Abstract

Adaptive direct-detection (DD) orthogonal frequency-division multiplexing (OFDM) is proposed to guarantee signal quality over time in weakly-coupled homogenous multicore fiber (MCFs) links impaired by stochastic intercore crosstalk (ICXT). For the first time, the received electrical power of the ICXT and the performance of the adaptive DD-OFDM MCF link are experimentally monitored quasi-simultaneously over a 210 hour period. Experimental results show that the time evolution of the error vector magnitude due to the ICXT can be suitably estimated from the normalized power of the detected crosstalk. The detected crosstalk results from the beating between the carrier in the test core and ICXT originating from the carrier and modulated signal from interfering core. The results show that the operation of DD-OFDM systems employing fixed modulation can be severely impaired by the presence of ICXT that may unpredictable vary in both power and frequency. The system may suffer from deleterious impact of moderate ICXT levels over a time duration of several hours or from peak ICXT levels occurring over a number of minutes. Such power fluctuations can lead to large variations in bit error ratio (BER) for static modulation schemes. Here, we show that BER fluctuations may be minimized by the use of adaptive modulation techniques and that in particular, the adaptive OFDM is a viable solution to guarantee link quality in MCF-based systems. An experimental model of an adaptive DD-OFDM MCF link shows an average throughput of 12 Gb/s that represents a reduction of only 9% compared to the maximum throughput measured without ICXT and an improvement of 23% relative to throughput obtained with static modulation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intercore crosstalk in direct-detection homogeneous multicore fiber systems impaired by laser phase noise

Tiago M. F. Alves, Adolfo V. T. Cartaxo, Ruben S. Luís, Benjamin J. Puttnam, Yoshinari Awaji, and Naoya Wada
Opt. Express 25(23) 29417-29431 (2017)

Advanced Space Division Multiplexing Technologies for Optical Networks [Invited]

Werner Klaus, Benjamin J. Puttnam, Ruben S. Luís, Jun Sakaguchi, José-Manuel Delgado Mendinueta, Yoshinari Awaji, and Naoya Wada
J. Opt. Commun. Netw. 9(4) C1-C11 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, “New generation optical infrastructure technologies: “EXAT Initiative” towards 2020 and beyond,” in OptoElectronics and Communications Conference, Technical Digest Series (CD) (2009), paper FT4.
  2. D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photon. 7, 354–362 (2013).
    [Crossref]
  3. B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.
  4. T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.
  5. B. J. Puttnam, R. S. Luís, T. Eriksson, W. Klaus, J. Mendinueta, Y. Awaji, and N. Wada, “Impact of intercore crosstalk on the transmission distance of QAM formats in multicore fibers,” Photon. J. 8(2), 0601109 (2016).
  6. T. Eriksson, B. J. Puttnam, R. S. Luís, M. Karlsson, P. Andrekson, Y. Awaji, and N. Wada, “Experimental investigation of crosstalk penalties in multicore fiber transmission systems,” Photon. J. 7(1), 7200507 (2015).
  7. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [Crossref] [PubMed]
  8. A. Cartaxo and T. Alves, “Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers,” J. Lightwave Technol. 35(12), 2398–2408 (2017).
    [Crossref]
  9. R. S. Luís, B. J. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
    [Crossref]
  10. T. Alves and A. Cartaxo, “Theoretical modelling of random time nature of inter-core crosstalk in multicore fibers,” IEEE Photonics Conference, Technical Digest Series (CD) (2016), paper WB2.4.
  11. J. Pedro, R. S. Luís, B. J. Puttnam, Y. Awaji, N. Wada, and A. Cartaxo, “Experimental assessment of the time-varying impact of multi-core fiber crosstalk on a SSB-OFDM signal,” in Photonics in Switching, Technical Digest Series (CD) (2015), 166–168.
  12. J. He, B. Li, L. Deng, M. Tang, L. Gan, S. Fu, P. Shum, and D. Liu, “Experimental investigation of inter-core crosstalk of MIMO-OFDM/OQAM radio over multicore fiber system,” Opt. Express 24(12), 13418–13428 (2016).
    [Crossref] [PubMed]
  13. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
    [Crossref]
  14. G. Rademacher, B. J. Puttnam, R. Luís, Y. Awaji, and N. Wada, “Time-dependent crosstalk from multiple cores in a homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th1H.3.

2017 (1)

2016 (3)

2015 (1)

T. Eriksson, B. J. Puttnam, R. S. Luís, M. Karlsson, P. Andrekson, Y. Awaji, and N. Wada, “Experimental investigation of crosstalk penalties in multicore fiber transmission systems,” Photon. J. 7(1), 7200507 (2015).

2013 (2)

2011 (1)

Abe, Y.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Alves, T.

A. Cartaxo and T. Alves, “Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers,” J. Lightwave Technol. 35(12), 2398–2408 (2017).
[Crossref]

T. Alves and A. Cartaxo, “Theoretical modelling of random time nature of inter-core crosstalk in multicore fibers,” IEEE Photonics Conference, Technical Digest Series (CD) (2016), paper WB2.4.

Andrekson, P.

T. Eriksson, B. J. Puttnam, R. S. Luís, M. Karlsson, P. Andrekson, Y. Awaji, and N. Wada, “Experimental investigation of crosstalk penalties in multicore fiber transmission systems,” Photon. J. 7(1), 7200507 (2015).

Awaji, Y.

B. J. Puttnam, R. S. Luís, T. Eriksson, W. Klaus, J. Mendinueta, Y. Awaji, and N. Wada, “Impact of intercore crosstalk on the transmission distance of QAM formats in multicore fibers,” Photon. J. 8(2), 0601109 (2016).

R. S. Luís, B. J. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
[Crossref]

T. Eriksson, B. J. Puttnam, R. S. Luís, M. Karlsson, P. Andrekson, Y. Awaji, and N. Wada, “Experimental investigation of crosstalk penalties in multicore fiber transmission systems,” Photon. J. 7(1), 7200507 (2015).

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
[Crossref]

G. Rademacher, B. J. Puttnam, R. Luís, Y. Awaji, and N. Wada, “Time-dependent crosstalk from multiple cores in a homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th1H.3.

J. Pedro, R. S. Luís, B. J. Puttnam, Y. Awaji, N. Wada, and A. Cartaxo, “Experimental assessment of the time-varying impact of multi-core fiber crosstalk on a SSB-OFDM signal,” in Photonics in Switching, Technical Digest Series (CD) (2015), 166–168.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

Cartaxo, A.

A. Cartaxo and T. Alves, “Discrete changes model of inter-core crosstalk of real homogeneous multi-core fibers,” J. Lightwave Technol. 35(12), 2398–2408 (2017).
[Crossref]

R. S. Luís, B. J. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
[Crossref]

J. Pedro, R. S. Luís, B. J. Puttnam, Y. Awaji, N. Wada, and A. Cartaxo, “Experimental assessment of the time-varying impact of multi-core fiber crosstalk on a SSB-OFDM signal,” in Photonics in Switching, Technical Digest Series (CD) (2015), 166–168.

T. Alves and A. Cartaxo, “Theoretical modelling of random time nature of inter-core crosstalk in multicore fibers,” IEEE Photonics Conference, Technical Digest Series (CD) (2016), paper WB2.4.

Deng, L.

Eriksson, T.

B. J. Puttnam, R. S. Luís, T. Eriksson, W. Klaus, J. Mendinueta, Y. Awaji, and N. Wada, “Impact of intercore crosstalk on the transmission distance of QAM formats in multicore fibers,” Photon. J. 8(2), 0601109 (2016).

T. Eriksson, B. J. Puttnam, R. S. Luís, M. Karlsson, P. Andrekson, Y. Awaji, and N. Wada, “Experimental investigation of crosstalk penalties in multicore fiber transmission systems,” Photon. J. 7(1), 7200507 (2015).

Fini, J.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photon. 7, 354–362 (2013).
[Crossref]

Fu, S.

Gan, L.

Hayashi, T.

R. S. Luís, B. J. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
[Crossref]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
[Crossref] [PubMed]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

He, J.

Hiraga, K.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Hirano, M.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

Imamura, K.

Inaba, H.

Ishida, I.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Kanno, A.

Karlsson, M.

T. Eriksson, B. J. Puttnam, R. S. Luís, M. Karlsson, P. Andrekson, Y. Awaji, and N. Wada, “Experimental investigation of crosstalk penalties in multicore fiber transmission systems,” Photon. J. 7(1), 7200507 (2015).

Kawakami, H.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Kawanishi, T.

Klaus, W.

B. J. Puttnam, R. S. Luís, T. Eriksson, W. Klaus, J. Mendinueta, Y. Awaji, and N. Wada, “Impact of intercore crosstalk on the transmission distance of QAM formats in multicore fibers,” Photon. J. 8(2), 0601109 (2016).

R. S. Luís, B. J. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
[Crossref]

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
[Crossref]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

Kobayashi, T.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
[Crossref]

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Li, B.

Liu, D.

Luís, R.

G. Rademacher, B. J. Puttnam, R. Luís, Y. Awaji, and N. Wada, “Time-dependent crosstalk from multiple cores in a homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th1H.3.

Luís, R. S.

B. J. Puttnam, R. S. Luís, T. Eriksson, W. Klaus, J. Mendinueta, Y. Awaji, and N. Wada, “Impact of intercore crosstalk on the transmission distance of QAM formats in multicore fibers,” Photon. J. 8(2), 0601109 (2016).

R. S. Luís, B. J. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
[Crossref]

T. Eriksson, B. J. Puttnam, R. S. Luís, M. Karlsson, P. Andrekson, Y. Awaji, and N. Wada, “Experimental investigation of crosstalk penalties in multicore fiber transmission systems,” Photon. J. 7(1), 7200507 (2015).

J. Pedro, R. S. Luís, B. J. Puttnam, Y. Awaji, N. Wada, and A. Cartaxo, “Experimental assessment of the time-varying impact of multi-core fiber crosstalk on a SSB-OFDM signal,” in Photonics in Switching, Technical Digest Series (CD) (2015), 166–168.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

Marciante, J.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

Masuda, H.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Matsuo, S.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Mendinueta, J.

B. J. Puttnam, R. S. Luís, T. Eriksson, W. Klaus, J. Mendinueta, Y. Awaji, and N. Wada, “Impact of intercore crosstalk on the transmission distance of QAM formats in multicore fibers,” Photon. J. 8(2), 0601109 (2016).

R. S. Luís, B. J. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
[Crossref]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

Miyamoto, Y.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Mizuno, T.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Morioka, T.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

T. Morioka, “New generation optical infrastructure technologies: “EXAT Initiative” towards 2020 and beyond,” in OptoElectronics and Communications Conference, Technical Digest Series (CD) (2009), paper FT4.

Mukasa, K.

Nakanishi, T.

Nelson, L.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photon. 7, 354–362 (2013).
[Crossref]

Ono, H.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Pedro, J.

J. Pedro, R. S. Luís, B. J. Puttnam, Y. Awaji, N. Wada, and A. Cartaxo, “Experimental assessment of the time-varying impact of multi-core fiber crosstalk on a SSB-OFDM signal,” in Photonics in Switching, Technical Digest Series (CD) (2015), 166–168.

Puttnam, B. J.

B. J. Puttnam, R. S. Luís, T. Eriksson, W. Klaus, J. Mendinueta, Y. Awaji, and N. Wada, “Impact of intercore crosstalk on the transmission distance of QAM formats in multicore fibers,” Photon. J. 8(2), 0601109 (2016).

R. S. Luís, B. J. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
[Crossref]

T. Eriksson, B. J. Puttnam, R. S. Luís, M. Karlsson, P. Andrekson, Y. Awaji, and N. Wada, “Experimental investigation of crosstalk penalties in multicore fiber transmission systems,” Photon. J. 7(1), 7200507 (2015).

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
[Crossref]

G. Rademacher, B. J. Puttnam, R. Luís, Y. Awaji, and N. Wada, “Time-dependent crosstalk from multiple cores in a homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th1H.3.

J. Pedro, R. S. Luís, B. J. Puttnam, Y. Awaji, N. Wada, and A. Cartaxo, “Experimental assessment of the time-varying impact of multi-core fiber crosstalk on a SSB-OFDM signal,” in Photonics in Switching, Technical Digest Series (CD) (2015), 166–168.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

Rademacher, G.

G. Rademacher, B. J. Puttnam, R. Luís, Y. Awaji, and N. Wada, “Time-dependent crosstalk from multiple cores in a homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th1H.3.

Richardson, D.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photon. 7, 354–362 (2013).
[Crossref]

Saitoh, K.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Sakaguchi, J.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
[Crossref]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

Sano, A.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Sasaki, T.

Sasaki, Y.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Sasaoka, E.

Shimakawa, O.

Shum, P.

Sugizaki, R.

Takara, H.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Takenaga, K.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Tamura, Y.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

Tang, M.

Taru, T.

Wada, M.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

Wada, N.

B. J. Puttnam, R. S. Luís, T. Eriksson, W. Klaus, J. Mendinueta, Y. Awaji, and N. Wada, “Impact of intercore crosstalk on the transmission distance of QAM formats in multicore fibers,” Photon. J. 8(2), 0601109 (2016).

R. S. Luís, B. J. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
[Crossref]

T. Eriksson, B. J. Puttnam, R. S. Luís, M. Karlsson, P. Andrekson, Y. Awaji, and N. Wada, “Experimental investigation of crosstalk penalties in multicore fiber transmission systems,” Photon. J. 7(1), 7200507 (2015).

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
[Crossref]

G. Rademacher, B. J. Puttnam, R. Luís, Y. Awaji, and N. Wada, “Time-dependent crosstalk from multiple cores in a homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th1H.3.

J. Pedro, R. S. Luís, B. J. Puttnam, Y. Awaji, N. Wada, and A. Cartaxo, “Experimental assessment of the time-varying impact of multi-core fiber crosstalk on a SSB-OFDM signal,” in Photonics in Switching, Technical Digest Series (CD) (2015), 166–168.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

Watanabe, M.

Yamada, M.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

J. Lightwave Technol. (3)

Nat. Photon. (1)

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photon. 7, 354–362 (2013).
[Crossref]

Opt. Express (2)

Photon. J. (2)

B. J. Puttnam, R. S. Luís, T. Eriksson, W. Klaus, J. Mendinueta, Y. Awaji, and N. Wada, “Impact of intercore crosstalk on the transmission distance of QAM formats in multicore fibers,” Photon. J. 8(2), 0601109 (2016).

T. Eriksson, B. J. Puttnam, R. S. Luís, M. Karlsson, P. Andrekson, Y. Awaji, and N. Wada, “Experimental investigation of crosstalk penalties in multicore fiber transmission systems,” Photon. J. 7(1), 7200507 (2015).

Other (6)

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” European Conference on Optical Communications, Technical Digest Series (CD) (2015), paper PDP.3.1.

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 × 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” European Conference on Optical Communications, Technical Digest Series (CD) (2013), paper PD3.E.4.

T. Alves and A. Cartaxo, “Theoretical modelling of random time nature of inter-core crosstalk in multicore fibers,” IEEE Photonics Conference, Technical Digest Series (CD) (2016), paper WB2.4.

J. Pedro, R. S. Luís, B. J. Puttnam, Y. Awaji, N. Wada, and A. Cartaxo, “Experimental assessment of the time-varying impact of multi-core fiber crosstalk on a SSB-OFDM signal,” in Photonics in Switching, Technical Digest Series (CD) (2015), 166–168.

T. Morioka, “New generation optical infrastructure technologies: “EXAT Initiative” towards 2020 and beyond,” in OptoElectronics and Communications Conference, Technical Digest Series (CD) (2009), paper FT4.

G. Rademacher, B. J. Puttnam, R. Luís, Y. Awaji, and N. Wada, “Time-dependent crosstalk from multiple cores in a homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th1H.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Illustration of the spectral content of the signal and ICXT terms at the output of the test core.
Fig. 2
Fig. 2 Illustration of the spectral content of the terms of Eq. 2 and description of their impact on the received data signal.
Fig. 3
Fig. 3 Experimental setup used to measure the ICXT and the performance of adaptive DD-OFDM-based MCF systems. (i) 19-core MCF profile. AWG: arbitrary waveform generator; DSO: digital storage oscilloscope; ECL: external cavity laser; LPF: low-pass filter; MZM: Mach-Zehnder modulator; OF: optical filter; PIN: positive-intrinsic-negative; PM: power meter; SMF: single-mode fiber.
Fig. 4
Fig. 4 (a) STAXT power at the 19-core MCF output measured continuously over a 210 hour period. (b) Spectrogram of the normalized power of the detected ICXT measured along the 210 hour in the bandwidth of the OFDM signal.
Fig. 5
Fig. 5 (a) Spectrogram of the EVM of the adaptive OFDM signal transmitted in the test core without ICXT. (b) Average EVM of the adaptive OFDM signal transmitted in the test core without ICXT.
Fig. 6
Fig. 6 (a) Measured spectrogram of the EVM of the adaptive OFDM signal transmitted in the test core. (b) Spectrogram of the EVM of the adaptive OFDM signal transmitted in the test core estimated from the measured detected ICXT and measured EVM in the absence of ICXT.
Fig. 7
Fig. 7 Measured and estimated average EVM of the adaptive OFDM signal transmitted in the test core.
Fig. 8
Fig. 8 (a) Time evolution of the average BER of the OFDM signal transmitted in the test core in the presence of ICXT using fixed and adaptive QAM modulations. (b) Spectrogram of the number of bits in each subcarrier of the adaptive OFDM signal. In (a), the dotted line represents the BER threshold corresponding to 7% FEC.
Fig. 9
Fig. 9 Time evolution of the throughput of the adaptive OFDM signal in the presence of ICXT.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

e o ( t ) = [ A t , x + s t , x ( t ) + A X T , x ( t ) + s X T , x ( t ) ] u x + [ A X T , y ( t ) + s X T , y ( t ) ] u y
i ( t ) R λ = | A t , x | 2 OC-OC + 2 { A t , x s t , x * ( t ) } OC-S + | s t , x ( t ) | 2 S-S + + 2 { A t , x A X T , x * ( t ) OC-OCXT + A t , x s X T , x * ( t ) OC-SXT + s t , x ( t ) A X T , x * ( t ) S-OCXT + s t , x ( t ) s X T , x * ( t ) } S-SXT + + | A X T , x ( t ) | 2 OCXT-OCXT + 2 { A X T , x ( t ) s X T , x * ( t ) } OCXT-SXT + | s X T , x ( t ) | 2 SXT-SXT + + | A X T , y ( t ) | 2 OCXT-OCXT + 2 { A X T , y ( t ) s X T , y * ( t ) } OCXT-SXT + | s X T , y ( t ) | 2 SXT-SXT
i X T ( t ) R λ 2 { A t , x s X T , x * ( t ) + A X T , x ( t ) s X T , x * ( t ) + A X T , y ( t ) + s X T , y * ( t ) }

Metrics