Abstract

We present a method for the fabrication of an arrayed one-axis scale grating for a two-probe optical linear encoder using a dual-beam interference lithography (IL) system with a compact diode laser source. We employ a multiple-exposure stitching method to form an arrayed scale grating. This allows a scale grating with small line spacing to be achieved over a large width. This stitched scale grating integrates well with a newly developed two-probe optical encoder, allowing the measurement results to be numerically connected. Since neither the gap width nor the grating phase of the two adjacent gratings must be controlled, the fabrication process is both simplified and made more robust. This flexible and cost-effective fabrication technique can benefit many precision measurement applications. Experiments are carried out to demonstrate the feasibility of this technology.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating

Xinghui Li, Huanhuan Wang, Kai Ni, Qian Zhou, Xinyu Mao, Lijiang Zeng, Xiaohao Wang, and Xiang Xiao
Opt. Express 24(19) 21378-21391 (2016)

Wafer-scale nanopatterning using fast-reconfigurable and actively-stabilized two-beam fiber-optic interference lithography

Chuwei Liang, Tuo Qu, Jingxuan Cai, Zhouyang Zhu, Shijie Li, and Wen-Di Li
Opt. Express 26(7) 8194-8200 (2018)

Fabrication of optical mosaic gratings: a self-referencing alignment method

Lei Shi and Lijiang Zeng
Opt. Express 19(10) 8985-8993 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
    [Crossref]
  2. Heidenhain, Sealed Linear Encoder LC catalog. (accessed April, 2017).
  3. Renishaw, Optical Encoder catalog. (accessed April, 2017).
  4. Magnescale, Laser scale, Linear scale catalog. (accessed April, 2017).
  5. W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
    [Crossref]
  6. C. J. Richard, Introduction to Microelectronic fabrication: Volume 5 of modular series on solid state devices, Prentice Hall, 2nd Ed., pp. 110–118 (2002).
  7. Nikon, Ruling Engine No. 2, Recollections-Long-selling products (accessed April, 2017).
  8. W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
    [Crossref]
  9. A. Teimel, “Technology and Applications of Grating Interferometers in High-precision Measurement,” Precis. Eng. 14(3), 147–154 (1992).
    [Crossref]
  10. S. R. J. Brueck, “Optical and Interferometric Lithography-Nanotechnology Enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
    [Crossref]
  11. H. Wolferen, L. Abelmann, and T. C. Hennessy, Laser interference lithography (Lithography Principles Processes and Materials), Chap. 5 (2011).
  12. X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
    [Crossref]
  13. Q. Zhou, X. Li, K. Ni, R. Tian, and J. Pang, “Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens,” Opt. Express 24(2), 732–738 (2016).
    [Crossref] [PubMed]
  14. X. Li, K. Ni, Q. Zhou, X. Wang, R. Tian, and J. Pang, “Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method,” Opt. Express 24(10), 10759–10766 (2016).
    [Crossref] [PubMed]
  15. P. T. Konkola, Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions (Doctoral dissertation, Massachusetts Institute of Technology) (2003).
  16. L. Shi, L. Zeng, and L. Li, “Fabrication of optical mosaic gratings with phase and attitude adjustments employing latent fringes and a red-wavelength dual-beam interferometer,” Opt. Express 17(24), 21530–21543 (2009).
    [Crossref] [PubMed]
  17. A. Kimura, K. Hosono, W. Kim, Y. Shimizu, W. Gao, and L. Zeng, “A two-degree-of-freedom linear encoder with mosaic scale gratings,” Int. J. Nanomanuf. 7(1), 73–91 (2011).
    [Crossref]
  18. Y. Shimizu, T. Ito, X. Li, W. Kim, and W. Gao, “Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating,” Meas. Sci. Technol. 25(9), 094002 (2014).
    [Crossref]
  19. W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529–532 (2007).
    [Crossref]
  20. A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng. 36(5), 576–585 (2012).
    [Crossref]
  21. X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
    [Crossref]
  22. Y. Shimizu, R. Aihara, Z. Ren, Y. L. Chen, S. Ito, and W. Gao, “Influences of misalignment errors of optical components in an orthogonal two-axis Lloyd’s mirror interferometer,” Opt. Express 24(24), 27521–27535 (2016).
    [Crossref] [PubMed]
  23. http://www.microchem.com/PDFs_Dow/S1800.pdf (accessed April, 2017).

2016 (3)

2015 (1)

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

2014 (2)

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

Y. Shimizu, T. Ito, X. Li, W. Kim, and W. Gao, “Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating,” Meas. Sci. Technol. 25(9), 094002 (2014).
[Crossref]

2013 (1)

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

2012 (1)

A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng. 36(5), 576–585 (2012).
[Crossref]

2011 (1)

A. Kimura, K. Hosono, W. Kim, Y. Shimizu, W. Gao, and L. Zeng, “A two-degree-of-freedom linear encoder with mosaic scale gratings,” Int. J. Nanomanuf. 7(1), 73–91 (2011).
[Crossref]

2009 (1)

2007 (1)

W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529–532 (2007).
[Crossref]

2005 (1)

S. R. J. Brueck, “Optical and Interferometric Lithography-Nanotechnology Enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
[Crossref]

2004 (1)

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

2003 (1)

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

1992 (1)

A. Teimel, “Technology and Applications of Grating Interferometers in High-precision Measurement,” Precis. Eng. 14(3), 147–154 (1992).
[Crossref]

Aihara, R.

Araki, T.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Bosse, H.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Brueck, S. R. J.

S. R. J. Brueck, “Optical and Interferometric Lithography-Nanotechnology Enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
[Crossref]

Chen, Y.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Chen, Y. L.

Dejima, S.

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

Estler, W. T.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Gao, W.

Y. Shimizu, R. Aihara, Z. Ren, Y. L. Chen, S. Ito, and W. Gao, “Influences of misalignment errors of optical components in an orthogonal two-axis Lloyd’s mirror interferometer,” Opt. Express 24(24), 27521–27535 (2016).
[Crossref] [PubMed]

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

Y. Shimizu, T. Ito, X. Li, W. Kim, and W. Gao, “Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating,” Meas. Sci. Technol. 25(9), 094002 (2014).
[Crossref]

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng. 36(5), 576–585 (2012).
[Crossref]

A. Kimura, K. Hosono, W. Kim, Y. Shimizu, W. Gao, and L. Zeng, “A two-degree-of-freedom linear encoder with mosaic scale gratings,” Int. J. Nanomanuf. 7(1), 73–91 (2011).
[Crossref]

W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529–532 (2007).
[Crossref]

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Haitjema, H.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Hosono, K.

A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng. 36(5), 576–585 (2012).
[Crossref]

A. Kimura, K. Hosono, W. Kim, Y. Shimizu, W. Gao, and L. Zeng, “A two-degree-of-freedom linear encoder with mosaic scale gratings,” Int. J. Nanomanuf. 7(1), 73–91 (2011).
[Crossref]

Ito, S.

Y. Shimizu, R. Aihara, Z. Ren, Y. L. Chen, S. Ito, and W. Gao, “Influences of misalignment errors of optical components in an orthogonal two-axis Lloyd’s mirror interferometer,” Opt. Express 24(24), 27521–27535 (2016).
[Crossref] [PubMed]

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

Ito, T.

Y. Shimizu, T. Ito, X. Li, W. Kim, and W. Gao, “Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating,” Meas. Sci. Technol. 25(9), 094002 (2014).
[Crossref]

Katakura, K.

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

Kim, W.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Y. Shimizu, T. Ito, X. Li, W. Kim, and W. Gao, “Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating,” Meas. Sci. Technol. 25(9), 094002 (2014).
[Crossref]

A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng. 36(5), 576–585 (2012).
[Crossref]

A. Kimura, K. Hosono, W. Kim, Y. Shimizu, W. Gao, and L. Zeng, “A two-degree-of-freedom linear encoder with mosaic scale gratings,” Int. J. Nanomanuf. 7(1), 73–91 (2011).
[Crossref]

Kimura, A.

A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng. 36(5), 576–585 (2012).
[Crossref]

A. Kimura, K. Hosono, W. Kim, Y. Shimizu, W. Gao, and L. Zeng, “A two-degree-of-freedom linear encoder with mosaic scale gratings,” Int. J. Nanomanuf. 7(1), 73–91 (2011).
[Crossref]

W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529–532 (2007).
[Crossref]

Kiyono, S.

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Knapp, W.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Kunzmann, H.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Li, L.

Li, X.

Q. Zhou, X. Li, K. Ni, R. Tian, and J. Pang, “Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens,” Opt. Express 24(2), 732–738 (2016).
[Crossref] [PubMed]

X. Li, K. Ni, Q. Zhou, X. Wang, R. Tian, and J. Pang, “Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method,” Opt. Express 24(10), 10759–10766 (2016).
[Crossref] [PubMed]

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

Y. Shimizu, T. Ito, X. Li, W. Kim, and W. Gao, “Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating,” Meas. Sci. Technol. 25(9), 094002 (2014).
[Crossref]

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

Lu, X.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Ni, K.

Okazaki, Y.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Pang, J.

Ren, Z.

Shi, L.

A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng. 36(5), 576–585 (2012).
[Crossref]

L. Shi, L. Zeng, and L. Li, “Fabrication of optical mosaic gratings with phase and attitude adjustments employing latent fringes and a red-wavelength dual-beam interferometer,” Opt. Express 17(24), 21530–21543 (2009).
[Crossref] [PubMed]

Shimizu, Y.

Y. Shimizu, R. Aihara, Z. Ren, Y. L. Chen, S. Ito, and W. Gao, “Influences of misalignment errors of optical components in an orthogonal two-axis Lloyd’s mirror interferometer,” Opt. Express 24(24), 27521–27535 (2016).
[Crossref] [PubMed]

Y. Shimizu, T. Ito, X. Li, W. Kim, and W. Gao, “Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating,” Meas. Sci. Technol. 25(9), 094002 (2014).
[Crossref]

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng. 36(5), 576–585 (2012).
[Crossref]

A. Kimura, K. Hosono, W. Kim, Y. Shimizu, W. Gao, and L. Zeng, “A two-degree-of-freedom linear encoder with mosaic scale gratings,” Int. J. Nanomanuf. 7(1), 73–91 (2011).
[Crossref]

Teimel, A.

A. Teimel, “Technology and Applications of Grating Interferometers in High-precision Measurement,” Precis. Eng. 14(3), 147–154 (1992).
[Crossref]

Tian, R.

Tomita, Y.

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

Wang, X.

Weckenmann, A.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Yamanaka, M.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

Yanai, H.

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

Zeng, L.

A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng. 36(5), 576–585 (2012).
[Crossref]

A. Kimura, K. Hosono, W. Kim, Y. Shimizu, W. Gao, and L. Zeng, “A two-degree-of-freedom linear encoder with mosaic scale gratings,” Int. J. Nanomanuf. 7(1), 73–91 (2011).
[Crossref]

L. Shi, L. Zeng, and L. Li, “Fabrication of optical mosaic gratings with phase and attitude adjustments employing latent fringes and a red-wavelength dual-beam interferometer,” Opt. Express 17(24), 21530–21543 (2009).
[Crossref] [PubMed]

Zhou, Q.

CIRP Ann. (3)

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529–532 (2007).
[Crossref]

Int. J. Nanomanuf. (1)

A. Kimura, K. Hosono, W. Kim, Y. Shimizu, W. Gao, and L. Zeng, “A two-degree-of-freedom linear encoder with mosaic scale gratings,” Int. J. Nanomanuf. 7(1), 73–91 (2011).
[Crossref]

Int. J. Precis. Eng. Manuf. (1)

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

Meas. Sci. Technol. (1)

Y. Shimizu, T. Ito, X. Li, W. Kim, and W. Gao, “Design and testing of a four-probe optical sensor head for three-axis surface encoder with a mosaic scale grating,” Meas. Sci. Technol. 25(9), 094002 (2014).
[Crossref]

Opt. Express (4)

Precis. Eng. (4)

A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precis. Eng. 36(5), 576–585 (2012).
[Crossref]

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[Crossref]

A. Teimel, “Technology and Applications of Grating Interferometers in High-precision Measurement,” Precis. Eng. 14(3), 147–154 (1992).
[Crossref]

Proc. IEEE (1)

S. R. J. Brueck, “Optical and Interferometric Lithography-Nanotechnology Enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
[Crossref]

Other (8)

H. Wolferen, L. Abelmann, and T. C. Hennessy, Laser interference lithography (Lithography Principles Processes and Materials), Chap. 5 (2011).

Heidenhain, Sealed Linear Encoder LC catalog. (accessed April, 2017).

Renishaw, Optical Encoder catalog. (accessed April, 2017).

Magnescale, Laser scale, Linear scale catalog. (accessed April, 2017).

C. J. Richard, Introduction to Microelectronic fabrication: Volume 5 of modular series on solid state devices, Prentice Hall, 2nd Ed., pp. 110–118 (2002).

Nikon, Ruling Engine No. 2, Recollections-Long-selling products (accessed April, 2017).

P. T. Konkola, Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions (Doctoral dissertation, Massachusetts Institute of Technology) (2003).

http://www.microchem.com/PDFs_Dow/S1800.pdf (accessed April, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Setup of the two-probe optical linear encoder and the scale grating for fabrication.
Fig. 2
Fig. 2 Schematic of the fabrication of an array one-axis scale grating by using interference lithography for multiple exposures.
Fig. 3
Fig. 3 Determination of grating period and grating width.
Fig. 4
Fig. 4 Schematic of the mechanism for adjusting stitching errors induced by the moving table.
Fig. 5
Fig. 5 Schematic of the Lc measurement layout (a), experimental setup (b), measured results (c), and details of an envelope (d).
Fig. 6
Fig. 6 Beam shape of the collimated blue-ray laser diode.
Fig. 7
Fig. 7 Diffraction efficiency simulation.
Fig. 8
Fig. 8 Fabrication system: (a) simulated optical layout, (b) experimental setup, (c) details of the slit mount.
Fig. 9
Fig. 9 Picture of the fabricated grating (a) and AFM image (b).
Fig. 10
Fig. 10 Diffraction efficiency measurement: (a) schematic of the measurement setup, (b) profile of the incident beam, (c) experimental setup for the efficiency measurement, (d) measurement result.
Fig. 11
Fig. 11 Pictures of the fabricated gratings and microstructures.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ x A = k g + g 4 π arc tan ( I AC ( 90 ) I AC ( 0 ) )
Δ x B = k g + g 4 π arc tan ( I BC ( 90 ) I BC ( 0 ) )
I j ( 0 ) = | E jX + 1 ( 0 ) + E jX 1 ( 0 ) | 2 = | E 0 | 2 { 2 + cos ( 4 π Δ x g ) } ( j = A , B )
I j (9 0 ) = | E jX + 1 (9 0 ) + E jX 1 (9 0 ) | 2 = | E 0 | 2 { 2 + sin ( 4 π Δ x g ) } ( j = A , B )
Δ x = { Δ x A + i = 1 n δ i , ( ( Δ x A Δ x B ) ' > 0 ) Δ x B + i = 1 n δ i , ( ( Δ x A Δ x B ) ' 0 )
g = λ sin θ 1 + sin θ 2
g = λ 2 sin θ
W = { D 2 cos ϕ ( D < λ g L C ) L C tan ( arc sin λ 2 g ) ( D > λ g L C )

Metrics