calculated contour plot of the transmission as a function of a fundamental thickness of Ge cavity.

Metrics