Abstract

The need for an accurate time reference on orbiting platforms motivates study of time transfer via free-space optical communication links. The impact of atmospheric turbulence on earth-to-satellite optical time transfer has not been fully characterized, however. We analyze limits to two-way laser time transfer accuracy posed by anisoplanatic non-reciprocity between uplink and downlink. We show that despite limited reciprocity, two-way time transfer can still achieve sub-picosecond accuracy in realistic propagation scenarios over a single satellite visibility period.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time synchronization over a free-space optical communication channel

Isaac Khader, Hugo Bergeron, Laura C. Sinclair, William C. Swann, Nathan R. Newbury, and Jean-Daniel Deschênes
Optica 5(12) 1542-1548 (2018)

Anisoplanatism in airborne laser communication

James A. Louthain and Jason D. Schmidt
Opt. Express 16(14) 10769-10785 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Bauch, “Time and frequency comparisons using radiofrequency signals from satellites,” C. R. Phys. 16(5), 471–479 (2015).
    [Crossref]
  2. F. Riehle, “Optical clock networks,” Nat. Photonics 11(1), 25–31 (2017).
    [Crossref]
  3. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent Optical Link through the Turbulent Atmosphere,” Opt. Lett. 35(9), 1479–1481 (2010).
    [Crossref] [PubMed]
  4. E. Samain, P. Vrancken, P. Guillemot, P. Fridelance, and P. Exertier, “Time Transfer by Laser Link (T2L2): Characterization and Calibration of the Flight Instrument,” Metrologia 51(5), 503–515 (2014).
    [Crossref]
  5. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
    [Crossref]
  6. L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
    [Crossref]
  7. J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
    [Crossref]
  8. P. Berceau, M. Taylor, J. M. Kahn, and L. Hollberg, “Space-time reference with an optical link,” Class. Quantum Gravity 33(13), 135007 (2016).
    [Crossref]
  9. P. Fridelance, “Influence of atmospheric turbulence on the uplink propagation in an optical time transfer,” Appl. Opt. 36(24), 5969–5975 (1997).
    [Crossref] [PubMed]
  10. C. Robert, J. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
    [Crossref]
  11. D. Kirchner, “Two-way time transfer via communication satellites,” Proc. IEEE 79(7), 983–990 (1991).
    [Crossref]
  12. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  13. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).
  14. R. J. Sasiela, Electromagnetic wave propagation in turbulence: evaluation and application of Mellin transforms (Springer-Verlag, 1994).
  15. R. J. Sasiela and J. D. Shelton, “Transverse spectral filtering and Mellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism,” J. Opt. Soc. Am. A 10(4), 646–660 (1993).
    [Crossref]
  16. R. R. Parenti and R. J. Sasiela, “Laser-guide-star systems for astronomical applications,” J. Opt. Soc. Am. A 11(1), 288 (1994).
    [Crossref]
  17. J. H. Shapiro, “Reciprocity of the turbulent atmosphere,” J. Opt. Soc. Am. 61(4), 492–495 (1971).
    [Crossref]
  18. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10(7), 1652–1658 (1971).
    [Crossref] [PubMed]
  19. R. J. Hill and S. F. Clifford, “Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation,” J. Opt. Soc. Am. 68(7), 892–899 (1978).
    [Crossref]
  20. G. Ling and R. Gagliardi, “Slot Synchronization in Optical PPM communications,” IEEE Trans. Commun. 34(12), 1202–1208 (1986).
    [Crossref]
  21. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
    [Crossref]
  22. R. M. Gagliardi and S. Karp, Optical Communications (Wiley & Sons, 1995).
  23. A. Belmonte and J. Khan, “Performance of synchronous optical receivers using atmospheric compensation techniques,” Opt. Express 16(18), 14151–14162 (2008).
    [Crossref] [PubMed]
  24. D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55(1), 57–77 (1967).
    [Crossref]
  25. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72(1), 52–61 (1982).
    [Crossref]
  26. J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications (Ben Roberts & Company, 2007).
  27. J. Goodman, Introduction to Fourier Optics, (Roberts & Company, 2005).
  28. J. G. Proakis and M. Salehi, Digital Communications, (Mc Graw-Hill, 2007).
  29. E. Ip and J. M. Kahn, “Power spectra of return-to-zero optical signals,” J. Lightwave Technol. 24(3), 1610–1618 (2006).
    [Crossref]

2017 (1)

F. Riehle, “Optical clock networks,” Nat. Photonics 11(1), 25–31 (2017).
[Crossref]

2016 (3)

C. Robert, J. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

P. Berceau, M. Taylor, J. M. Kahn, and L. Hollberg, “Space-time reference with an optical link,” Class. Quantum Gravity 33(13), 135007 (2016).
[Crossref]

2015 (1)

A. Bauch, “Time and frequency comparisons using radiofrequency signals from satellites,” C. R. Phys. 16(5), 471–479 (2015).
[Crossref]

2014 (2)

E. Samain, P. Vrancken, P. Guillemot, P. Fridelance, and P. Exertier, “Time Transfer by Laser Link (T2L2): Characterization and Calibration of the Flight Instrument,” Metrologia 51(5), 503–515 (2014).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

2013 (1)

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

2010 (1)

2008 (1)

2006 (1)

2004 (1)

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

1997 (1)

1994 (1)

1993 (1)

1991 (1)

D. Kirchner, “Two-way time transfer via communication satellites,” Proc. IEEE 79(7), 983–990 (1991).
[Crossref]

1986 (1)

G. Ling and R. Gagliardi, “Slot Synchronization in Optical PPM communications,” IEEE Trans. Commun. 34(12), 1202–1208 (1986).
[Crossref]

1982 (1)

1978 (1)

1971 (2)

1967 (1)

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55(1), 57–77 (1967).
[Crossref]

Acef, O.

Bauch, A.

A. Bauch, “Time and frequency comparisons using radiofrequency signals from satellites,” C. R. Phys. 16(5), 471–479 (2015).
[Crossref]

Baumann, E.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Belmonte, A.

Berceau, P.

P. Berceau, M. Taylor, J. M. Kahn, and L. Hollberg, “Space-time reference with an optical link,” Class. Quantum Gravity 33(13), 135007 (2016).
[Crossref]

Bergeron, H.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Cermak, M.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Clairon, A.

Clifford, S. F.

Coddington, I.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Conan, J.

C. Robert, J. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

Deschênes, J.-D.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Djerroud, K.

Exertier, P.

E. Samain, P. Vrancken, P. Guillemot, P. Fridelance, and P. Exertier, “Time Transfer by Laser Link (T2L2): Characterization and Calibration of the Flight Instrument,” Metrologia 51(5), 503–515 (2014).
[Crossref]

Fridelance, P.

E. Samain, P. Vrancken, P. Guillemot, P. Fridelance, and P. Exertier, “Time Transfer by Laser Link (T2L2): Characterization and Calibration of the Flight Instrument,” Metrologia 51(5), 503–515 (2014).
[Crossref]

P. Fridelance, “Influence of atmospheric turbulence on the uplink propagation in an optical time transfer,” Appl. Opt. 36(24), 5969–5975 (1997).
[Crossref] [PubMed]

Fried, D. L.

D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72(1), 52–61 (1982).
[Crossref]

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55(1), 57–77 (1967).
[Crossref]

Gagliardi, R.

G. Ling and R. Gagliardi, “Slot Synchronization in Optical PPM communications,” IEEE Trans. Commun. 34(12), 1202–1208 (1986).
[Crossref]

Giorgetta, F. R.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Guillemot, P.

E. Samain, P. Vrancken, P. Guillemot, P. Fridelance, and P. Exertier, “Time Transfer by Laser Link (T2L2): Characterization and Calibration of the Flight Instrument,” Metrologia 51(5), 503–515 (2014).
[Crossref]

Hill, R. J.

Hollberg, L.

P. Berceau, M. Taylor, J. M. Kahn, and L. Hollberg, “Space-time reference with an optical link,” Class. Quantum Gravity 33(13), 135007 (2016).
[Crossref]

Ip, E.

Kahn, J. M.

P. Berceau, M. Taylor, J. M. Kahn, and L. Hollberg, “Space-time reference with an optical link,” Class. Quantum Gravity 33(13), 135007 (2016).
[Crossref]

E. Ip and J. M. Kahn, “Power spectra of return-to-zero optical signals,” J. Lightwave Technol. 24(3), 1610–1618 (2006).
[Crossref]

Khan, J.

Kirchner, D.

D. Kirchner, “Two-way time transfer via communication satellites,” Proc. IEEE 79(7), 983–990 (1991).
[Crossref]

Lemonde, P.

Ling, G.

G. Ling and R. Gagliardi, “Slot Synchronization in Optical PPM communications,” IEEE Trans. Commun. 34(12), 1202–1208 (1986).
[Crossref]

Lutomirski, R. F.

Man, C. N.

Newbury, N. R.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Parenti, R. R.

Paschotta, R.

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

Riehle, F.

F. Riehle, “Optical clock networks,” Nat. Photonics 11(1), 25–31 (2017).
[Crossref]

Robert, C.

C. Robert, J. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

Samain, E.

E. Samain, P. Vrancken, P. Guillemot, P. Fridelance, and P. Exertier, “Time Transfer by Laser Link (T2L2): Characterization and Calibration of the Flight Instrument,” Metrologia 51(5), 503–515 (2014).
[Crossref]

K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent Optical Link through the Turbulent Atmosphere,” Opt. Lett. 35(9), 1479–1481 (2010).
[Crossref] [PubMed]

Sasiela, R. J.

Shapiro, J. H.

Shelton, J. D.

Sinclair, L. C.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Swann, W. C.

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Taylor, M.

P. Berceau, M. Taylor, J. M. Kahn, and L. Hollberg, “Space-time reference with an optical link,” Class. Quantum Gravity 33(13), 135007 (2016).
[Crossref]

Vrancken, P.

E. Samain, P. Vrancken, P. Guillemot, P. Fridelance, and P. Exertier, “Time Transfer by Laser Link (T2L2): Characterization and Calibration of the Flight Instrument,” Metrologia 51(5), 503–515 (2014).
[Crossref]

Wolf, P.

C. Robert, J. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C. N. Man, E. Samain, and P. Wolf, “Coherent Optical Link through the Turbulent Atmosphere,” Opt. Lett. 35(9), 1479–1481 (2010).
[Crossref] [PubMed]

Yura, H. T.

Appl. Opt. (2)

Appl. Phys. B (1)

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

C. R. Phys. (1)

A. Bauch, “Time and frequency comparisons using radiofrequency signals from satellites,” C. R. Phys. 16(5), 471–479 (2015).
[Crossref]

Class. Quantum Gravity (1)

P. Berceau, M. Taylor, J. M. Kahn, and L. Hollberg, “Space-time reference with an optical link,” Class. Quantum Gravity 33(13), 135007 (2016).
[Crossref]

IEEE Trans. Commun. (1)

G. Ling and R. Gagliardi, “Slot Synchronization in Optical PPM communications,” IEEE Trans. Commun. 34(12), 1202–1208 (1986).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

Metrologia (1)

E. Samain, P. Vrancken, P. Guillemot, P. Fridelance, and P. Exertier, “Time Transfer by Laser Link (T2L2): Characterization and Calibration of the Flight Instrument,” Metrologia 51(5), 503–515 (2014).
[Crossref]

Nat. Photonics (2)

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

F. Riehle, “Optical clock networks,” Nat. Photonics 11(1), 25–31 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, I. Coddington, and N. R. Newbury, “Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer,” Phys. Rev. A 89(2), 023805 (2014).
[Crossref]

C. Robert, J. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93(3), 033860 (2016).
[Crossref]

Phys. Rev. X (1)

J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of Distant Optical Clocks at the Femtosecond Level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Proc. IEEE (2)

D. Kirchner, “Two-way time transfer via communication satellites,” Proc. IEEE 79(7), 983–990 (1991).
[Crossref]

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55(1), 57–77 (1967).
[Crossref]

Other (7)

R. M. Gagliardi and S. Karp, Optical Communications (Wiley & Sons, 1995).

J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications (Ben Roberts & Company, 2007).

J. Goodman, Introduction to Fourier Optics, (Roberts & Company, 2005).

J. G. Proakis and M. Salehi, Digital Communications, (Mc Graw-Hill, 2007).

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).

R. J. Sasiela, Electromagnetic wave propagation in turbulence: evaluation and application of Mellin transforms (Springer-Verlag, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Schematic of two-way time transfer over a satellite laser communication link for providing a high-accuracy time reference. Time transfer may benefit from the low clock jitter in such laser communication links, but will be degraded by atmospheric fluctuations leading to time-of-flight variations. Incomplete reciprocity between the uplink and downlink propagation paths translates into temporal, spatial, and angular atmospheric anisoplanatic effects that limit the accuracy of two-way time transfer. As described in the text, this analysis considers anisoplanatic effects over a medium-earth-orbit (MEO) altitude of 9000 km.
Fig. 2
Fig. 2 Analytically predicted time transfer standard deviation σ τ as a function of measurement interval 1/ B c considering partial reciprocity between up and down propagation paths. Receivers considered employ: shot noise-limited coherent detection (blue), direct detection with optical pre-amplifier (red), direct detection with avalanche photodiode (green) and direct detection with PIN photodiode (black). For the coherent receiver, the curves with total reciprocity (identical up and down propagation paths) and without reciprocity (independent up and down propagation paths) are shown as dashed blue lines for comparison. The corresponding component of the time-of-flight standard deviation induced by turbulence σ τ atm is also shown.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

τ= 1 2 [ ( Δ T S Δ T G )( δ T U δ T D ) ].
σ δ T atm   2 = 2π c 2 0 L dz d K   Φ n ( K ,z ) .
σ τ atm   2 = 2π c 2 0 L dz d K   Φ n ( K ,z )  |  h( K ,z )  | 2 .
h( K ,z )= 1exp[  j  K d ( z )  ].
σ τ atm   2 = 4 π 2 c 2 0 L dz K dK  Φ n ( K,z ) 2{  1 J 0 [  K d( z )  ]  } ,
σ τ atm   2 = 4 π 2 c 2 0 L dz ( 2π V ) 2 f df  Φ n ( 2π f V ,z ) 2{  1 J 0 [   2π f V  d( z )  ]  } ,
σ τ clk 2 =0.1803  B c   T p 2 Ω  γ 0  ,
γ 0 = K s 2 F( K s +2 K b )+ K n  .
Ω= α 0 2 +2 σ α 2 ,

Metrics