Abstract

We propose efficient schemes for converting three-photon, four-photon and five-photon GHZ state to a W state or Dicke state, respectively with the nitrogen-vacancy (N-V) centers via single-photon input-output process and cross-Kerr nonlinearities. The total success probability can be improved by iterating the conversion process for the case of three-photon and five-photon while it does not require iteration for converting four-photon GHZ state to a W state. The analysis of feasibility shows that our scheme is feasible for current experimental technology.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effective W-state fusion strategies in nitrogen-vacancy centers via coupling to microtoroidal resonators

Xue Han, Qi Guo, Ai-Dong Zhu, Shou Zhang, and Hong-Fu Wang
Opt. Express 25(15) 17701-17712 (2017)

Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator

Cong Cao, Tie-Jun Wang, Ru Zhang, and Chuan Wang
J. Opt. Soc. Am. B 32(7) 1524-1531 (2015)

Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators

Chuan Wang, Yong Zhang, Guang-Sheng Jin, and Ru Zhang
J. Opt. Soc. Am. B 29(12) 3349-3354 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
  2. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
  3. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 022338 (2005).
  4. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–667 (1991).
  5. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 557–559 (1992).
  6. X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).
  7. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
  8. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
  9. F. L. Yan and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005).
  10. B. Gu, L. L. Mu, L. G. Ding, C. Y. Zhang, and C. Q. Li, “Fault tolerant three-party quantum secret sharing against collective noise,” Opt. Commun. 283, 3099–3103 (2010).
  11. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
  12. X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A 74, 054302 (2006).
  13. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
  14. Z. X. Man, Z. J. Zhang, and Y. Li, “Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations,” Chin. Phys. Lett. 22, 18–21 (2005).
  15. A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A 73, 022338 (2006).
  16. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” arXiv:1609.09184 (2016).
  17. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L Long, “Experimental quantum secure direct communication with single photons,” Sci. Appl. 5, e16144 (2016).
  18. J. Pearson, G. R. Feng, C. Zheng, and G. L. Long, “Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system,” Sci. China Phys 59, 120312 (2016).
  19. T. C. Li and Z. Q. Yin, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical Oscillator,” Sci. Bulletin 61, 163–171 (2016).
  20. W. H. Xu, X. Zhao, and G. L. Long, “Efficient generation of multi-photon W states by joint-measurement,” Nat. Sci. 18, 119–122 (2008).
  21. X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New. J. Phys. 12, 023040 (2010).
  22. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantumdot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
  23. X. Q. Shao, J. H. Wu, and X. X Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms,” Phys. Rev. A 95, 022317 (2017).
  24. R. Heilmanna, M. Gräfea, S. Noltea, and A. Szameita, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bulletin 60, 96–100 (2015).
  25. X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
  26. Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China Phys. 58, 1–11 (2015).
  27. X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).
  28. Z. Wang, C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, “Experimental verification of genuine multipartite entanglement without shared reference frames,” Sci. Bulletin 61, 714–719 (2016).
  29. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
  30. A. Acín, D. Bruß, M. Lewenstein, and A. Sanpera, “Classification of mixed three-qubit states,” Phys. Rev. Lett. 87, 040401 (2001).
  31. N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett. 79, 2153 (1997).
  32. M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).
  33. A. S. Zheng, J. H. Li, R. Yu, X. Y. Lü, and Y. Wu, “Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process,” Opt. Express 20, 16902–16912 (2012).
  34. B. C. Ren and G. L. Long, “General hyperentanglement concentration for photon systems assisted by quantumdot spins inside optical microcavities,” Opt. Express 22, 6547–6561 (2014).
  35. N. K. Yu, C. Guo, and R. Y. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via Stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401 (2014).
  36. X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009).
  37. J. Wang, Q. Zhang, and C. J. Tang, “Quantum secure communication scheme with W state,” Commun. Theor. Phys. 48, 637 (2007).
  38. W. Liu, Y. B. Wang, and Z. T. Jiang, “An efficient protocol for the quantum private comparison of equality with W state,” Opt. Commun. 284, 3160 (2011).
  39. P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94, 240501 (2005).
  40. T. Tashima, T. Wakatsuki, S. K. özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett. 102, 130502 (2009).
  41. H. F. Wang, S. Zhang, A. D. Zhu, X. X. Yi, and K. H. Yeon, “Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors,” Opt. Express 19, 25433–25440 (2011).
  42. J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, “Direct conversion of a four-atom W state to a Greenberger-Horne-Zeilinger state via a dissipative process,” Phys. Rev. A 88, 024305 (2013).
  43. G. Y. Wang, D. Y. Wang, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, “Direct conversion of a three-atom W state to a Greenberger-Horne-Zeilinger state in spatially separated cavities,” J. Phys. B: Atom. Molec. Opt. Phys. 49, 065501 (2016).
  44. W. X. Cui, S. Hu, H. F. Wang, A. D. Zhu, and S. Zhang, “Deterministic conversion of a four-photon GHZ state to a W state via homodyne measurement,” Opt. Express 24, 15319–15327 (2016).
  45. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
  46. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).
  47. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
  48. R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express 18, 18968–18974 (2010).
  49. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
  50. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).
  51. C. Santori, P. E. Barclay, K. M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125313 (2009).
  52. C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express 14, 7986–7994 (2006).
  53. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
  54. Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
  55. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
  56. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
  57. J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).
  58. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
  59. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
  60. W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).
  61. P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogenvacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).
  62. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
  63. P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. A. Musser, “Raman-excited spin coherences in nitrogen-vacancy color centers in diamond,” Opt. Lett. 26, 361 (2001).
  64. M. S. Shahriar, P. R. Hemmer, S. Lloyd, P. S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).

2017 (1)

X. Q. Shao, J. H. Wu, and X. X Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms,” Phys. Rev. A 95, 022317 (2017).

2016 (7)

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).

Z. Wang, C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, “Experimental verification of genuine multipartite entanglement without shared reference frames,” Sci. Bulletin 61, 714–719 (2016).

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L Long, “Experimental quantum secure direct communication with single photons,” Sci. Appl. 5, e16144 (2016).

J. Pearson, G. R. Feng, C. Zheng, and G. L. Long, “Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system,” Sci. China Phys 59, 120312 (2016).

T. C. Li and Z. Q. Yin, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical Oscillator,” Sci. Bulletin 61, 163–171 (2016).

G. Y. Wang, D. Y. Wang, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, “Direct conversion of a three-atom W state to a Greenberger-Horne-Zeilinger state in spatially separated cavities,” J. Phys. B: Atom. Molec. Opt. Phys. 49, 065501 (2016).

W. X. Cui, S. Hu, H. F. Wang, A. D. Zhu, and S. Zhang, “Deterministic conversion of a four-photon GHZ state to a W state via homodyne measurement,” Opt. Express 24, 15319–15327 (2016).

2015 (2)

R. Heilmanna, M. Gräfea, S. Noltea, and A. Szameita, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bulletin 60, 96–100 (2015).

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China Phys. 58, 1–11 (2015).

2014 (2)

B. C. Ren and G. L. Long, “General hyperentanglement concentration for photon systems assisted by quantumdot spins inside optical microcavities,” Opt. Express 22, 6547–6561 (2014).

N. K. Yu, C. Guo, and R. Y. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via Stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401 (2014).

2013 (1)

J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, “Direct conversion of a four-atom W state to a Greenberger-Horne-Zeilinger state via a dissipative process,” Phys. Rev. A 88, 024305 (2013).

2012 (2)

A. S. Zheng, J. H. Li, R. Yu, X. Y. Lü, and Y. Wu, “Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process,” Opt. Express 20, 16902–16912 (2012).

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantumdot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).

2011 (3)

W. Liu, Y. B. Wang, and Z. T. Jiang, “An efficient protocol for the quantum private comparison of equality with W state,” Opt. Commun. 284, 3160 (2011).

H. F. Wang, S. Zhang, A. D. Zhu, X. X. Yi, and K. H. Yeon, “Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors,” Opt. Express 19, 25433–25440 (2011).

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).

2010 (5)

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express 18, 18968–18974 (2010).

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New. J. Phys. 12, 023040 (2010).

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).

B. Gu, L. L. Mu, L. G. Ding, C. Y. Zhang, and C. Q. Li, “Fault tolerant three-party quantum secret sharing against collective noise,” Opt. Commun. 283, 3099–3103 (2010).

2009 (7)

X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009).

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).

C. Santori, P. E. Barclay, K. M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125313 (2009).

T. Tashima, T. Wakatsuki, S. K. özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett. 102, 130502 (2009).

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).

J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogenvacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).

2008 (4)

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).

W. H. Xu, X. Zhao, and G. L. Long, “Efficient generation of multi-photon W states by joint-measurement,” Nat. Sci. 18, 119–122 (2008).

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).

2007 (1)

J. Wang, Q. Zhang, and C. J. Tang, “Quantum secure communication scheme with W state,” Commun. Theor. Phys. 48, 637 (2007).

2006 (5)

A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A 73, 022338 (2006).

X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A 74, 054302 (2006).

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express 14, 7986–7994 (2006).

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

2005 (8)

P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94, 240501 (2005).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

Z. X. Man, Z. J. Zhang, and Y. Li, “Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations,” Chin. Phys. Lett. 22, 18–21 (2005).

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 022338 (2005).

F. L. Yan and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005).

2004 (3)

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).

2002 (2)

M. S. Shahriar, P. R. Hemmer, S. Lloyd, P. S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).

2001 (2)

A. Acín, D. Bruß, M. Lewenstein, and A. Sanpera, “Classification of mixed three-qubit states,” Phys. Rev. Lett. 87, 040401 (2001).

P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. A. Musser, “Raman-excited spin coherences in nitrogen-vacancy color centers in diamond,” Opt. Lett. 26, 361 (2001).

2000 (1)

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

1999 (2)

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).

1998 (1)

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).

1997 (1)

N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett. 79, 2153 (1997).

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

1992 (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 557–559 (1992).

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–667 (1991).

Acín, A.

A. Acín, D. Bruß, M. Lewenstein, and A. Sanpera, “Classification of mixed three-qubit states,” Phys. Rev. Lett. 87, 040401 (2001).

An, J. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).

Aoki, T.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).

Barbour, R. J.

Barclay, P. E.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogenvacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).

C. Santori, P. E. Barclay, K. M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125313 (2009).

Barrett, S. D.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

Beausoleil, R. G.

C. Santori, P. E. Barclay, K. M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125313 (2009).

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogenvacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express 14, 7986–7994 (2006).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 557–559 (1992).

Berthiaume, A.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).

Bhatia, P. S.

M. S. Shahriar, P. R. Hemmer, S. Lloyd, P. S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).

Bourennane, M.

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 557–559 (1992).

Bruß, D.

A. Acín, D. Bruß, M. Lewenstein, and A. Sanpera, “Classification of mixed three-qubit states,” Phys. Rev. Lett. 87, 040401 (2001).

Buzek, V.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).

Chen, L.

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New. J. Phys. 12, 023040 (2010).

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).

Chen, Q.

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).

Childress, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

Cirac, J. I.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

Cook, A. K.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).

Craig, A. E.

M. S. Shahriar, P. R. Hemmer, S. Lloyd, P. S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

Cui, W. X.

G. Y. Wang, D. Y. Wang, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, “Direct conversion of a three-atom W state to a Greenberger-Horne-Zeilinger state in spatially separated cavities,” J. Phys. B: Atom. Molec. Opt. Phys. 49, 065501 (2016).

W. X. Cui, S. Hu, H. F. Wang, A. D. Zhu, and S. Zhang, “Deterministic conversion of a four-photon GHZ state to a W state via homodyne measurement,” Opt. Express 24, 15319–15327 (2016).

Dayan, B.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).

Deng, F. G.

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).

X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A 74, 054302 (2006).

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 022338 (2005).

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).

Ding, D. S.

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” arXiv:1609.09184 (2016).

Ding, L. G.

B. Gu, L. L. Mu, L. G. Ding, C. Y. Zhang, and C. Q. Li, “Fault tolerant three-party quantum secret sharing against collective noise,” Opt. Commun. 283, 3099–3103 (2010).

Dinyari, K. N.

R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express 18, 18968–18974 (2010).

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).

Domhan, M.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).

Draganski, M.

Du, J. F.

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).

Duan, R. Y.

N. K. Yu, C. Guo, and R. Y. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via Stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401 (2014).

Dür, W.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–667 (1991).

Fan, Q. B.

A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A 73, 022338 (2006).

Fattal, D.

Feng, G. R.

J. Pearson, G. R. Feng, C. Zheng, and G. L. Long, “Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system,” Sci. China Phys 59, 120312 (2016).

Feng, M.

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).

Fiorentino, M.

Fu, K. M. C.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogenvacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).

C. Santori, P. E. Barclay, K. M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125313 (2009).

Gaebel, T.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).

Gao, T.

F. L. Yan and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005).

Gisin, N.

N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett. 79, 2153 (1997).

Gräfea, M.

R. Heilmanna, M. Gräfea, S. Noltea, and A. Szameita, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bulletin 60, 96–100 (2015).

Greentree, A. D.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express 14, 7986–7994 (2006).

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).

Gu, B.

B. Gu, L. L. Mu, L. G. Ding, C. Y. Zhang, and C. Q. Li, “Fault tolerant three-party quantum secret sharing against collective noise,” Opt. Commun. 283, 3099–3103 (2010).

Guo, C.

N. K. Yu, C. Guo, and R. Y. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via Stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401 (2014).

Guo, G. C.

Z. Wang, C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, “Experimental verification of genuine multipartite entanglement without shared reference frames,” Sci. Bulletin 61, 714–719 (2016).

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” arXiv:1609.09184 (2016).

Guo, R.

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China Phys. 58, 1–11 (2015).

Heilmanna, R.

R. Heilmanna, M. Gräfea, S. Noltea, and A. Szameita, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bulletin 60, 96–100 (2015).

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

M. S. Shahriar, P. R. Hemmer, S. Lloyd, P. S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).

P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. A. Musser, “Raman-excited spin coherences in nitrogen-vacancy color centers in diamond,” Opt. Lett. 26, 361 (2001).

Hillery, M.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).

Hu, C. Y.

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).

Hu, J. Y.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L Long, “Experimental quantum secure direct communication with single photons,” Sci. Appl. 5, e16144 (2016).

Hu, S.

Huang, Y. F.

Z. Wang, C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, “Experimental verification of genuine multipartite entanglement without shared reference frames,” Sci. Bulletin 61, 714–719 (2016).

Imoto, N.

T. Tashima, T. Wakatsuki, S. K. özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett. 102, 130502 (2009).

Jamieson, D. N.

Jelezko, F.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).

Jia, S. T.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L Long, “Experimental quantum secure direct communication with single photons,” Sci. Appl. 5, e16144 (2016).

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

Jiang, Z. T.

W. Liu, Y. B. Wang, and Z. T. Jiang, “An efficient protocol for the quantum private comparison of equality with W state,” Opt. Commun. 284, 3160 (2011).

Jing, M. Y.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L Long, “Experimental quantum secure direct communication with single photons,” Sci. Appl. 5, e16144 (2016).

Jonathan, D.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

Karlsson, A.

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).

Kimble, H. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).

Koashi, M.

T. Tashima, T. Wakatsuki, S. K. özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett. 102, 130502 (2009).

Kok, P.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

Larsson, M.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).

Lewenstein, M.

A. Acín, D. Bruß, M. Lewenstein, and A. Sanpera, “Classification of mixed three-qubit states,” Phys. Rev. Lett. 87, 040401 (2001).

Li, C. F.

Z. Wang, C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, “Experimental verification of genuine multipartite entanglement without shared reference frames,” Sci. Bulletin 61, 714–719 (2016).

Li, C. Q.

B. Gu, L. L. Mu, L. G. Ding, C. Y. Zhang, and C. Q. Li, “Fault tolerant three-party quantum secret sharing against collective noise,” Opt. Commun. 283, 3099–3103 (2010).

Li, C. Y.

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 022338 (2005).

Li, J. H.

Li, T. C.

T. C. Li and Z. Q. Yin, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical Oscillator,” Sci. Bulletin 61, 163–171 (2016).

Li, X. H.

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).

X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A 74, 054302 (2006).

Li, Y.

Z. X. Man, Z. J. Zhang, and Y. Li, “Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations,” Chin. Phys. Lett. 22, 18–21 (2005).

Li, Y. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 022338 (2005).

Liu, B. H.

Z. Wang, C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, “Experimental verification of genuine multipartite entanglement without shared reference frames,” Sci. Bulletin 61, 714–719 (2016).

Liu, H. D.

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).

Liu, J. B.

Liu, W.

W. Liu, Y. B. Wang, and Z. T. Jiang, “An efficient protocol for the quantum private comparison of equality with W state,” Opt. Commun. 284, 3160 (2011).

Liu, X. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).

Lloyd, S.

M. S. Shahriar, P. R. Hemmer, S. Lloyd, P. S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).

Long, G. L

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L Long, “Experimental quantum secure direct communication with single photons,” Sci. Appl. 5, e16144 (2016).

Long, G. L.

J. Pearson, G. R. Feng, C. Zheng, and G. L. Long, “Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system,” Sci. China Phys 59, 120312 (2016).

B. C. Ren and G. L. Long, “General hyperentanglement concentration for photon systems assisted by quantumdot spins inside optical microcavities,” Opt. Express 22, 6547–6561 (2014).

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantumdot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).

W. H. Xu, X. Zhao, and G. L. Long, “Efficient generation of multi-photon W states by joint-measurement,” Nat. Sci. 18, 119–122 (2008).

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).

Lu, Y.

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantumdot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).

Lü, X. Y.

Lukin, M. D.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

Man, Z. X.

Z. X. Man, Z. J. Zhang, and Y. Li, “Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations,” Chin. Phys. Lett. 22, 18–21 (2005).

Massar, S.

N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett. 79, 2153 (1997).

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

Meijer, J.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 557–559 (1992).

Mu, L. L.

B. Gu, L. L. Mu, L. G. Ding, C. Y. Zhang, and C. Q. Li, “Fault tolerant three-party quantum secret sharing against collective noise,” Opt. Commun. 283, 3099–3103 (2010).

Mu, Q. X.

J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, “Direct conversion of a four-atom W state to a Greenberger-Horne-Zeilinger state via a dissipative process,” Phys. Rev. A 88, 024305 (2013).

Munro, W. J.

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).

Murao, M.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).

Musser, J. A.

Nemoto, K.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).

Neumann, P.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

Noltea, S.

R. Heilmanna, M. Gräfea, S. Noltea, and A. Szameita, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bulletin 60, 96–100 (2015).

Oh, C. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).

Olivero, P.

Ostby, E. P.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).

özdemir, S. K.

T. Tashima, T. Wakatsuki, S. K. özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett. 102, 130502 (2009).

Pan, J.

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China Phys. 58, 1–11 (2015).

Pan, J. W.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).

Park, Y. S.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).

Parkins, A. S.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).

Pearson, J.

J. Pearson, G. R. Feng, C. Zheng, and G. L. Long, “Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system,” Sci. China Phys 59, 120312 (2016).

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

Plenio, M. B.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).

Popa, I.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).

Prawer, S.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express 14, 7986–7994 (2006).

Qin, G. Q.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L Long, “Experimental quantum secure direct communication with single photons,” Sci. Appl. 5, e16144 (2016).

Rabeau, J. R.

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express 14, 7986–7994 (2006).

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

Rarity, J. G.

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).

Reichart, P.

Ren, B. C.

Resch, K. J.

P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94, 240501 (2005).

Rubanov, S.

Sanpera, A.

A. Acín, D. Bruß, M. Lewenstein, and A. Sanpera, “Classification of mixed three-qubit states,” Phys. Rev. Lett. 87, 040401 (2001).

Santori, C.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogenvacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).

C. Santori, P. E. Barclay, K. M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125313 (2009).

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express 14, 7986–7994 (2006).

Shahriar, M. S.

M. S. Shahriar, P. R. Hemmer, S. Lloyd, P. S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).

P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. A. Musser, “Raman-excited spin coherences in nitrogen-vacancy color centers in diamond,” Opt. Lett. 26, 361 (2001).

Shao, X. Q.

X. Q. Shao, J. H. Wu, and X. X Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms,” Phys. Rev. A 95, 022317 (2017).

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New. J. Phys. 12, 023040 (2010).

Sheng, Y. B.

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China Phys. 58, 1–11 (2015).

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” arXiv:1609.09184 (2016).

Shi, B. S.

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” arXiv:1609.09184 (2016).

Song, H. S.

J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, “Direct conversion of a four-atom W state to a Greenberger-Horne-Zeilinger state via a dissipative process,” Phys. Rev. A 88, 024305 (2013).

J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).

Song, J.

J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, “Direct conversion of a four-atom W state to a Greenberger-Horne-Zeilinger state via a dissipative process,” Phys. Rev. A 88, 024305 (2013).

J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).

Song, P. J.

Sørensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

Spillane, S. M.

Spiller, T. P.

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

Stavrias, N.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

Sun, X. D.

J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, “Direct conversion of a four-atom W state to a Greenberger-Horne-Zeilinger state via a dissipative process,” Phys. Rev. A 88, 024305 (2013).

Szameita, A.

R. Heilmanna, M. Gräfea, S. Noltea, and A. Szameita, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bulletin 60, 96–100 (2015).

Tang, C. J.

J. Wang, Q. Zhang, and C. J. Tang, “Quantum secure communication scheme with W state,” Commun. Theor. Phys. 48, 637 (2007).

Tashima, T.

T. Tashima, T. Wakatsuki, S. K. özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett. 102, 130502 (2009).

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

Turukhin, A. V.

Twamley, J.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

Vahala, K. I.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).

Vedral, V.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).

Vidal, G.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

Wakatsuki, T.

T. Tashima, T. Wakatsuki, S. K. özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett. 102, 130502 (2009).

Walther, P.

P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94, 240501 (2005).

Wang, C.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

Wang, D. Y.

G. Y. Wang, D. Y. Wang, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, “Direct conversion of a three-atom W state to a Greenberger-Horne-Zeilinger state in spatially separated cavities,” J. Phys. B: Atom. Molec. Opt. Phys. 49, 065501 (2016).

Wang, G. Y.

G. Y. Wang, D. Y. Wang, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, “Direct conversion of a three-atom W state to a Greenberger-Horne-Zeilinger state in spatially separated cavities,” J. Phys. B: Atom. Molec. Opt. Phys. 49, 065501 (2016).

Wang, H.

R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express 18, 18968–18974 (2010).

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).

Wang, H. F.

W. X. Cui, S. Hu, H. F. Wang, A. D. Zhu, and S. Zhang, “Deterministic conversion of a four-photon GHZ state to a W state via homodyne measurement,” Opt. Express 24, 15319–15327 (2016).

G. Y. Wang, D. Y. Wang, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, “Direct conversion of a three-atom W state to a Greenberger-Horne-Zeilinger state in spatially separated cavities,” J. Phys. B: Atom. Molec. Opt. Phys. 49, 065501 (2016).

H. F. Wang, S. Zhang, A. D. Zhu, X. X. Yi, and K. H. Yeon, “Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors,” Opt. Express 19, 25433–25440 (2011).

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New. J. Phys. 12, 023040 (2010).

Wang, J.

J. Wang, Q. Zhang, and C. J. Tang, “Quantum secure communication scheme with W state,” Commun. Theor. Phys. 48, 637 (2007).

Wang, L.

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China Phys. 58, 1–11 (2015).

Wang, T. J.

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantumdot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).

Wang, Y.

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 022338 (2005).

Wang, Y. B.

W. Liu, Y. B. Wang, and Z. T. Jiang, “An efficient protocol for the quantum private comparison of equality with W state,” Opt. Commun. 284, 3160 (2011).

Wang, Z.

Z. Wang, C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, “Experimental verification of genuine multipartite entanglement without shared reference frames,” Sci. Bulletin 61, 714–719 (2016).

Wang, Z. H.

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).

Wittmann, C.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

Wrachtrup, J.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).

Wu, J. H.

X. Q. Shao, J. H. Wu, and X. X Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms,” Phys. Rev. A 95, 022317 (2017).

Wu, Y.

Xia, Y.

J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, “Direct conversion of a four-atom W state to a Greenberger-Horne-Zeilinger state via a dissipative process,” Phys. Rev. A 88, 024305 (2013).

J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).

A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A 73, 022338 (2006).

Xiao, L.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).

Xiao, L. T.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L Long, “Experimental quantum secure direct communication with single photons,” Sci. Appl. 5, e16144 (2016).

Xu, W. H.

W. H. Xu, X. Zhao, and G. L. Long, “Efficient generation of multi-photon W states by joint-measurement,” Nat. Sci. 18, 119–122 (2008).

Yamamoto, T.

T. Tashima, T. Wakatsuki, S. K. özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett. 102, 130502 (2009).

Yan, F. L.

F. L. Yan and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005).

Yang, W. L.

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).

Yang, X. X.

Yeon, K. H.

H. F. Wang, S. Zhang, A. D. Zhu, X. X. Yi, and K. H. Yeon, “Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors,” Opt. Express 19, 25433–25440 (2011).

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New. J. Phys. 12, 023040 (2010).

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).

Yi, X. X

X. Q. Shao, J. H. Wu, and X. X Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms,” Phys. Rev. A 95, 022317 (2017).

Yi, X. X.

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).

H. F. Wang, S. Zhang, A. D. Zhu, X. X. Yi, and K. H. Yeon, “Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors,” Opt. Express 19, 25433–25440 (2011).

Yin, Z. Q.

T. C. Li and Z. Q. Yin, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical Oscillator,” Sci. Bulletin 61, 163–171 (2016).

Yu, B.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L Long, “Experimental quantum secure direct communication with single photons,” Sci. Appl. 5, e16144 (2016).

Yu, N. K.

N. K. Yu, C. Guo, and R. Y. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via Stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401 (2014).

Yu, R.

Zeilinger, A.

P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94, 240501 (2005).

Zhang, C.

Z. Wang, C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, “Experimental verification of genuine multipartite entanglement without shared reference frames,” Sci. Bulletin 61, 714–719 (2016).

Zhang, C. Y.

B. Gu, L. L. Mu, L. G. Ding, C. Y. Zhang, and C. Q. Li, “Fault tolerant three-party quantum secret sharing against collective noise,” Opt. Commun. 283, 3099–3103 (2010).

Zhang, L. L.

J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, “Direct conversion of a four-atom W state to a Greenberger-Horne-Zeilinger state via a dissipative process,” Phys. Rev. A 88, 024305 (2013).

Zhang, Q.

J. Wang, Q. Zhang, and C. J. Tang, “Quantum secure communication scheme with W state,” Commun. Theor. Phys. 48, 637 (2007).

Zhang, S.

W. X. Cui, S. Hu, H. F. Wang, A. D. Zhu, and S. Zhang, “Deterministic conversion of a four-photon GHZ state to a W state via homodyne measurement,” Opt. Express 24, 15319–15327 (2016).

G. Y. Wang, D. Y. Wang, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, “Direct conversion of a three-atom W state to a Greenberger-Horne-Zeilinger state in spatially separated cavities,” J. Phys. B: Atom. Molec. Opt. Phys. 49, 065501 (2016).

H. F. Wang, S. Zhang, A. D. Zhu, X. X. Yi, and K. H. Yeon, “Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors,” Opt. Express 19, 25433–25440 (2011).

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New. J. Phys. 12, 023040 (2010).

A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A 73, 022338 (2006).

Zhang, W.

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” arXiv:1609.09184 (2016).

Zhang, Z. J.

Z. X. Man, Z. J. Zhang, and Y. Li, “Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations,” Chin. Phys. Lett. 22, 18–21 (2005).

Zhao, X.

W. H. Xu, X. Zhao, and G. L. Long, “Efficient generation of multi-photon W states by joint-measurement,” Nat. Sci. 18, 119–122 (2008).

Zhao, Y. F.

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New. J. Phys. 12, 023040 (2010).

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).

Zheng, A. S.

Zheng, C.

J. Pearson, G. R. Feng, C. Zheng, and G. L. Long, “Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system,” Sci. China Phys 59, 120312 (2016).

Zhou, H. Y.

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).

X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A 74, 054302 (2006).

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 022338 (2005).

Zhou, L.

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China Phys. 58, 1–11 (2015).

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” arXiv:1609.09184 (2016).

Zhu, A. D.

G. Y. Wang, D. Y. Wang, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, “Direct conversion of a three-atom W state to a Greenberger-Horne-Zeilinger state in spatially separated cavities,” J. Phys. B: Atom. Molec. Opt. Phys. 49, 065501 (2016).

W. X. Cui, S. Hu, H. F. Wang, A. D. Zhu, and S. Zhang, “Deterministic conversion of a four-photon GHZ state to a W state via homodyne measurement,” Opt. Express 24, 15319–15327 (2016).

H. F. Wang, S. Zhang, A. D. Zhu, X. X. Yi, and K. H. Yeon, “Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors,” Opt. Express 19, 25433–25440 (2011).

A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A 73, 022338 (2006).

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

Appl. Phys. Lett. (1)

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogenvacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009).

Chin. Phys. Lett. (1)

Z. X. Man, Z. J. Zhang, and Y. Li, “Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations,” Chin. Phys. Lett. 22, 18–21 (2005).

Commun. Theor. Phys. (1)

J. Wang, Q. Zhang, and C. J. Tang, “Quantum secure communication scheme with W state,” Commun. Theor. Phys. 48, 637 (2007).

Europhys. Lett. (2)

J. Song, Y. Xia, and H. S. Song, “Quantum gate operations using atomic qubits through cavity input-output process,” Europhys. Lett. 87, 50005 (2009).

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).

J. Phys. B: Atom. Molec. Opt. Phys. (1)

G. Y. Wang, D. Y. Wang, W. X. Cui, H. F. Wang, A. D. Zhu, and S. Zhang, “Direct conversion of a three-atom W state to a Greenberger-Horne-Zeilinger state in spatially separated cavities,” J. Phys. B: Atom. Molec. Opt. Phys. 49, 065501 (2016).

Nano Lett. (2)

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006).

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).

Nat. Phys. (1)

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006).

Nat. Sci. (1)

W. H. Xu, X. Zhao, and G. L. Long, “Efficient generation of multi-photon W states by joint-measurement,” Nat. Sci. 18, 119–122 (2008).

Nature (1)

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).

New. J. Phys. (1)

X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New. J. Phys. 12, 023040 (2010).

Opt. Commun. (2)

B. Gu, L. L. Mu, L. G. Ding, C. Y. Zhang, and C. Q. Li, “Fault tolerant three-party quantum secret sharing against collective noise,” Opt. Commun. 283, 3099–3103 (2010).

W. Liu, Y. B. Wang, and Z. T. Jiang, “An efficient protocol for the quantum private comparison of equality with W state,” Opt. Commun. 284, 3160 (2011).

Opt. Express (7)

W. X. Cui, S. Hu, H. F. Wang, A. D. Zhu, and S. Zhang, “Deterministic conversion of a four-photon GHZ state to a W state via homodyne measurement,” Opt. Express 24, 15319–15327 (2016).

H. F. Wang, S. Zhang, A. D. Zhu, X. X. Yi, and K. H. Yeon, “Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors,” Opt. Express 19, 25433–25440 (2011).

R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express 18, 18968–18974 (2010).

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express 14, 7986–7994 (2006).

A. S. Zheng, J. H. Li, R. Yu, X. Y. Lü, and Y. Wu, “Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process,” Opt. Express 20, 16902–16912 (2012).

B. C. Ren and G. L. Long, “General hyperentanglement concentration for photon systems assisted by quantumdot spins inside optical microcavities,” Opt. Express 22, 6547–6561 (2014).

X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009).

Opt. Lett. (1)

Phys. Rev. A (22)

M. S. Shahriar, P. R. Hemmer, S. Lloyd, P. S. Bhatia, and A. E. Craig, “Solid-state quantum computing using spectral holes,” Phys. Rev. A 66, 032301 (2002).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).

W. J. Munro, K. Nemoto, R. G. Beausoleil, and T. P. Spiller, “High-efficiency quantum-nondemolition single-photon-number-resolving detector,” Phys. Rev. A 71, 033819 (2005).

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).

J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, “Direct conversion of a four-atom W state to a Greenberger-Horne-Zeilinger state via a dissipative process,” Phys. Rev. A 88, 024305 (2013).

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156 (1999).

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantumdot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).

X. Q. Shao, J. H. Wu, and X. X Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms,” Phys. Rev. A 95, 022317 (2017).

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).

X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A 74, 054302 (2006).

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).

A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A 73, 022338 (2006).

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 022338 (2005).

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008).

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).

F. L. Yan and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005).

Phys. Rev. B (2)

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).

C. Santori, P. E. Barclay, K. M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125313 (2009).

Phys. Rev. Lett. (10)

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).

P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94, 240501 (2005).

T. Tashima, T. Wakatsuki, S. K. özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state,” Phys. Rev. Lett. 102, 130502 (2009).

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–667 (1991).

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 557–559 (1992).

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).

A. Acín, D. Bruß, M. Lewenstein, and A. Sanpera, “Classification of mixed three-qubit states,” Phys. Rev. Lett. 87, 040401 (2001).

N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett. 79, 2153 (1997).

N. K. Yu, C. Guo, and R. Y. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via Stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401 (2014).

Sci. Appl. (1)

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L Long, “Experimental quantum secure direct communication with single photons,” Sci. Appl. 5, e16144 (2016).

Sci. Bulletin (3)

Z. Wang, C. Zhang, Y. F. Huang, B. H. Liu, C. F. Li, and G. C. Guo, “Experimental verification of genuine multipartite entanglement without shared reference frames,” Sci. Bulletin 61, 714–719 (2016).

T. C. Li and Z. Q. Yin, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical Oscillator,” Sci. Bulletin 61, 163–171 (2016).

R. Heilmanna, M. Gräfea, S. Noltea, and A. Szameita, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bulletin 60, 96–100 (2015).

Sci. China Phys (1)

J. Pearson, G. R. Feng, C. Zheng, and G. L. Long, “Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system,” Sci. China Phys 59, 120312 (2016).

Sci. China Phys. (1)

Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, “Efficient N-particle W state concentration with different parity check gates,” Sci. China Phys. 58, 1–11 (2015).

Science (1)

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008).

Other (1)

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” arXiv:1609.09184 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diagrammatic illustration of basic model. (a) An N-V center is confined to a MTR and a single photon pulse is introduced to interact with the N-V center. (b) The electron energy level configuration of the N-V center and relevant transition coupling with corresponding polarization photon.
Fig. 2
Fig. 2 Schematic of deterministic photonic CNOT gate with an N-V center confined to a MTR. QWP is a quarter-wave plate which performs the transformations | R 1 2 ( | R + | L ), | L 1 2 ( | R | L ), and SW is optical switch.
Fig. 3
Fig. 3 Schematic setup for converting a three-photon GHZ state to a three-photon W state. Here HWP denotes a half-wave plate which performs the transformations |R〉 → |L〉 and |L〉 → |R〉. QWP denotes a quarter-wave plate which performs the transformations | R 1 2 ( | R + | L ) and | L 1 2 ( | R | L ). c-PBS denotes a polarization beam splitter in the circular basis that transmits R photons and reflects L photons. The action of the cross-Kerr nonlinearity puts a phase shift θ on the probe beam only if a photon was present in that mode.
Fig. 4
Fig. 4 Schematic setup for converting a four-photon GHZ state to a four-photon W state.
Fig. 5
Fig. 5 Schematic setup for converting a five-photon GHZ state to a five-photon W state and | D 5 ( 2 ) state.
Fig. 6
Fig. 6 (a) The fidelity of the CNOT gate versus the g/κ and g/γ corresponding to the measurement result of the N-V center is |+〉. (b) The fidelity of the CNOT gate versus the g/κ and g/γ corresponding to the N-V center is |−〉. (c) Schematic phase space illustration of the coherent state |αeinθ〉. (d) Gaussian probability distribution for the result of the X quadrature homodyne measurement. The blue solid curve, yellow dashed curve and the green dashed curve correspond to ϕ(x, α cos θ), ϕ(x, α cos 3θ) and ϕ(x, α cos 5θ), respectively. xd is the distance between two peaks.

Tables (1)

Tables Icon

Table 1 The measurement results and corresponding single-qubit operations on photons 1 and 2 in the case of the CNOT gate.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

r ( ω p ) = [ i ( ω c ω p ) κ 2 ] [ i ( ω 0 ω p ) + γ 2 ] + g 2 [ i ( ω c ω p ) + κ 2 ] [ i ( ω 0 ω p ) + γ 2 ] + g 2
r 0 ( ω p ) = i ( ω c ω p ) κ 2 i ( ω c ω p ) + κ 2
r ( ω p ) 1 , r 0 ( ω p ) = 1 .
| R | + | R | + , | R | | R | , | L | + | R | + , | L | | L | .
ψ p ψ N 1 2 ( α | R R + β | L L + γ | L R + δ | R L ) 1 , 2 | + + 1 2 ( α | L R + β | R L + γ | R R + δ | L L ) 1 , 2 | .
| ψ 0 = 1 2 ( | R L R + | L R L ) | α ,
| ψ 1 = 1 2 ( | R L R + | L R R + | R R L + | L L L ) | α .
| ψ 2 = 1 2 ( | R L R + | L R R + | R R L ) | α e i θ + 1 2 | L L L | α e i 3 θ ,
P = m = 1 n ( 1 4 ) m 1 × 3 4 ,
| ψ 0 = 1 2 ( | R L R R + | L R L L ) | α ,
| ψ 1 = 1 2 ( | R L L L + | L R L L ) | α ,
| ψ 3 = 1 2 2 ( | R R R L + | R R L R + | R L R R + | L R R R + | R L L L + | L R L L + | L L R L + | L L L R ) | α ,
| ψ 3 = 1 2 2 ( | R R R L + | R R L R + | R L R R + | L R R R ) | α e i θ + 1 2 2 ( | R L L L + | L R L L + | L L R L + | L L L R ) | α e i 3 θ ,
| ψ 0 = 1 2 ( | R L R R R + | L R L L L ) | α ,
| ψ 1 = 1 2 ( | R L L L L + | L R L L L ) | α ,
| ψ 2 = 1 4 ( | L R R R R + | R L R R R + | R R L R R + | R R R L R + | R R R R L + | L L L L L + | L L R R L + | L L R L R + | R L R L L + | L L L R R + | R L L R L + | R L L L R + | L R R L L + | L R L R L + | L R L L R + | R R L L L ) | α
| ψ 3 = 1 4 ( | L R R R R + | R L R R R + | R R L R R + | R R R L R + | R R R R L ) | α e i θ + 1 4 | L L L L L | α e i 5 θ + 1 4 ( | L L R R L + | L L R L R + | R L R L L + | L L L R R + | R L L R L + | R L L L R + | L R R L L + | L R L R L + | L R L L R + | R R L L L ) | α e i 3 θ ,
| φ 1 = 1 5 ( | L R R R R + | R L R R R + | R R L R R + | R R R L R + | R R R R L ) .
| φ 2 = 1 10 ( | L L R R L + | L L R L R + | R L R L L + | L L L R R + | R L L R L + | R L L L R + | L R R L L + | L R L R L + | L R L L R + | R R L L L )
| R | + r 0 ( ω p ) | R | + , | R | r 0 ( ω p ) | R | , | L | + r 0 ( ω p ) | R | + , | L | r ( ω p ) | L | .

Metrics