Abstract

Based on the multi-level model, we have calculated light shifts for Zeeman states of hyperfine levels of cesium (Cs) 6S1/2 ground state and 6P3/2 excited state. The magic-wavelength linearly-polarized optical dipole trap (ODT) for Cs 6S1/2 |F = 4, mF = + 4ñ - 6P3/2 |F = 5, mF = + 5ñ transition is experimentally constructed and characterized by using the laser-induced fluorescence spectra of trapped single Cs atoms. The magic wavelength is 937.7 nm which produces almost the same light shift for 6S1/2 |F = 4, mF = + 4ñ ground state and 6P3/2 |F = 5, mF = + 5ñ excited state with linearly-polarized ODT laser beam. Compared to undisturbed Cs 6S1/2 |F = 4, mF = + 4ñ - 6P3/2 |F = 5, mF = + 5ñ transition frequency in free space, the differential light shift is less than 0.7 MHz in a linearly-polarized 937.7 nm ODT, which is less than 1.2% of the trap depth. We also discussed influence of the trap depth and the bias magnetic field on the measurement results.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Background-free fluorescence detection of cold atoms in a two-color magneto-optical trap

Baodong Yang, Qiangbing Liang, Jun He, and Junmin Wang
Opt. Express 20(11) 11944-11952 (2012)

Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell

Jieying Wang, Jiandong Bai, Jun He, and Junmin Wang
Opt. Express 25(19) 22510-22518 (2017)

Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser

Wenting Diao, Jun He, Zhi Liu, Baodong Yang, and Junmin Wang
Opt. Express 20(7) 7480-7487 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005).
    [Crossref]
  2. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multi-photon entanglement and interferometry,” Rev. Mod. Phys. 84(2), 777–838 (2012).
    [Crossref]
  3. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
    [Crossref]
  4. B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
    [Crossref] [PubMed]
  5. S. Garcia, D. Maxein, L. Hohmann, J. Reichel, and R. Long, “Fiber-pigtailed optical tweezer for single-atom trapping and single-photon generation,” Appl. Phys. Lett. 103(11), 114103 (2013).
    [Crossref]
  6. B. Liu, G. Jin, J. He, and J. M. Wang, “Suppression of single-cesium-atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source,” Phys. Rev. A 94(1), 013409 (2016).
    [Crossref]
  7. A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
    [Crossref]
  8. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 010095 (2004).
    [Crossref]
  9. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
    [Crossref] [PubMed]
  10. M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24(3), 3089–3094 (2016).
    [Crossref] [PubMed]
  11. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
    [Crossref]
  12. Y. Liu, P. Siyushev, Y. Rong, B. Wu, L. P. McGuinness, F. Jelezko, S. Tamura, T. Tanii, T. Teraji, S. Onoda, T. Ohshima, J. Isoya, T. Shinada, H. Zeng, and E. Wu, “Investigation of the silicon vacancy color center for quantum key distribution,” Opt. Express 23(26), 32961–32967 (2015).
    [Crossref] [PubMed]
  13. M. Weber, J. Volz, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Analysis of a single-atom dipole trap,” Phys. Rev. A 73(4), 043406 (2006).
    [Crossref]
  14. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
    [Crossref] [PubMed]
  15. P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett. 35(13), 2164–2166 (2010).
    [Crossref] [PubMed]
  16. G. Li, S. Zhang, L. Isenhower, K. Maller, and M. Saffman, “Crossed vortex bottle beam trap for single-atom qubits,” Opt. Lett. 37(5), 851–853 (2012).
    [Crossref] [PubMed]
  17. J. Y. Kim, J. S. Lee, J. H. Han, and D. Cho, “Optical dipole trap without inhomogeneous ac stark broadening,” J. Korean Phys. Soc. 42, 483–488 (2003).
  18. J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90(13), 133602 (2003).
    [Crossref] [PubMed]
  19. A. Derevianko, “Doubly magic conditions in magic-wavelength trapping of ultracold alkali-metal atoms,” Phys. Rev. Lett. 105(3), 033002 (2010).
    [Crossref] [PubMed]
  20. C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14(2), 023056 (2012).
    [Crossref]
  21. P. Phoonthong, P. Douglas, A. Wickenbrock, and F. Renzoni, “Characterization of a state-insensitive dipole trap for cesium atoms,” Phys. Rev. A 82(1), 013406 (2010).
    [Crossref]
  22. M. Das, A. Shirasaki, K. P. Nayak, M. Morinaga, F. Le Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18(16), 17154–17164 (2010).
    [Crossref] [PubMed]
  23. J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
    [Crossref]
  24. J. He, G. Jin, B. Liu, and J. Wang, “Amplification of a nanosecond laser pulse chain via dynamic injection locking of a laser diode,” Opt. Lett. 41(24), 5724–5727 (2016).
    [Crossref] [PubMed]
  25. J. M. Wang, S. L. Guo, Y. L. Ge, Y. J. Cheng, B. D. Yang, and J. He, “State-insensitive dichromatic optical- dipole trap for rubidium atoms: calculation and the dichromatic laser’s realization,” J. Phys. At. Mol. Opt. Phys. 47(9), 095001 (2014).
    [Crossref]
  26. C. Y. Shih and M. S. Chapman, “Nondestructive light-shift measurements of single atoms in optical dipole traps,” Phys. Rev. A 87(6), 063408 (2013).
    [Crossref]
  27. J. He, B. Liu, W. T. Diao, J. Y. Wang, G. Jin, and J. M. Wang, “Efficient loading of a single neutral atom into an optical microscopic tweezer,” Chin. Phys. B 24(4), 043701 (2015).
    [Crossref]
  28. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–133 (2000).
    [Crossref]
  29. P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
    [Crossref] [PubMed]
  30. J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
    [Crossref] [PubMed]

2016 (3)

2015 (4)

J. He, B. Liu, W. T. Diao, J. Y. Wang, G. Jin, and J. M. Wang, “Efficient loading of a single neutral atom into an optical microscopic tweezer,” Chin. Phys. B 24(4), 043701 (2015).
[Crossref]

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Y. Liu, P. Siyushev, Y. Rong, B. Wu, L. P. McGuinness, F. Jelezko, S. Tamura, T. Tanii, T. Teraji, S. Onoda, T. Ohshima, J. Isoya, T. Shinada, H. Zeng, and E. Wu, “Investigation of the silicon vacancy color center for quantum key distribution,” Opt. Express 23(26), 32961–32967 (2015).
[Crossref] [PubMed]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

2014 (1)

J. M. Wang, S. L. Guo, Y. L. Ge, Y. J. Cheng, B. D. Yang, and J. He, “State-insensitive dichromatic optical- dipole trap for rubidium atoms: calculation and the dichromatic laser’s realization,” J. Phys. At. Mol. Opt. Phys. 47(9), 095001 (2014).
[Crossref]

2013 (2)

C. Y. Shih and M. S. Chapman, “Nondestructive light-shift measurements of single atoms in optical dipole traps,” Phys. Rev. A 87(6), 063408 (2013).
[Crossref]

S. Garcia, D. Maxein, L. Hohmann, J. Reichel, and R. Long, “Fiber-pigtailed optical tweezer for single-atom trapping and single-photon generation,” Appl. Phys. Lett. 103(11), 114103 (2013).
[Crossref]

2012 (3)

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multi-photon entanglement and interferometry,” Rev. Mod. Phys. 84(2), 777–838 (2012).
[Crossref]

G. Li, S. Zhang, L. Isenhower, K. Maller, and M. Saffman, “Crossed vortex bottle beam trap for single-atom qubits,” Opt. Lett. 37(5), 851–853 (2012).
[Crossref] [PubMed]

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14(2), 023056 (2012).
[Crossref]

2011 (1)

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[Crossref]

2010 (4)

P. Phoonthong, P. Douglas, A. Wickenbrock, and F. Renzoni, “Characterization of a state-insensitive dipole trap for cesium atoms,” Phys. Rev. A 82(1), 013406 (2010).
[Crossref]

M. Das, A. Shirasaki, K. P. Nayak, M. Morinaga, F. Le Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18(16), 17154–17164 (2010).
[Crossref] [PubMed]

P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett. 35(13), 2164–2166 (2010).
[Crossref] [PubMed]

A. Derevianko, “Doubly magic conditions in magic-wavelength trapping of ultracold alkali-metal atoms,” Phys. Rev. Lett. 105(3), 033002 (2010).
[Crossref] [PubMed]

2008 (1)

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref] [PubMed]

2007 (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

2006 (2)

M. Weber, J. Volz, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Analysis of a single-atom dipole trap,” Phys. Rev. A 73(4), 043406 (2006).
[Crossref]

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[Crossref] [PubMed]

2005 (2)

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005).
[Crossref]

2004 (1)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 010095 (2004).
[Crossref]

2003 (2)

J. Y. Kim, J. S. Lee, J. H. Han, and D. Cho, “Optical dipole trap without inhomogeneous ac stark broadening,” J. Korean Phys. Soc. 42, 483–488 (2003).

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90(13), 133602 (2003).
[Crossref] [PubMed]

2001 (1)

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[Crossref] [PubMed]

2000 (1)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–133 (2000).
[Crossref]

1999 (1)

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[Crossref]

Alton, D. J.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14(2), 023056 (2012).
[Crossref]

Becher, C.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Bergamini, S.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

Beugnon, J.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[Crossref] [PubMed]

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

Bian, W.

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Bock, M.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Boozer, A. D.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90(13), 133602 (2003).
[Crossref] [PubMed]

Brito, J.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Browaeys, A.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[Crossref] [PubMed]

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

Brunel, C.

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[Crossref]

Buck, J. R.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90(13), 133602 (2003).
[Crossref] [PubMed]

Chapman, M. S.

C. Y. Shih and M. S. Chapman, “Nondestructive light-shift measurements of single atoms in optical dipole traps,” Phys. Rev. A 87(6), 063408 (2013).
[Crossref]

Chen, Z. B.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multi-photon entanglement and interferometry,” Rev. Mod. Phys. 84(2), 777–838 (2012).
[Crossref]

Cheng, Y. J.

J. M. Wang, S. L. Guo, Y. L. Ge, Y. J. Cheng, B. D. Yang, and J. He, “State-insensitive dichromatic optical- dipole trap for rubidium atoms: calculation and the dichromatic laser’s realization,” J. Phys. At. Mol. Opt. Phys. 47(9), 095001 (2014).
[Crossref]

Cho, D.

J. Y. Kim, J. S. Lee, J. H. Han, and D. Cho, “Optical dipole trap without inhomogeneous ac stark broadening,” J. Korean Phys. Soc. 42, 483–488 (2003).

Choi, K. S.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14(2), 023056 (2012).
[Crossref]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[Crossref] [PubMed]

Darquié, B.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[Crossref] [PubMed]

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

Das, M.

Derevianko, A.

A. Derevianko, “Doubly magic conditions in magic-wavelength trapping of ultracold alkali-metal atoms,” Phys. Rev. Lett. 105(3), 033002 (2010).
[Crossref] [PubMed]

Diao, W. T.

J. He, B. Liu, W. T. Diao, J. Y. Wang, G. Jin, and J. M. Wang, “Efficient loading of a single neutral atom into an optical microscopic tweezer,” Chin. Phys. B 24(4), 043701 (2015).
[Crossref]

Ding, D.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14(2), 023056 (2012).
[Crossref]

Dingjan, J.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[Crossref] [PubMed]

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

Douglas, P.

P. Phoonthong, P. Douglas, A. Wickenbrock, and F. Renzoni, “Characterization of a state-insensitive dipole trap for cesium atoms,” Phys. Rev. A 82(1), 013406 (2010).
[Crossref]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Eich, P.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Eschner, J.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Gao, K. L.

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Garcia, S.

S. Garcia, D. Maxein, L. Hohmann, J. Reichel, and R. Long, “Fiber-pigtailed optical tweezer for single-atom trapping and single-photon generation,” Appl. Phys. Lett. 103(11), 114103 (2013).
[Crossref]

Ge, Y. L.

J. M. Wang, S. L. Guo, Y. L. Ge, Y. J. Cheng, B. D. Yang, and J. He, “State-insensitive dichromatic optical- dipole trap for rubidium atoms: calculation and the dichromatic laser’s realization,” J. Phys. At. Mol. Opt. Phys. 47(9), 095001 (2014).
[Crossref]

Goban, A.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14(2), 023056 (2012).
[Crossref]

Grangier, P.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[Crossref] [PubMed]

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

Grimm, R.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–133 (2000).
[Crossref]

Guan, H.

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Guo, S. L.

J. M. Wang, S. L. Guo, Y. L. Ge, Y. J. Cheng, B. D. Yang, and J. He, “State-insensitive dichromatic optical- dipole trap for rubidium atoms: calculation and the dichromatic laser’s realization,” J. Phys. At. Mol. Opt. Phys. 47(9), 095001 (2014).
[Crossref]

Hakuta, K.

Han, J. H.

J. Y. Kim, J. S. Lee, J. H. Han, and D. Cho, “Optical dipole trap without inhomogeneous ac stark broadening,” J. Korean Phys. Soc. 42, 483–488 (2003).

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 010095 (2004).
[Crossref]

He, J.

B. Liu, G. Jin, J. He, and J. M. Wang, “Suppression of single-cesium-atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source,” Phys. Rev. A 94(1), 013409 (2016).
[Crossref]

J. He, G. Jin, B. Liu, and J. Wang, “Amplification of a nanosecond laser pulse chain via dynamic injection locking of a laser diode,” Opt. Lett. 41(24), 5724–5727 (2016).
[Crossref] [PubMed]

J. He, B. Liu, W. T. Diao, J. Y. Wang, G. Jin, and J. M. Wang, “Efficient loading of a single neutral atom into an optical microscopic tweezer,” Chin. Phys. B 24(4), 043701 (2015).
[Crossref]

J. M. Wang, S. L. Guo, Y. L. Ge, Y. J. Cheng, B. D. Yang, and J. He, “State-insensitive dichromatic optical- dipole trap for rubidium atoms: calculation and the dichromatic laser’s realization,” J. Phys. At. Mol. Opt. Phys. 47(9), 095001 (2014).
[Crossref]

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[Crossref]

He, X.

Herzog, T.

Hohmann, L.

S. Garcia, D. Maxein, L. Hohmann, J. Reichel, and R. Long, “Fiber-pigtailed optical tweezer for single-atom trapping and single-photon generation,” Appl. Phys. Lett. 103(11), 114103 (2013).
[Crossref]

Huang, Y.

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Isenhower, L.

Isoya, J.

Jelezko, F.

Jetter, M.

Jin, G.

J. He, G. Jin, B. Liu, and J. Wang, “Amplification of a nanosecond laser pulse chain via dynamic injection locking of a laser diode,” Opt. Lett. 41(24), 5724–5727 (2016).
[Crossref] [PubMed]

B. Liu, G. Jin, J. He, and J. M. Wang, “Suppression of single-cesium-atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source,” Phys. Rev. A 94(1), 013409 (2016).
[Crossref]

J. He, B. Liu, W. T. Diao, J. Y. Wang, G. Jin, and J. M. Wang, “Efficient loading of a single neutral atom into an optical microscopic tweezer,” Chin. Phys. B 24(4), 043701 (2015).
[Crossref]

Jones, M. P. A.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[Crossref] [PubMed]

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

Katori, H.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref] [PubMed]

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 010095 (2004).
[Crossref]

Kettler, J.

Kim, J. Y.

J. Y. Kim, J. S. Lee, J. H. Han, and D. Cho, “Optical dipole trap without inhomogeneous ac stark broadening,” J. Korean Phys. Soc. 42, 483–488 (2003).

Kimble, H. J.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14(2), 023056 (2012).
[Crossref]

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref] [PubMed]

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90(13), 133602 (2003).
[Crossref] [PubMed]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Kucera, S.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Kurtsiefer, C.

M. Weber, J. Volz, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Analysis of a single-atom dipole trap,” Phys. Rev. A 73(4), 043406 (2006).
[Crossref]

Kuzmich, A.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90(13), 133602 (2003).
[Crossref] [PubMed]

Lacroûte, C.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14(2), 023056 (2012).
[Crossref]

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 010095 (2004).
[Crossref]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 010095 (2004).
[Crossref]

Le Kien, F.

Lee, J. S.

J. Y. Kim, J. S. Lee, J. H. Han, and D. Cho, “Optical dipole trap without inhomogeneous ac stark broadening,” J. Korean Phys. Soc. 42, 483–488 (2003).

Lenhard, A.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Li, C. B.

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Li, G.

Liu, B.

B. Liu, G. Jin, J. He, and J. M. Wang, “Suppression of single-cesium-atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source,” Phys. Rev. A 94(1), 013409 (2016).
[Crossref]

J. He, G. Jin, B. Liu, and J. Wang, “Amplification of a nanosecond laser pulse chain via dynamic injection locking of a laser diode,” Opt. Lett. 41(24), 5724–5727 (2016).
[Crossref] [PubMed]

J. He, B. Liu, W. T. Diao, J. Y. Wang, G. Jin, and J. M. Wang, “Efficient loading of a single neutral atom into an optical microscopic tweezer,” Chin. Phys. B 24(4), 043701 (2015).
[Crossref]

Liu, P. L.

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Liu, Y.

Long, R.

S. Garcia, D. Maxein, L. Hohmann, J. Reichel, and R. Long, “Fiber-pigtailed optical tweezer for single-atom trapping and single-photon generation,” Appl. Phys. Lett. 103(11), 114103 (2013).
[Crossref]

Lounis, B.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005).
[Crossref]

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[Crossref]

Lu, C. Y.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multi-photon entanglement and interferometry,” Rev. Mod. Phys. 84(2), 777–838 (2012).
[Crossref]

Maller, K.

Maxein, D.

S. Garcia, D. Maxein, L. Hohmann, J. Reichel, and R. Long, “Fiber-pigtailed optical tweezer for single-atom trapping and single-photon generation,” Appl. Phys. Lett. 103(11), 114103 (2013).
[Crossref]

McGuinness, L. P.

McKeever, J.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90(13), 133602 (2003).
[Crossref] [PubMed]

Messin, G.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[Crossref] [PubMed]

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

Michler, P.

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Mitroy, J.

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Morinaga, M.

Müller, P.

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Nägerl, H.-C.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90(13), 133602 (2003).
[Crossref] [PubMed]

Nayak, K. P.

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Ohshima, T.

Onoda, S.

Orrit, M.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005).
[Crossref]

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[Crossref]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–133 (2000).
[Crossref]

Pan, J. W.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multi-photon entanglement and interferometry,” Rev. Mod. Phys. 84(2), 777–838 (2012).
[Crossref]

Paul, M.

Pelton, M.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[Crossref] [PubMed]

Phoonthong, P.

P. Phoonthong, P. Douglas, A. Wickenbrock, and F. Renzoni, “Characterization of a state-insensitive dipole trap for cesium atoms,” Phys. Rev. A 82(1), 013406 (2010).
[Crossref]

Portalupi, S. L.

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Reichel, J.

S. Garcia, D. Maxein, L. Hohmann, J. Reichel, and R. Long, “Fiber-pigtailed optical tweezer for single-atom trapping and single-photon generation,” Appl. Phys. Lett. 103(11), 114103 (2013).
[Crossref]

Rengstl, U.

Renzoni, F.

P. Phoonthong, P. Douglas, A. Wickenbrock, and F. Renzoni, “Characterization of a state-insensitive dipole trap for cesium atoms,” Phys. Rev. A 82(1), 013406 (2010).
[Crossref]

Rong, Y.

Saffman, M.

Santori, C.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[Crossref] [PubMed]

Saucke, K.

M. Weber, J. Volz, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Analysis of a single-atom dipole trap,” Phys. Rev. A 73(4), 043406 (2006).
[Crossref]

Schwartz, M.

Shao, H.

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Shih, C. Y.

C. Y. Shih and M. S. Chapman, “Nondestructive light-shift measurements of single atoms in optical dipole traps,” Phys. Rev. A 87(6), 063408 (2013).
[Crossref]

Shinada, T.

Shirasaki, A.

Siyushev, P.

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[Crossref] [PubMed]

Sortais, Y.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

Stamper-Kurn, D. M.

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90(13), 133602 (2003).
[Crossref] [PubMed]

Stern, N. P.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14(2), 023056 (2012).
[Crossref]

Tamarat, P.

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[Crossref]

Tamura, S.

Tang, Y. B.

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Tanii, T.

Teraji, T.

Volz, J.

M. Weber, J. Volz, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Analysis of a single-atom dipole trap,” Phys. Rev. A 73(4), 043406 (2006).
[Crossref]

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 010095 (2004).
[Crossref]

Wang, J.

Wang, J. M.

B. Liu, G. Jin, J. He, and J. M. Wang, “Suppression of single-cesium-atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source,” Phys. Rev. A 94(1), 013409 (2016).
[Crossref]

J. He, B. Liu, W. T. Diao, J. Y. Wang, G. Jin, and J. M. Wang, “Efficient loading of a single neutral atom into an optical microscopic tweezer,” Chin. Phys. B 24(4), 043701 (2015).
[Crossref]

J. M. Wang, S. L. Guo, Y. L. Ge, Y. J. Cheng, B. D. Yang, and J. He, “State-insensitive dichromatic optical- dipole trap for rubidium atoms: calculation and the dichromatic laser’s realization,” J. Phys. At. Mol. Opt. Phys. 47(9), 095001 (2014).
[Crossref]

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[Crossref]

Wang, J. Y.

J. He, B. Liu, W. T. Diao, J. Y. Wang, G. Jin, and J. M. Wang, “Efficient loading of a single neutral atom into an optical microscopic tweezer,” Chin. Phys. B 24(4), 043701 (2015).
[Crossref]

Weber, M.

M. Weber, J. Volz, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Analysis of a single-atom dipole trap,” Phys. Rev. A 73(4), 043406 (2006).
[Crossref]

Weidemuller, M.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–133 (2000).
[Crossref]

Weinfurter, H.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multi-photon entanglement and interferometry,” Rev. Mod. Phys. 84(2), 777–838 (2012).
[Crossref]

M. Weber, J. Volz, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Analysis of a single-atom dipole trap,” Phys. Rev. A 73(4), 043406 (2006).
[Crossref]

Wickenbrock, A.

P. Phoonthong, P. Douglas, A. Wickenbrock, and F. Renzoni, “Characterization of a state-insensitive dipole trap for cesium atoms,” Phys. Rev. A 82(1), 013406 (2010).
[Crossref]

Wu, B.

Wu, E.

Xu, P.

Yamamoto, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[Crossref] [PubMed]

Yang, B. D.

J. M. Wang, S. L. Guo, Y. L. Ge, Y. J. Cheng, B. D. Yang, and J. He, “State-insensitive dichromatic optical- dipole trap for rubidium atoms: calculation and the dichromatic laser’s realization,” J. Phys. At. Mol. Opt. Phys. 47(9), 095001 (2014).
[Crossref]

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[Crossref]

Ye, J.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref] [PubMed]

Zeilinger, A.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multi-photon entanglement and interferometry,” Rev. Mod. Phys. 84(2), 777–838 (2012).
[Crossref]

Zeng, H.

Zhan, M.

Zhang, S.

Zhang, T. C.

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[Crossref]

Zukowski, M.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multi-photon entanglement and interferometry,” Rev. Mod. Phys. 84(2), 777–838 (2012).
[Crossref]

Adv. At. Mol. Opt. Phys. (1)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–133 (2000).
[Crossref]

Appl. Phys. Lett. (1)

S. Garcia, D. Maxein, L. Hohmann, J. Reichel, and R. Long, “Fiber-pigtailed optical tweezer for single-atom trapping and single-photon generation,” Appl. Phys. Lett. 103(11), 114103 (2013).
[Crossref]

Chin. Phys. B (1)

J. He, B. Liu, W. T. Diao, J. Y. Wang, G. Jin, and J. M. Wang, “Efficient loading of a single neutral atom into an optical microscopic tweezer,” Chin. Phys. B 24(4), 043701 (2015).
[Crossref]

J. Korean Phys. Soc. (1)

J. Y. Kim, J. S. Lee, J. H. Han, and D. Cho, “Optical dipole trap without inhomogeneous ac stark broadening,” J. Korean Phys. Soc. 42, 483–488 (2003).

J. Phys. At. Mol. Opt. Phys. (1)

J. M. Wang, S. L. Guo, Y. L. Ge, Y. J. Cheng, B. D. Yang, and J. He, “State-insensitive dichromatic optical- dipole trap for rubidium atoms: calculation and the dichromatic laser’s realization,” J. Phys. At. Mol. Opt. Phys. 47(9), 095001 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. He, B. D. Yang, T. C. Zhang, and J. M. Wang, “Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap,” J. Phys. D Appl. Phys. 44(13), 135102 (2011).
[Crossref]

Nature (1)

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[Crossref] [PubMed]

New J. Phys. (2)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 010095 (2004).
[Crossref]

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys. 14(2), 023056 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (5)

P. Phoonthong, P. Douglas, A. Wickenbrock, and F. Renzoni, “Characterization of a state-insensitive dipole trap for cesium atoms,” Phys. Rev. A 82(1), 013406 (2010).
[Crossref]

C. Y. Shih and M. S. Chapman, “Nondestructive light-shift measurements of single atoms in optical dipole traps,” Phys. Rev. A 87(6), 063408 (2013).
[Crossref]

M. Weber, J. Volz, K. Saucke, C. Kurtsiefer, and H. Weinfurter, “Analysis of a single-atom dipole trap,” Phys. Rev. A 73(4), 043406 (2006).
[Crossref]

B. Liu, G. Jin, J. He, and J. M. Wang, “Suppression of single-cesium-atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source,” Phys. Rev. A 94(1), 013409 (2016).
[Crossref]

A. Lenhard, M. Bock, C. Becher, S. Kucera, J. Brito, P. Eich, P. Müller, and J. Eschner, “Telecom-heralded single-photon absorption by a single atom,” Phys. Rev. A 92(6), 063827 (2015).
[Crossref]

Phys. Rev. Lett. (5)

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[Crossref] [PubMed]

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[Crossref]

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90(13), 133602 (2003).
[Crossref] [PubMed]

A. Derevianko, “Doubly magic conditions in magic-wavelength trapping of ultracold alkali-metal atoms,” Phys. Rev. Lett. 105(3), 033002 (2010).
[Crossref] [PubMed]

P. L. Liu, Y. Huang, W. Bian, H. Shao, H. Guan, Y. B. Tang, C. B. Li, J. Mitroy, and K. L. Gao, “Measurement of magic wavelengths for the 40Ca+ clock transition,” Phys. Rev. Lett. 114(22), 223001 (2015).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005).
[Crossref]

Rev. Mod. Phys. (2)

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multi-photon entanglement and interferometry,” Rev. Mod. Phys. 84(2), 777–838 (2012).
[Crossref]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Science (2)

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[Crossref] [PubMed]

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320(5884), 1734–1738 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup. The trapped single atoms are excited by a probe beam. The emitted photons are collected by an objective and then coupled into SPCM and P7888 card for measurement.
Fig. 2
Fig. 2 Light shift for the 6S1/2 |F = 4, mFñ and 6P3/2 |F = 5, mFñ state in a linearly polarized ODT. The shifts were calculated by taking the multi-level model into account. (a) The light shift as a function of the wavelength of the ODT laser. The ground states are homogeneous and the excited states shifts are state dependent. (b) In a 937 nm ODT, the ratio of U to Ug as a function of Zeeman states. U is the light shift for all the Zeeman states of 6P3/2 (F’ = 3, 4, and 5) excited states and Ug is the light shift of 6S1/2 (F = 4) ground state.
Fig. 3
Fig. 3 Experimental sequence. After 10 ms PGC, the single atom is trapped in an ODT. The atom is probed for 100 μs and cooled for 900 μs. In the probing process, the quantum magnetic field is always on. This sequence is typically repeated 1000 times to improve the signal to noise ratio.
Fig. 4
Fig. 4 Measurement of the magic wavelength. (a) LIF spectra of single trapped atoms. Detected photon counts as a function of the detuning of the probe laser for different trap wavelength. The trap depth is ~3 mK. Solid lines are Lorentzian profile. (b) The differential light shift versus the trap wavelength. The blue date is the experimental results, the black line is the theoretically expected values. The error bars show the fitting errors of the Lorentzian profile.
Fig. 5
Fig. 5 Differential light shift versus the trap depth. The trap wavelength is 937.7 nm. Each data is obtained by measuring the LIF spectra of single trapped atoms. The differential light shift does not depend on the trap depth in a 937.7 nm ODT. The error bars show the fitting errors of the LIF spectra of trapped single atoms.
Fig. 6
Fig. 6 Differential light shift versus the quantization axis magnetic field. When the magnetic field is about 1.5 Gauss, the differential light shift is ~0 MHz. The error bars show the fitting errors of the LIF spectra of trapped single atoms.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ F, m F =3π c 2 I(r) J F m A J J (2 J +1)(2F+1)(2 F +1) ω J J 2 ( ω J J 2 ω 2 ) ( F 1 F m F ε m F ) 2 { J J 1 F F I } 2
N(t)dt= Γ 2 s/(1+4 ( δ δ 0 Γ ) 2 +s)×dt×η
Δ= Γ 2 I 8 I sat ( 1ε g F m F 3 Δ 1 + 2+ε g F m F 3 Δ 2 )

Metrics