Abstract

Visible light communication (VLC) with light emitting diodes (LEDs) is an emerging technology for 5G wireless communications. Recently, using complementary metal-oxide-semiconductor (CMOS) image sensor as VLC receiver is developed owing to its flexibility and low-cost. However, two illumination levels such as on-off keying (OOK) signal are used. To improve the system throughput and reduce complexity of the hardware design, in this paper, we propose and experimentally demonstrate a multilevel modulation scheme for VLC system utilizing the overlapping of two light sources for the first time, and the two light sources are modulated by an OOK and a Manchester signal respectively. At the receiver, a CMOS camera can demodulate the Manchester and the OOK signal simultaneously. Meanwhile, a low-pass filter (LPF) is used to enhance the system performance. The experimental results demonstrate that the proposed multilevel modulation scheme can achieve a net data rate of 4.32 kbit/s.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visible light communication using mobile-phone camera with data rate higher than frame rate

Chi-Wai Chow, Chung-Yen Chen, and Shih-Hao Chen
Opt. Express 23(20) 26080-26085 (2015)

Mobile-phone based visible light communication using region-grow light source tracking for unstable light source

Kevin Liang, Chi-Wai Chow, and Yang Liu
Opt. Express 24(15) 17505-17510 (2016)

Quadrichromatic LED based mobile phone camera visible light communication

H Chen, X Z Lai, P Chen, Y T Liu, M Y Yu, Z H Liu, and Z J Zhu
Opt. Express 26(13) 17132-17144 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
    [Crossref]
  2. L. U. Khan, “Visible light communication: applications, architecture, standardization and research challenges,” Digit. Commun. Netw. 3(2), 78–88 (2017).
    [Crossref]
  3. S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28(6), 41–45 (2014).
    [Crossref]
  4. D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
    [Crossref] [PubMed]
  5. X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
    [Crossref]
  6. C. W. Chow, C. Y. Chen, and S. H. Chen, “Enhancement of signal performance in LED visible light communications using mobile phone camera,” IEEE Photonics J. 7(5), 1–7 (2015).
    [Crossref]
  7. K. Liang, C. W. Chow, Y. Liu, and C. H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24(22), 25641–25646 (2016).
    [Crossref] [PubMed]
  8. C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” in 2012 IEEE Globecom Workshops, 2012, pp. 1244–1248.
  9. B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
    [Crossref]
  10. R. Boubezari, H. L. Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Lightwave Technol. 34(17), 4121–4127 (2016).
    [Crossref]
  11. Z. Ong and W. Y. Chung, “Long range VLC temperature monitoring system using CMOS of mobile device camera,” IEEE Sens. J. 16(6), 1508–1509 (2016).
    [Crossref]
  12. Y. Liu, H. Y. Chen, K. Liang, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Visible light communication using receivers of camera image sensor and solar cell,” IEEE Photonics J. 8(1), 1–7 (2016).
    [Crossref]
  13. T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous optical camera communication using LED and rolling shutter camera,” in 2015 Seventh International Conference on Ubiquitous and Future Networks, 2015, pp. 214–219.
    [Crossref]
  14. M. Liu, K. Qiu, F. Che, S. Li, B. Hussain, L. Wu, and C. Patrick Yue, “Towards indoor localization using visible light communication for consumer electronic devices,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 143–148.
    [Crossref]
  15. Y. Liu, C. W. Chow, K. Liang, H. Y. Chen, C. W. Hsu, C. Y. Chen, and S. H. Chen, “Comparison of thresholding schemes for visible light communication using mobile-phone image sensor,” Opt. Express 24(3), 1973–1978 (2016).
    [Crossref] [PubMed]
  16. A. D. Cheok and L. Yue, “A novel light-sensor-based information transmission system for indoor positioning and navigation,” IEEE Trans. Instrum. Meas. 60(1), 290–299 (2011).
    [Crossref]
  17. J. F. Li, Z. T. Huang, R. Q. Zhang, F. X. Zeng, M. Jiang, and Y. F. Ji, “Superposed pulse amplitude modulation for visible light communication,” Opt. Express 21(25), 31006–31011 (2013).
    [Crossref] [PubMed]
  18. T. H. Do and M. Yoo, “Analysis on visible light communication using rolling shutter CMOS sensor,” in 2015 International Conference on Information and Communication Technology Convergence (ICTC), 2015, pp. 755–757.
    [Crossref]
  19. C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
    [Crossref] [PubMed]
  20. T. H. Do and M. Yoo, “Performance analysis of visible light communication using CMOS sensors,” Sensors (Basel) 16(3), 309 (2016).
    [Crossref] [PubMed]

2017 (2)

L. U. Khan, “Visible light communication: applications, architecture, standardization and research challenges,” Digit. Commun. Netw. 3(2), 78–88 (2017).
[Crossref]

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

2016 (6)

Z. Ong and W. Y. Chung, “Long range VLC temperature monitoring system using CMOS of mobile device camera,” IEEE Sens. J. 16(6), 1508–1509 (2016).
[Crossref]

Y. Liu, H. Y. Chen, K. Liang, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Visible light communication using receivers of camera image sensor and solar cell,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

T. H. Do and M. Yoo, “Performance analysis of visible light communication using CMOS sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

Y. Liu, C. W. Chow, K. Liang, H. Y. Chen, C. W. Hsu, C. Y. Chen, and S. H. Chen, “Comparison of thresholding schemes for visible light communication using mobile-phone image sensor,” Opt. Express 24(3), 1973–1978 (2016).
[Crossref] [PubMed]

R. Boubezari, H. L. Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Lightwave Technol. 34(17), 4121–4127 (2016).
[Crossref]

K. Liang, C. W. Chow, Y. Liu, and C. H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24(22), 25641–25646 (2016).
[Crossref] [PubMed]

2015 (4)

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

C. W. Chow, C. Y. Chen, and S. H. Chen, “Visible light communication using mobile-phone camera with data rate higher than frame rate,” Opt. Express 23(20), 26080–26085 (2015).
[Crossref] [PubMed]

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

C. W. Chow, C. Y. Chen, and S. H. Chen, “Enhancement of signal performance in LED visible light communications using mobile phone camera,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

2014 (2)

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28(6), 41–45 (2014).
[Crossref]

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

2013 (1)

2011 (1)

A. D. Cheok and L. Yue, “A novel light-sensor-based information transmission system for indoor positioning and navigation,” IEEE Trans. Instrum. Meas. 60(1), 290–299 (2011).
[Crossref]

Aggoune, H. M.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Boubezari, R.

Bouridane, A.

Che, F.

M. Liu, K. Qiu, F. Che, S. Li, B. Hussain, L. Wu, and C. Patrick Yue, “Towards indoor localization using visible light communication for consumer electronic devices,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 143–148.
[Crossref]

Chen, C. Y.

Chen, H. Y.

Y. Liu, H. Y. Chen, K. Liang, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Visible light communication using receivers of camera image sensor and solar cell,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Y. Liu, C. W. Chow, K. Liang, H. Y. Chen, C. W. Hsu, C. Y. Chen, and S. H. Chen, “Comparison of thresholding schemes for visible light communication using mobile-phone image sensor,” Opt. Express 24(3), 1973–1978 (2016).
[Crossref] [PubMed]

Chen, S.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Chen, S. H.

Cheok, A. D.

A. D. Cheok and L. Yue, “A novel light-sensor-based information transmission system for indoor positioning and navigation,” IEEE Trans. Instrum. Meas. 60(1), 290–299 (2011).
[Crossref]

Chi, N.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Chow, C. W.

Chung, W. Y.

Z. Ong and W. Y. Chung, “Long range VLC temperature monitoring system using CMOS of mobile device camera,” IEEE Sens. J. 16(6), 1508–1509 (2016).
[Crossref]

Do, T. H.

T. H. Do and M. Yoo, “Performance analysis of visible light communication using CMOS sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

T. H. Do and M. Yoo, “Analysis on visible light communication using rolling shutter CMOS sensor,” in 2015 International Conference on Information and Communication Technology Convergence (ICTC), 2015, pp. 755–757.
[Crossref]

Fletcher, S.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Gao, X.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Ghassemlooy, Z.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

R. Boubezari, H. L. Minh, Z. Ghassemlooy, and A. Bouridane, “Smartphone camera based visible light communication,” J. Lightwave Technol. 34(17), 4121–4127 (2016).
[Crossref]

Haas, H.

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Haider, F.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Hepsaydir, E.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Hong, C. H.

T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous optical camera communication using LED and rolling shutter camera,” in 2015 Seventh International Conference on Ubiquitous and Future Networks, 2015, pp. 214–219.
[Crossref]

Hsu, C. W.

Y. Liu, H. Y. Chen, K. Liang, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Visible light communication using receivers of camera image sensor and solar cell,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

Y. Liu, C. W. Chow, K. Liang, H. Y. Chen, C. W. Hsu, C. Y. Chen, and S. H. Chen, “Comparison of thresholding schemes for visible light communication using mobile-phone image sensor,” Opt. Express 24(3), 1973–1978 (2016).
[Crossref] [PubMed]

Huang, X.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Huang, Z. T.

Hussain, B.

M. Liu, K. Qiu, F. Che, S. Li, B. Hussain, L. Wu, and C. Patrick Yue, “Towards indoor localization using visible light communication for consumer electronic devices,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 143–148.
[Crossref]

Jang, Y. M.

T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous optical camera communication using LED and rolling shutter camera,” in 2015 Seventh International Conference on Ubiquitous and Future Networks, 2015, pp. 214–219.
[Crossref]

Ji, Y. F.

Jiang, M.

Khan, L. U.

L. U. Khan, “Visible light communication: applications, architecture, standardization and research challenges,” Digit. Commun. Netw. 3(2), 78–88 (2017).
[Crossref]

Le, N. T.

T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous optical camera communication using LED and rolling shutter camera,” in 2015 Seventh International Conference on Ubiquitous and Future Networks, 2015, pp. 214–219.
[Crossref]

Li, J. F.

Li, S.

M. Liu, K. Qiu, F. Che, S. Li, B. Hussain, L. Wu, and C. Patrick Yue, “Towards indoor localization using visible light communication for consumer electronic devices,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 143–148.
[Crossref]

Li, Y.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Liang, K.

Lin, B.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Lin, C.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Liu, M.

M. Liu, K. Qiu, F. Che, S. Li, B. Hussain, L. Wu, and C. Patrick Yue, “Towards indoor localization using visible light communication for consumer electronic devices,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 143–148.
[Crossref]

Liu, Y.

Minh, H. L.

Nguyen, T.

T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous optical camera communication using LED and rolling shutter camera,” in 2015 Seventh International Conference on Ubiquitous and Future Networks, 2015, pp. 214–219.
[Crossref]

Ong, Z.

Z. Ong and W. Y. Chung, “Long range VLC temperature monitoring system using CMOS of mobile device camera,” IEEE Sens. J. 16(6), 1508–1509 (2016).
[Crossref]

Patrick Yue, C.

M. Liu, K. Qiu, F. Che, S. Li, B. Hussain, L. Wu, and C. Patrick Yue, “Towards indoor localization using visible light communication for consumer electronic devices,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 143–148.
[Crossref]

Qiu, K.

M. Liu, K. Qiu, F. Che, S. Li, B. Hussain, L. Wu, and C. Patrick Yue, “Towards indoor localization using visible light communication for consumer electronic devices,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 143–148.
[Crossref]

Shi, J.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Tang, X.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Tsonev, D.

Videv, S.

Wang, C. X.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Wang, H.

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28(6), 41–45 (2014).
[Crossref]

Wang, Y.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Wang, Z.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Wu, L.

M. Liu, K. Qiu, F. Che, S. Li, B. Hussain, L. Wu, and C. Patrick Yue, “Towards indoor localization using visible light communication for consumer electronic devices,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 143–148.
[Crossref]

Wu, S.

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28(6), 41–45 (2014).
[Crossref]

Xiao, J.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Yang, Y.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Yeh, C. H.

Y. Liu, H. Y. Chen, K. Liang, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Visible light communication using receivers of camera image sensor and solar cell,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

K. Liang, C. W. Chow, Y. Liu, and C. H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24(22), 25641–25646 (2016).
[Crossref] [PubMed]

Yoo, M.

T. H. Do and M. Yoo, “Performance analysis of visible light communication using CMOS sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

T. H. Do and M. Yoo, “Analysis on visible light communication using rolling shutter CMOS sensor,” in 2015 International Conference on Information and Communication Technology Convergence (ICTC), 2015, pp. 755–757.
[Crossref]

You, X. H.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Youn, C. H.

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28(6), 41–45 (2014).
[Crossref]

Yuan, D.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Yue, L.

A. D. Cheok and L. Yue, “A novel light-sensor-based information transmission system for indoor positioning and navigation,” IEEE Trans. Instrum. Meas. 60(1), 290–299 (2011).
[Crossref]

Zeng, F. X.

Zhang, R. Q.

Zhang, S.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Digit. Commun. Netw. (1)

L. U. Khan, “Visible light communication: applications, architecture, standardization and research challenges,” Digit. Commun. Netw. 3(2), 78–88 (2017).
[Crossref]

IEEE Commun. Mag. (1)

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

IEEE Netw. (1)

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28(6), 41–45 (2014).
[Crossref]

IEEE Photonics J. (3)

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

C. W. Chow, C. Y. Chen, and S. H. Chen, “Enhancement of signal performance in LED visible light communications using mobile phone camera,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Y. Liu, H. Y. Chen, K. Liang, C. W. Hsu, C. W. Chow, and C. H. Yeh, “Visible light communication using receivers of camera image sensor and solar cell,” IEEE Photonics J. 8(1), 1–7 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

IEEE Sens. J. (1)

Z. Ong and W. Y. Chung, “Long range VLC temperature monitoring system using CMOS of mobile device camera,” IEEE Sens. J. 16(6), 1508–1509 (2016).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

A. D. Cheok and L. Yue, “A novel light-sensor-based information transmission system for indoor positioning and navigation,” IEEE Trans. Instrum. Meas. 60(1), 290–299 (2011).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Sensors (Basel) (1)

T. H. Do and M. Yoo, “Performance analysis of visible light communication using CMOS sensors,” Sensors (Basel) 16(3), 309 (2016).
[Crossref] [PubMed]

Other (4)

T. H. Do and M. Yoo, “Analysis on visible light communication using rolling shutter CMOS sensor,” in 2015 International Conference on Information and Communication Technology Convergence (ICTC), 2015, pp. 755–757.
[Crossref]

T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous optical camera communication using LED and rolling shutter camera,” in 2015 Seventh International Conference on Ubiquitous and Future Networks, 2015, pp. 214–219.
[Crossref]

M. Liu, K. Qiu, F. Che, S. Li, B. Hussain, L. Wu, and C. Patrick Yue, “Towards indoor localization using visible light communication for consumer electronic devices,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 143–148.
[Crossref]

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” in 2012 IEEE Globecom Workshops, 2012, pp. 1244–1248.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of multilevel modulation.
Fig. 2
Fig. 2 CMOS camera based VLC processing schematic diagrams at the receiver.
Fig. 3
Fig. 3 Experimental setup of VLC system with mobile phone camera.
Fig. 4
Fig. 4 The structure of data packet.
Fig. 5
Fig. 5 System process diagram of VLC system with camera receiver. (a-c) Image frames received at different illuminances.
Fig. 6
Fig. 6 Experimental scene.
Fig. 7
Fig. 7 Column matrix of grayscale values with LPF.
Fig. 8
Fig. 8 BER versus the different illuminance.

Metrics