Abstract

In order to overcome the shortages of the target image restoration method for longitudinal laser tomography using self-calibration, a more general restoration method through backscattering medium images associated with prior parameters is developed for common conditions. The system parameters are extracted from pre-calibration, and the LIDAR ratio is estimated according to the medium types. Assisted by these prior parameters, the degradation caused by inhomogeneous turbid media can be established with the backscattering medium images, which can further be used for removal of the interferences of turbid media. The results of simulations and experiments demonstrate that the proposed image restoration method can effectively eliminate the inhomogeneous interferences of turbid media and achieve exactly the reflectivity distribution of targets behind inhomogeneous turbid media. Furthermore, the restoration method can work beyond the limitation of the previous method that only works well under the conditions of localized turbid attenuations and some types of targets with fairly uniform reflectivity distributions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image restoration method for longitudinal laser tomography based on degradation matrix estimation

Wen-jun Yi, Wenhua Hu, Ping Wang, and Xiu-jian Li
Appl. Opt. 55(20) 5432-5438 (2016)

Restoration of turbulence-degraded images by the most-common method

Y. Glick, A. Baram, H. M. Loebenstein, and Z. Azar
Appl. Opt. 30(27) 3924-3929 (1991)

Enhancing underwater optical imaging by using a low-pass polarization filter

Khadidja Ould Amer, Marwa Elbouz, Ayman Alfalou, Christian Brosseau, and Jaouad Hajjami
Opt. Express 27(2) 621-643 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. F. Gillespie, “Apparent illumination as a function of range in gated, laser night-viewing systems,” J. Opt. Soc. Am. 56(7), 883–887 (1966).
    [Crossref]
  2. G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
    [Crossref]
  3. C. S. Tan, G. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
    [Crossref]
  4. J. Busck, “Underwater 3d optical imaging with a gated viewing laser radar,” Opt. Eng. 44(11), 116001 (2005).
    [Crossref]
  5. R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halfort, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42(3), 738–746 (2003).
    [Crossref]
  6. R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15(7), 3816–3832 (2007).
    [Crossref] [PubMed]
  7. P. Andersson, “Long-range three dimensional imaging using range-gated laser radar images,” Opt. Eng. 45(3), 034301 (2006).
    [Crossref]
  8. M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32(21), 3146–3148 (2007).
    [Crossref] [PubMed]
  9. M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3d range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
    [Crossref]
  10. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed (Prentice Hall, 2007).
  11. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1998), pp. 839–846.
    [Crossref]
  12. A. V. Oppenheim, R. W. Schafer, and T. G. Stockham, “Nonlinear filtering of multiplied and convolved signals,” in Proceedings of IEEE Transactions on Audio and Electroacoustics (IEEE, 1968), 56 (8), 1264–1291.
  13. F. M. Martin, M. E. Munoz, and L. C. Alberola, “A speckle removal filter based on anisotropic Wiener filtering and the Rice distribution,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2006), 7(3), 1694 −1697.
  14. D. G. Lainiotis, P. Papaparaskeva, and K. Plataniotis, “Nonlinear filtering for LIDAR signal processing,” Math. Probl. Eng. 2(5), 367–392 (1996).
    [Crossref]
  15. L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
    [Crossref]
  16. A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vis. 20(1/2), 89–97 (2004).
    [Crossref]
  17. T. F. Chan and S. Esedoglu, “Aspects of total variation regularized L1 function approximation,” SIAM J. Appl. Math. 65(5), 1817–1837 (2005).
    [Crossref]
  18. J. F. Yang, Y. Zhang, and W. T. Yin, “An efficient TVL1 algorithm for deblurring multichannel images Corrupted by Impulsive Noise,” SIAM J. Sci. Comput. 31(4), 2842–2865 (2009).
    [Crossref]
  19. Z. M. Jin and X. P. Yang, “A variational model to remove the multiplicative noise in ultrasound images,” J. Math. Imaging Vis. 39(1), 62–74 (2011).
    [Crossref]
  20. W. J. Yi, W. Hu, P. Wang, and X. J. Li, “Image restoration method for longitudinal laser tomography based on degradation matrix estimation,” Appl. Opt. 55(20), 5432–5438 (2016).
    [Crossref] [PubMed]
  21. W. Yi, H. Liu, P. Wang, M. Fu, J. Tan, and X. Li, “Reconstruction of target image from inhomogeneous degradations through backscattering medium images using self-calibration,” Opt. Express 25(7), 7392–7401 (2017).
    [Crossref] [PubMed]
  22. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
    [Crossref] [PubMed]
  23. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier Pub Co, 1969).
  24. P. X. Sheng, Atmospheric physics, 2nd ed. (Peking University, 2013).
  25. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-microm Wavelength Region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  26. R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy., “Backscatter and extinction in water clouds,” J. Geophys. Res. 88(C11), 6787–6796 (1983).
    [Crossref]
  27. E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
    [Crossref]
  28. Y. X. Hu, “Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination,” Geophys. Res. Lett. 34(11), L11812 (2007).
    [Crossref]
  29. J. H. Churnside, J. M. Sullivan, and M. S. Twardowski, “Lidar extinction-to-backscatter ratio of the ocean,” Opt. Express 22(15), 18698–18706 (2014).
    [Crossref] [PubMed]
  30. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” in Proceedings of IEEE Transactions on Image Processing (IEEE, 2004), 13(4), 600–612.
    [Crossref]
  31. H. G. Adelmann, “Butterworth equations for homomorphic filtering of images,” Comput. Biol. Med. 28(2), 169–181 (1998).
    [Crossref] [PubMed]
  32. R. J. Lang, “Ultrasonic atomization of liquids,” J. Acoust. Soc. Am. 34(1), 6–8 (1962).
    [Crossref]

2017 (1)

2016 (1)

2014 (1)

2011 (1)

Z. M. Jin and X. P. Yang, “A variational model to remove the multiplicative noise in ultrasound images,” J. Math. Imaging Vis. 39(1), 62–74 (2011).
[Crossref]

2009 (2)

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3d range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[Crossref]

J. F. Yang, Y. Zhang, and W. T. Yin, “An efficient TVL1 algorithm for deblurring multichannel images Corrupted by Impulsive Noise,” SIAM J. Sci. Comput. 31(4), 2842–2865 (2009).
[Crossref]

2007 (3)

2006 (1)

P. Andersson, “Long-range three dimensional imaging using range-gated laser radar images,” Opt. Eng. 45(3), 034301 (2006).
[Crossref]

2005 (3)

T. F. Chan and S. Esedoglu, “Aspects of total variation regularized L1 function approximation,” SIAM J. Appl. Math. 65(5), 1817–1837 (2005).
[Crossref]

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[Crossref]

J. Busck, “Underwater 3d optical imaging with a gated viewing laser radar,” Opt. Eng. 44(11), 116001 (2005).
[Crossref]

2004 (2)

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vis. 20(1/2), 89–97 (2004).
[Crossref]

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
[Crossref]

2003 (1)

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halfort, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42(3), 738–746 (2003).
[Crossref]

1998 (1)

H. G. Adelmann, “Butterworth equations for homomorphic filtering of images,” Comput. Biol. Med. 28(2), 169–181 (1998).
[Crossref] [PubMed]

1996 (1)

D. G. Lainiotis, P. Papaparaskeva, and K. Plataniotis, “Nonlinear filtering for LIDAR signal processing,” Math. Probl. Eng. 2(5), 367–392 (1996).
[Crossref]

1993 (1)

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

1992 (1)

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
[Crossref]

1984 (1)

1983 (1)

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy., “Backscatter and extinction in water clouds,” J. Geophys. Res. 88(C11), 6787–6796 (1983).
[Crossref]

1973 (1)

1966 (1)

1962 (1)

R. J. Lang, “Ultrasonic atomization of liquids,” J. Acoust. Soc. Am. 34(1), 6–8 (1962).
[Crossref]

Adelmann, H. G.

H. G. Adelmann, “Butterworth equations for homomorphic filtering of images,” Comput. Biol. Med. 28(2), 169–181 (1998).
[Crossref] [PubMed]

Alberola, L. C.

F. M. Martin, M. E. Munoz, and L. C. Alberola, “A speckle removal filter based on anisotropic Wiener filtering and the Rice distribution,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2006), 7(3), 1694 −1697.

Andersson, P.

P. Andersson, “Long-range three dimensional imaging using range-gated laser radar images,” Opt. Eng. 45(3), 034301 (2006).
[Crossref]

Bacher, E.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3d range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[Crossref]

Barnard, K. J.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halfort, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42(3), 738–746 (2003).
[Crossref]

Bonnier, D.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” in Proceedings of IEEE Transactions on Image Processing (IEEE, 2004), 13(4), 600–612.
[Crossref]

Busck, J.

J. Busck, “Underwater 3d optical imaging with a gated viewing laser radar,” Opt. Eng. 44(11), 116001 (2005).
[Crossref]

Chambolle, A.

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vis. 20(1/2), 89–97 (2004).
[Crossref]

Chan, T. F.

T. F. Chan and S. Esedoglu, “Aspects of total variation regularized L1 function approximation,” SIAM J. Appl. Math. 65(5), 1817–1837 (2005).
[Crossref]

Christnacher, F.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3d range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[Crossref]

M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32(21), 3146–3148 (2007).
[Crossref] [PubMed]

Churnside, J. H.

Chylek, P.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy., “Backscatter and extinction in water clouds,” J. Geophys. Res. 88(C11), 6787–6796 (1983).
[Crossref]

Devitt, N.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halfort, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42(3), 738–746 (2003).
[Crossref]

Driggers, R. G.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halfort, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42(3), 738–746 (2003).
[Crossref]

Esedoglu, S.

T. F. Chan and S. Esedoglu, “Aspects of total variation regularized L1 function approximation,” SIAM J. Appl. Math. 65(5), 1817–1837 (2005).
[Crossref]

Espinola, R. L.

Fatemi, E.

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
[Crossref]

Fernald, F. G.

Forand, J. L.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

Fournier, G. R.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

Fu, M.

Gillespie, L. F.

Grandy, W. T.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy., “Backscatter and extinction in water clouds,” J. Geophys. Res. 88(C11), 6787–6796 (1983).
[Crossref]

Hale, G. M.

Halford, C. E.

Halfort, C.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halfort, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42(3), 738–746 (2003).
[Crossref]

Ham, C.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy., “Backscatter and extinction in water clouds,” J. Geophys. Res. 88(C11), 6787–6796 (1983).
[Crossref]

He, D. M.

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[Crossref]

Hogan, R. J.

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
[Crossref]

Hu, W.

Hu, Y. X.

Y. X. Hu, “Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination,” Geophys. Res. Lett. 34(11), L11812 (2007).
[Crossref]

Illingworth, A. J.

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
[Crossref]

Jacobs, E. L.

Jennings, S. G.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy., “Backscatter and extinction in water clouds,” J. Geophys. Res. 88(C11), 6787–6796 (1983).
[Crossref]

Jin, Z. M.

Z. M. Jin and X. P. Yang, “A variational model to remove the multiplicative noise in ultrasound images,” J. Math. Imaging Vis. 39(1), 62–74 (2011).
[Crossref]

Lainiotis, D. G.

D. G. Lainiotis, P. Papaparaskeva, and K. Plataniotis, “Nonlinear filtering for LIDAR signal processing,” Math. Probl. Eng. 2(5), 367–392 (1996).
[Crossref]

Lang, R. J.

R. J. Lang, “Ultrasonic atomization of liquids,” J. Acoust. Soc. Am. 34(1), 6–8 (1962).
[Crossref]

Laurenzis, M.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3d range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[Crossref]

M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32(21), 3146–3148 (2007).
[Crossref] [PubMed]

Li, X.

Li, X. J.

Liu, H.

Manduchi, R.

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1998), pp. 839–846.
[Crossref]

Martin, F. M.

F. M. Martin, M. E. Munoz, and L. C. Alberola, “A speckle removal filter based on anisotropic Wiener filtering and the Rice distribution,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2006), 7(3), 1694 −1697.

Metzger, N.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3d range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[Crossref]

Monnin, D.

Munoz, M. E.

F. M. Martin, M. E. Munoz, and L. C. Alberola, “A speckle removal filter based on anisotropic Wiener filtering and the Rice distribution,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2006), 7(3), 1694 −1697.

O’Connor, E. J.

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
[Crossref]

Oppenheim, A. V.

A. V. Oppenheim, R. W. Schafer, and T. G. Stockham, “Nonlinear filtering of multiplied and convolved signals,” in Proceedings of IEEE Transactions on Audio and Electroacoustics (IEEE, 1968), 56 (8), 1264–1291.

Osher, S.

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
[Crossref]

Pace, P. W.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

Papaparaskeva, P.

D. G. Lainiotis, P. Papaparaskeva, and K. Plataniotis, “Nonlinear filtering for LIDAR signal processing,” Math. Probl. Eng. 2(5), 367–392 (1996).
[Crossref]

Pinnick, R. G.

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy., “Backscatter and extinction in water clouds,” J. Geophys. Res. 88(C11), 6787–6796 (1983).
[Crossref]

Plataniotis, K.

D. G. Lainiotis, P. Papaparaskeva, and K. Plataniotis, “Nonlinear filtering for LIDAR signal processing,” Math. Probl. Eng. 2(5), 367–392 (1996).
[Crossref]

Querry, M. R.

Rudin, L.

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
[Crossref]

Schafer, R. W.

A. V. Oppenheim, R. W. Schafer, and T. G. Stockham, “Nonlinear filtering of multiplied and convolved signals,” in Proceedings of IEEE Transactions on Audio and Electroacoustics (IEEE, 1968), 56 (8), 1264–1291.

Seet, G.

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[Crossref]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” in Proceedings of IEEE Transactions on Image Processing (IEEE, 2004), 13(4), 600–612.
[Crossref]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” in Proceedings of IEEE Transactions on Image Processing (IEEE, 2004), 13(4), 600–612.
[Crossref]

Sluzek, A.

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[Crossref]

Stockham, T. G.

A. V. Oppenheim, R. W. Schafer, and T. G. Stockham, “Nonlinear filtering of multiplied and convolved signals,” in Proceedings of IEEE Transactions on Audio and Electroacoustics (IEEE, 1968), 56 (8), 1264–1291.

Sullivan, J. M.

Tan, C. S.

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[Crossref]

Tan, J.

Tofsted, D. H.

Tomasi, C.

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1998), pp. 839–846.
[Crossref]

Twardowski, M. S.

Vollmerhausen, R.

Vollmerhausen, R. H.

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halfort, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42(3), 738–746 (2003).
[Crossref]

Wang, P.

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” in Proceedings of IEEE Transactions on Image Processing (IEEE, 2004), 13(4), 600–612.
[Crossref]

Yang, J. F.

J. F. Yang, Y. Zhang, and W. T. Yin, “An efficient TVL1 algorithm for deblurring multichannel images Corrupted by Impulsive Noise,” SIAM J. Sci. Comput. 31(4), 2842–2865 (2009).
[Crossref]

Yang, X. P.

Z. M. Jin and X. P. Yang, “A variational model to remove the multiplicative noise in ultrasound images,” J. Math. Imaging Vis. 39(1), 62–74 (2011).
[Crossref]

Yi, W.

Yi, W. J.

Yin, W. T.

J. F. Yang, Y. Zhang, and W. T. Yin, “An efficient TVL1 algorithm for deblurring multichannel images Corrupted by Impulsive Noise,” SIAM J. Sci. Comput. 31(4), 2842–2865 (2009).
[Crossref]

Zhang, Y.

J. F. Yang, Y. Zhang, and W. T. Yin, “An efficient TVL1 algorithm for deblurring multichannel images Corrupted by Impulsive Noise,” SIAM J. Sci. Comput. 31(4), 2842–2865 (2009).
[Crossref]

Zielenski, I.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3d range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[Crossref]

Appl. Opt. (3)

Comput. Biol. Med. (1)

H. G. Adelmann, “Butterworth equations for homomorphic filtering of images,” Comput. Biol. Med. 28(2), 169–181 (1998).
[Crossref] [PubMed]

Geophys. Res. Lett. (1)

Y. X. Hu, “Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination,” Geophys. Res. Lett. 34(11), L11812 (2007).
[Crossref]

J. Acoust. Soc. Am. (1)

R. J. Lang, “Ultrasonic atomization of liquids,” J. Acoust. Soc. Am. 34(1), 6–8 (1962).
[Crossref]

J. Atmos. Ocean. Technol. (1)

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
[Crossref]

J. Geophys. Res. (1)

R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, and W. T. Grandy., “Backscatter and extinction in water clouds,” J. Geophys. Res. 88(C11), 6787–6796 (1983).
[Crossref]

J. Math. Imaging Vis. (2)

Z. M. Jin and X. P. Yang, “A variational model to remove the multiplicative noise in ultrasound images,” J. Math. Imaging Vis. 39(1), 62–74 (2011).
[Crossref]

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vis. 20(1/2), 89–97 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

Math. Probl. Eng. (1)

D. G. Lainiotis, P. Papaparaskeva, and K. Plataniotis, “Nonlinear filtering for LIDAR signal processing,” Math. Probl. Eng. 2(5), 367–392 (1996).
[Crossref]

Opt. Eng. (4)

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

J. Busck, “Underwater 3d optical imaging with a gated viewing laser radar,” Opt. Eng. 44(11), 116001 (2005).
[Crossref]

R. G. Driggers, R. H. Vollmerhausen, N. Devitt, C. Halfort, and K. J. Barnard, “Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance,” Opt. Eng. 42(3), 738–746 (2003).
[Crossref]

P. Andersson, “Long-range three dimensional imaging using range-gated laser radar images,” Opt. Eng. 45(3), 034301 (2006).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, “A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium,” Opt. Lasers Eng. 43(9), 995–1009 (2005).
[Crossref]

Opt. Lett. (1)

Physica D (1)

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60(1-4), 259–268 (1992).
[Crossref]

Proc. SPIE (1)

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3d range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[Crossref]

SIAM J. Appl. Math. (1)

T. F. Chan and S. Esedoglu, “Aspects of total variation regularized L1 function approximation,” SIAM J. Appl. Math. 65(5), 1817–1837 (2005).
[Crossref]

SIAM J. Sci. Comput. (1)

J. F. Yang, Y. Zhang, and W. T. Yin, “An efficient TVL1 algorithm for deblurring multichannel images Corrupted by Impulsive Noise,” SIAM J. Sci. Comput. 31(4), 2842–2865 (2009).
[Crossref]

Other (7)

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier Pub Co, 1969).

P. X. Sheng, Atmospheric physics, 2nd ed. (Peking University, 2013).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed (Prentice Hall, 2007).

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1998), pp. 839–846.
[Crossref]

A. V. Oppenheim, R. W. Schafer, and T. G. Stockham, “Nonlinear filtering of multiplied and convolved signals,” in Proceedings of IEEE Transactions on Audio and Electroacoustics (IEEE, 1968), 56 (8), 1264–1291.

F. M. Martin, M. E. Munoz, and L. C. Alberola, “A speckle removal filter based on anisotropic Wiener filtering and the Rice distribution,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2006), 7(3), 1694 −1697.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” in Proceedings of IEEE Transactions on Image Processing (IEEE, 2004), 13(4), 600–612.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of the LLT system.
Fig. 2
Fig. 2 Flowchart of the proposed restoration method.
Fig. 3
Fig. 3 Turbid medium distribution in the simulation.
Fig. 4
Fig. 4 Diermendjian functions of the five groups of parameters in Table 1.
Fig. 5
Fig. 5 Recovery process of the simulation images. V ˜ represents the estimated degradation matrix; E 0 , Z 0 and ρ 0 ¯ represent the single pulse energy, the target distance and the reference target reflectivity in the pre-calibration, respectively; I 0 ¯ denotes the average gray value of the reference target image.
Fig. 6
Fig. 6 Butterworth filter functions of homomorphic filtering.
Fig. 7
Fig. 7 Recovery results of homomorphic filtering. (a) Ideal target image (b) Degraded target image (c) Recovery image by the proposed method; (d-f) show homomorphic filtering results of various Butterworth filter functions as shown in Fig. 6.
Fig. 8
Fig. 8 Linear fitting of P r / P i versus A r / Z r 2
Fig. 9
Fig. 9 Recovery process of the first experimental image group.
Fig. 10
Fig. 10 Recovery results of the second experimental image group. (a) Turbid-medium-free target image (b) Degraded target image (c) Backscattering image (d) Denoised backscattering image (e) Degradation matrix visualization (f) Retrieved target image.
Fig. 11
Fig. 11 Recovery results of the third experimental image group.(a) Turbid-medium-free target image (b) Degraded target image (c) Backscattering image (d) Denoised backscattering image (e) Degradation matrix visualization (f) Retrieved target image.

Tables (1)

Tables Icon

Table 1 Five groups of Diermendjian parameters and the corresponding LIDAR ratioS

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

U d =VU+N.
V(i,j)=exp[2S ρ S (x,y)].
I 0 ¯ =C E 0 ρ 0 ¯ / Z 0 2 ,
I S (i,j)=C E S ρ S (x,y)/ Z S 2 ,
ρ S (x,y)= E 0 Z S 2 ρ 0 ¯ E S Z 0 2 I 0 ¯ I S (i,j).
V ˜ (i,j)=exp[2S E 0 Z S 2 ρ 0 ¯ E S Z 0 2 I 0 ¯ I S (i,j)].
n(r)dr=a r μ exp(b r ν )dr.
P r = ρ 0 ¯ A r Z r 2 P i

Metrics