Abstract

We have developed a low-cost, fast and sensitive plasmonic sensor with a large-size for easy handling. The sensor is formed by a Au nanobelt grating fabricated by soft lithography with a period of 780 nm and a width of 355 nm in an even and uniform area of ~2 × 2 cm2. The sensor uses the Fano-shaped third order mode localized plasmon resonance of the Au nanobelts, which appears in the visible part of the transmission spectrum. We have found a detection resolution of 1.56 × 10−5 refractive index units with a temporal resolution of 1 s in a sensing area of 0.75 × 0.75 mm2. The high uniformity and size of the sensor permit the detection using a simple optical system, which provides the device with the potential to be used as an easy to handle, portable and disposable sensor.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance

Min Liu, Xu Yang, Ping Shum, and Hongtao Yuan
Appl. Opt. 57(8) 1883-1886 (2018)

Microchannel-based plasmonic refractive index sensor for low refractive index detection

Emranul Haque, Md. Anwar Hossain, Yoshinori Namihira, and Feroz Ahmed
Appl. Opt. 58(6) 1547-1554 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  2. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
    [Crossref] [PubMed]
  3. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [Crossref] [PubMed]
  4. K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, “Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films,” ACS Nano 6(4), 2931–2939 (2012).
    [Crossref] [PubMed]
  5. S. H. Wu, K. L. Lee, A. Chiou, X. Cheng, and P. K. Wei, “Optofluidic platform for real-time monitoring of live cell secretory activities using fano resonance in gold nanoslits,” Small 9(20), 3532–3540 (2013).
    [Crossref] [PubMed]
  6. B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
    [Crossref]
  7. B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photonics 3(2), 203–208 (2016).
    [Crossref]
  8. C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
    [Crossref] [PubMed]
  9. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  10. F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
    [Crossref] [PubMed]
  11. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  12. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
    [Crossref] [PubMed]
  13. M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
    [Crossref] [PubMed]
  14. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  15. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
    [Crossref] [PubMed]
  16. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
    [Crossref] [PubMed]
  17. F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
    [Crossref]
  18. N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
    [Crossref] [PubMed]
  19. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref] [PubMed]
  20. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
    [Crossref]
  21. C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, “Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system,” Chem. Soc. Rev. 39(5), 1805–1834 (2010).
    [Crossref] [PubMed]
  22. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  23. A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
    [Crossref] [PubMed]
  24. A. G. Nikitin, “Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays,” Appl. Phys. Lett. 104(6), 061107 (2014).
    [Crossref]
  25. M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
    [Crossref]
  26. D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
    [Crossref] [PubMed]
  27. L. Hoyt, “New table of the refractive index of pure glycerol at 20 C,” Ind. Eng. Chem. 26(3), 329–332 (1934).
    [Crossref]
  28. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
    [Crossref] [PubMed]
  29. K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5(1), 8547 (2015).
    [Crossref] [PubMed]
  30. Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
    [Crossref] [PubMed]
  31. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
    [Crossref] [PubMed]
  32. K. Yamanaka and M. Saito, “Nanoimprinted Plasmonic Biosensors and Biochips,” in Nanobiosensors and Nanobioanalyses (Springer, 2015), pp. 71–80.

2016 (1)

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

2015 (1)

K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5(1), 8547 (2015).
[Crossref] [PubMed]

2014 (4)

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

A. G. Nikitin, “Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays,” Appl. Phys. Lett. 104(6), 061107 (2014).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

2013 (2)

S. H. Wu, K. L. Lee, A. Chiou, X. Cheng, and P. K. Wei, “Optofluidic platform for real-time monitoring of live cell secretory activities using fano resonance in gold nanoslits,” Small 9(20), 3532–3540 (2013).
[Crossref] [PubMed]

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

2012 (3)

K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, “Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films,” ACS Nano 6(4), 2931–2939 (2012).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

2011 (5)

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

2010 (4)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, “Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system,” Chem. Soc. Rev. 39(5), 1805–1834 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

2009 (3)

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[Crossref] [PubMed]

2008 (3)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

2006 (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[Crossref] [PubMed]

2004 (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1934 (1)

L. Hoyt, “New table of the refractive index of pure glycerol at 20 C,” Ind. Eng. Chem. 26(3), 329–332 (1934).
[Crossref]

Aigouy, L.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Anguita, J.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Armelles, G.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

Benitez, G.

C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, “Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system,” Chem. Soc. Rev. 39(5), 1805–1834 (2010).
[Crossref] [PubMed]

Brolo, A. G.

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Caballero, B.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Carrascosa, L. G.

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Carro, P.

C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, “Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system,” Chem. Soc. Rev. 39(5), 1805–1834 (2010).
[Crossref] [PubMed]

Cebollada, A.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Chang, J.-W.

K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5(1), 8547 (2015).
[Crossref] [PubMed]

Chen, P.-W.

K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, “Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films,” ACS Nano 6(4), 2931–2939 (2012).
[Crossref] [PubMed]

Chen, S.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

Cheng, X.

S. H. Wu, K. L. Lee, A. Chiou, X. Cheng, and P. K. Wei, “Optofluidic platform for real-time monitoring of live cell secretory activities using fano resonance in gold nanoslits,” Small 9(20), 3532–3540 (2013).
[Crossref] [PubMed]

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

Chiou, A.

S. H. Wu, K. L. Lee, A. Chiou, X. Cheng, and P. K. Wei, “Optofluidic platform for real-time monitoring of live cell secretory activities using fano resonance in gold nanoslits,” Small 9(20), 3532–3540 (2013).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Cuevas, J. C.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Denkova, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Dmitriev, A.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

Estévez, M.-C.

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Ferreiro-Vila, E.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

Francescato, Y.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Gan, Q.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

García-Martín, A.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

García-Martín, J. M.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

Giannini, V.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

González, M. U.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

González-Guerrero, A. B.

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Gray, S. K.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[Crossref] [PubMed]

Halas, N. J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[Crossref] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Hoyt, L.

L. Hoyt, “New table of the refractive index of pure glycerol at 20 C,” Ind. Eng. Chem. 26(3), 329–332 (1934).
[Crossref]

Huang, J.-B.

K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5(1), 8547 (2015).
[Crossref] [PubMed]

K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, “Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films,” ACS Nano 6(4), 2931–2939 (2012).
[Crossref] [PubMed]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Juste, J. P.

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Käll, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lagae, L.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Lechuga, L. M.

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Lee, K. L.

S. H. Wu, K. L. Lee, A. Chiou, X. Cheng, and P. K. Wei, “Optofluidic platform for real-time monitoring of live cell secretory activities using fano resonance in gold nanoslits,” Small 9(20), 3532–3540 (2013).
[Crossref] [PubMed]

Lee, K.-L.

K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5(1), 8547 (2015).
[Crossref] [PubMed]

K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, “Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films,” ACS Nano 6(4), 2931–2939 (2012).
[Crossref] [PubMed]

Lee, T.-W.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[Crossref] [PubMed]

Liz-Marzán, L. M.

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

López-Tejeira, F.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[Crossref] [PubMed]

Maier, S. A.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[Crossref] [PubMed]

Meneses-Rodríguez, D.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

Moshchalkov, V. V.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Ni, W.

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Nikitin, A. G.

A. G. Nikitin, “Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays,” Appl. Phys. Lett. 104(6), 061107 (2014).
[Crossref]

Nordlander, P.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Nuzzo, R. G.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[Crossref] [PubMed]

Otte, M. A.

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
[Crossref] [PubMed]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Piliarik, M.

Prieto, P.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

Rodríguez-Oliveros, R.

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

Rogers, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[Crossref] [PubMed]

Salvarezza, R. C.

C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, “Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system,” Chem. Soc. Rev. 39(5), 1805–1834 (2010).
[Crossref] [PubMed]

Sánchez-Gil, J.

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

Sánchez-Gil, J. A.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
[Crossref] [PubMed]

Sepúlveda, B.

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shvets, G.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Soares, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[Crossref] [PubMed]

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[Crossref] [PubMed]

Svedendahl, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

Valsecchi, C.

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

Van Dorpe, P.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Vela, M. E.

C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, “Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system,” Chem. Soc. Rev. 39(5), 1805–1834 (2010).
[Crossref] [PubMed]

Vercruysse, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Vericat, C.

C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, “Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system,” Chem. Soc. Rev. 39(5), 1805–1834 (2010).
[Crossref] [PubMed]

Vitrey, A.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

Wei, P. K.

S. H. Wu, K. L. Lee, A. Chiou, X. Cheng, and P. K. Wei, “Optofluidic platform for real-time monitoring of live cell secretory activities using fano resonance in gold nanoslits,” Small 9(20), 3532–3540 (2013).
[Crossref] [PubMed]

Wei, P.-K.

K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5(1), 8547 (2015).
[Crossref] [PubMed]

K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, “Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films,” ACS Nano 6(4), 2931–2939 (2012).
[Crossref] [PubMed]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Wu, S. H.

S. H. Wu, K. L. Lee, A. Chiou, X. Cheng, and P. K. Wei, “Optofluidic platform for real-time monitoring of live cell secretory activities using fano resonance in gold nanoslits,” Small 9(20), 3532–3540 (2013).
[Crossref] [PubMed]

Wu, S.-H.

K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5(1), 8547 (2015).
[Crossref] [PubMed]

K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, “Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films,” ACS Nano 6(4), 2931–2939 (2012).
[Crossref] [PubMed]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Xin, Z.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

Yang, S.-Y.

K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, “Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films,” ACS Nano 6(4), 2931–2939 (2012).
[Crossref] [PubMed]

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

ACS Nano (4)

K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, “Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films,” ACS Nano 6(4), 2931–2939 (2012).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
[Crossref] [PubMed]

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Appl. Phys. Lett. (2)

A. G. Nikitin, “Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays,” Appl. Phys. Lett. 104(6), 061107 (2014).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, “Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system,” Chem. Soc. Rev. 39(5), 1805–1834 (2010).
[Crossref] [PubMed]

Ind. Eng. Chem. (1)

L. Hoyt, “New table of the refractive index of pure glycerol at 20 C,” Ind. Eng. Chem. 26(3), 329–332 (1934).
[Crossref]

J. Phys. Chem. C (1)

M. A. Otte, M.-C. Estévez, L. G. Carrascosa, A. B. González-Guerrero, L. M. Lechuga, and B. Sepúlveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C 115(13), 5344–5351 (2011).
[Crossref]

Langmuir (2)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

Nano Lett. (6)

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14(4), 2079–2085 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

New J. Phys. (1)

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14(2), 023035 (2012).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5(1), 8547 (2015).
[Crossref] [PubMed]

Small (2)

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7(23), 3317–3323 (2011).
[Crossref] [PubMed]

S. H. Wu, K. L. Lee, A. Chiou, X. Cheng, and P. K. Wei, “Optofluidic platform for real-time monitoring of live cell secretory activities using fano resonance in gold nanoslits,” Small 9(20), 3532–3540 (2013).
[Crossref] [PubMed]

Other (1)

K. Yamanaka and M. Saito, “Nanoimprinted Plasmonic Biosensors and Biochips,” in Nanobiosensors and Nanobioanalyses (Springer, 2015), pp. 71–80.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Specular reflectivity versus energy (eV), obtained from FEM numerical simulations, for a 750 nm period grating of Au nanobelts of 375 nm width and 20 nm thickness, placed over a glass (n = 1.5) substrate and with a superstrate of refractive index varying from n = 1.0 to n = 2.0. (b) Same as in (a), but plotted as a function of wavelength (in nm). (c) Zoom of the short wavelength part, enclosed by dashed lines, of (b). (d)-(g) Near-field maps, calculated at the spectral positions and superstrate refractive index values indicated by the corresponding symbols in graphs (a) and (c) (wavelengths indicated below the maps).
Fig. 2
Fig. 2 (a) Specular transmission, obtained from FEM numerical simulations, from a 750 nm period grating of Au nanobelts of 375 nm width and 20 nm thickness, placed over a glass (n = 1.5) substrate and with a superstrate of refractive index varying from n = 1.0 to n = 2.0. (b) Resonance position as a function of the superstrate refractive index. Inset: Table containing the calculated sensitivity and figure of merit (FOM) of this resonance to RI changes.
Fig. 3
Fig. 3 (a) Fabrication process for Au nanosensor, based on soft-lithography, including at the end the AFM image of the obtained Au nanobelt grating over glass. (b) Measured and simulated optical transmission through a 20 nm thick Au nanobelt grating with a period of 750 nm and linewidth of 355 nm fabricated on glass.
Fig. 4
Fig. 4 (a) Optical transmission spectra of the sensor for the solutions prepared with different RI. (b) Relative intensity change spectra for the different RI. (c) Integrated response (R) of the sensor for each RI as function of time. (d) Integrated response of the sensor for each dissolution as function of RI. The sensibility of R, SR, is obtained from the slope of the linear fit.

Metrics