Abstract

Tm3+-doped LuScO3 mixed sesquioxide ceramics were successfully fabricated by using a solid-state reactive sintering method. The absorption and emission spectra were measured at room temperature. Continuous-wave (CW) and passively Q-switched laser operation of Tm3+:LuScO3 ceramic were investigated for the first time to our knowledge. A CW output power of 211 mW with slope efficiency of about 8.2% was obtained. With single-walled carbon nanotube (SWCNT) as saturable absorber, a maximum average output power of 32 mW was achieved. The shortest pulse width was 0.59 μs at pulse repetition rate of 34.72 kHz.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopy and mode-locking laser operation of Tm:LuYO3 mixed sesquioxide ceramic

Dongzhen Li, Lingchen Kong, Xiaodong Xu, Peng Liu, Guoqiang Xie, Jian Zhang, and Jun Xu
Opt. Express 27(17) 24416-24425 (2019)

11 W continuous-wave laser operation at 2.09 μm in Tm:Lu1.6Sc0.4O3 mixed sesquioxide ceramics pumped by a 796 nm laser diode

Zhendong Hao, Liangliang Zhang, Yunpeng Wang, Hao Wu, Guo-Hui Pan, Huajun Wu, Xia Zhang, Dongxu Zhao, and Jiahua Zhang
Opt. Mater. Express 8(11) 3615-3621 (2018)

Sub-10 optical-cycle passively mode-locked Tm:(Lu2/3Sc1/3)2O3 ceramic laser at 2 µm

Yicheng Wang, Wei Jing, Pavel Loiko, Yongguang Zhao, Hui Huang, Xavier Mateos, Soile Suomalainen, Antti Härkönen, Mircea Guina, Uwe Griebner, and Valentin Petrov
Opt. Express 26(8) 10299-10304 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116(4), 967–976 (2014).
    [Crossref]
  2. W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
    [Crossref]
  3. P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06 μm,” Appl. Phys. B 109(2), 327–331 (2012).
    [Crossref]
  4. A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
    [Crossref] [PubMed]
  5. H. N. Zhang, X. H. Chen, Q. P. Wang, X. Y. Zhang, J. Chang, L. Gao, H. B. Shen, Z. H. Cong, Z. J. Liu, X. T. Tao, and P. Li, “High efficiency Nd:YAG ceramic eye-safe laser operating at 1442.8 nm,” Opt. Lett. 38(16), 3075–3077 (2013).
    [Crossref] [PubMed]
  6. W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
    [Crossref] [PubMed]
  7. R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Łukasiewicz, “Effect of temperature on spectroscopic features relevant to laser performance of YVO4:Tm3+, GdVO4:Tm3+, and LuVO4:Tm3+ crystals,” Opt. Lett. 35(23), 3940–3942 (2010).
    [Crossref] [PubMed]
  8. H. Yu, Z. Pan, H. Zhang, Z. Wang, J. Wang, and M. Jiang, “Efficient Tm:LuVO4 laser at 1.9 μm,” Opt. Lett. 36(13), 2402–2404 (2011).
    [Crossref] [PubMed]
  9. Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
    [Crossref]
  10. Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
    [Crossref]
  11. J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
    [Crossref]
  12. M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
    [Crossref]
  13. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
    [Crossref]
  14. P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
    [Crossref]
  15. A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
    [Crossref]
  16. A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
    [Crossref]
  17. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
    [Crossref] [PubMed]
  18. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
    [Crossref]
  19. J. W. Szela, K. A. Sloyan, T. L. Parsonage, J. I. Mackenzie, and R. W. Eason, “Laser operation of a Tm:Y2O3 planar waveguide,” Opt. Express 21(10), 12460–12468 (2013).
    [Crossref] [PubMed]
  20. A. A. Lagatsky, P. Koopmann, P. Fuhrberg, G. Huber, C. T. A. Brown, and W. Sibbett, “Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 μm,” Opt. Lett. 37(3), 437–439 (2012).
    [Crossref] [PubMed]
  21. A. Ikesue and Y. L. Aung, “Ceramics laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  22. R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-pruity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
    [Crossref]
  23. K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
    [Crossref]
  24. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Laser Operation and Spectroscopic Investigations of Tm:LuScO3,” in CLEO/Europe (2011), paper CA1–4.
  25. A. A. Lagatsky, P. Koopmann, O. L. Antipov, C. T. A. Brown, G. Huber, and W. Sibbett, “Femtosecond pulse generation with Tm-doped sesquioxides,” CLEO/Europe (2013).
  26. D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
    [Crossref]
  27. K. S. Lai, P. B. Phua, R. F. Wu, Y. L. Lim, E. Lau, S. W. Toh, B. T. Toh, and A. Chng, “120-W continuous-wave diode-pumped Tm:YAG laser,” Opt. Lett. 25(21), 1591–1593 (2000).
    [Crossref] [PubMed]
  28. H. Wang, H. Huang, P. Liu, L. Jin, D. Shen, J. Zhang, and D. Tang, “Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramics laser around 2050 nm,” Opt. Mater. Express 7(2), 296–303 (2017).
    [Crossref]
  29. P. Koopmann, P. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2μm,” Appl. Phys. B 102(1), 19–24 (2011).
    [Crossref]
  30. D. Mao, B. Q. Jiang, W. D. Zhang, and J. L. Zhao, “Pulse-State Switchable Fiber Laser Mode-Locked by Carbon Nanotubes,” IEEE Photonics Technol. Lett. 27(3), 253–256 (2015).
  31. B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Topological insulator Bi2Se3 based Q-switched Nd:LiYF4 nanosecond laser at 1313 nm,” Opt. Express 23(6), 7674–7680 (2015).
    [Crossref] [PubMed]
  32. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988).
    [Crossref]

2017 (3)

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

H. Wang, H. Huang, P. Liu, L. Jin, D. Shen, J. Zhang, and D. Tang, “Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramics laser around 2050 nm,” Opt. Mater. Express 7(2), 296–303 (2017).
[Crossref]

2016 (2)

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[Crossref] [PubMed]

2015 (2)

D. Mao, B. Q. Jiang, W. D. Zhang, and J. L. Zhao, “Pulse-State Switchable Fiber Laser Mode-Locked by Carbon Nanotubes,” IEEE Photonics Technol. Lett. 27(3), 253–256 (2015).

B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Topological insulator Bi2Se3 based Q-switched Nd:LiYF4 nanosecond laser at 1313 nm,” Opt. Express 23(6), 7674–7680 (2015).
[Crossref] [PubMed]

2014 (2)

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116(4), 967–976 (2014).
[Crossref]

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

2013 (5)

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

H. N. Zhang, X. H. Chen, Q. P. Wang, X. Y. Zhang, J. Chang, L. Gao, H. B. Shen, Z. H. Cong, Z. J. Liu, X. T. Tao, and P. Li, “High efficiency Nd:YAG ceramic eye-safe laser operating at 1442.8 nm,” Opt. Lett. 38(16), 3075–3077 (2013).
[Crossref] [PubMed]

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

J. W. Szela, K. A. Sloyan, T. L. Parsonage, J. I. Mackenzie, and R. W. Eason, “Laser operation of a Tm:Y2O3 planar waveguide,” Opt. Express 21(10), 12460–12468 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (2)

H. Yu, Z. Pan, H. Zhang, Z. Wang, J. Wang, and M. Jiang, “Efficient Tm:LuVO4 laser at 1.9 μm,” Opt. Lett. 36(13), 2402–2404 (2011).
[Crossref] [PubMed]

P. Koopmann, P. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2μm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

2010 (1)

2008 (3)

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

A. Ikesue and Y. L. Aung, “Ceramics laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-pruity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

2004 (1)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

2001 (1)

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

2000 (1)

1988 (1)

Aggarwal, I.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Antipov, O. L.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramics laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Baer, C. R. E.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

Baker, C.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Beil, K.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

Belyaev, A. N.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[Crossref] [PubMed]

Bowman, S. R.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Braud, A.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

Brown, C. T. A.

Cai, Z.

Cai, Z. P.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Camy, P.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

Cenac, C.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116(4), 967–976 (2014).
[Crossref]

Chabushkin, A. N.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[Crossref] [PubMed]

Chang, J.

Chen, N.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Chen, X. H.

Chng, A.

Cong, Z. H.

Dominiak-Dzik, G.

Doualan, J. L.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

Eason, R. W.

Edouart, D.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116(4), 967–976 (2014).
[Crossref]

Emaury, F.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

Fedorov, P. P.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Fuhrberg, P.

A. A. Lagatsky, P. Koopmann, P. Fuhrberg, G. Huber, C. T. A. Brown, and W. Sibbett, “Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 μm,” Opt. Lett. 37(3), 437–439 (2012).
[Crossref] [PubMed]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Laser Operation and Spectroscopic Investigations of Tm:LuScO3,” in CLEO/Europe (2011), paper CA1–4.

Gao, L.

Gao, W. L.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

Garibin, E. A.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Gibert, F.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116(4), 967–976 (2014).
[Crossref]

Golling, M.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

Guan, X. F.

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Gusev, P. E.

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Heckl, O. H.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

Huang, H.

Huber, G.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

A. A. Lagatsky, P. Koopmann, P. Fuhrberg, G. Huber, C. T. A. Brown, and W. Sibbett, “Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 μm,” Opt. Lett. 37(3), 437–439 (2012).
[Crossref] [PubMed]

P. Koopmann, P. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2μm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-pruity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Laser Operation and Spectroscopic Investigations of Tm:LuScO3,” in CLEO/Europe (2011), paper CA1–4.

Hunt, M.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramics laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Jiang, B. Q.

D. Mao, B. Q. Jiang, W. D. Zhang, and J. L. Zhao, “Pulse-State Switchable Fiber Laser Mode-Locked by Carbon Nanotubes,” IEEE Photonics Technol. Lett. 27(3), 253–256 (2015).

Jiang, M.

Jin, L.

Keller, U.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

Khrushchalina, S. A.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[Crossref] [PubMed]

Kim, W.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Koopmann, P.

A. A. Lagatsky, P. Koopmann, P. Fuhrberg, G. Huber, C. T. A. Brown, and W. Sibbett, “Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 μm,” Opt. Lett. 37(3), 437–439 (2012).
[Crossref] [PubMed]

P. Koopmann, P. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2μm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Laser Operation and Spectroscopic Investigations of Tm:LuScO3,” in CLEO/Europe (2011), paper CA1–4.

Krankel, C.

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-pruity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

Kränkel, C.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

Kruglova, M. V.

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Krutov, M. A.

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Kuo, C. C.

P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06 μm,” Appl. Phys. B 109(2), 327–331 (2012).
[Crossref]

Kuznetsova, O. A.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[Crossref] [PubMed]

Lagatsky, A. A.

Lai, K. S.

Lamrini, S.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Laser Operation and Spectroscopic Investigations of Tm:LuScO3,” in CLEO/Europe (2011), paper CA1–4.

Lan, J. L.

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Lau, E.

Le Mounier, F.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116(4), 967–976 (2014).
[Crossref]

Lee, C. C.

P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06 μm,” Appl. Phys. B 109(2), 327–331 (2012).
[Crossref]

Li, P.

Lim, Y. L.

Lisiecki, R.

Liu, J. G.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Liu, P.

H. Wang, H. Huang, P. Liu, L. Jin, D. Shen, J. Zhang, and D. Tang, “Diode-pumped continuous-wave and Q-switched Tm:Y2O3 ceramics laser around 2050 nm,” Opt. Mater. Express 7(2), 296–303 (2017).
[Crossref]

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

Liu, Z. J.

Lu, H.

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

Lukasiewicz, T.

Luo, D. W.

Luo, P. L.

P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06 μm,” Appl. Phys. B 109(2), 327–331 (2012).
[Crossref]

Luo, Z.

Lyapin, A. A.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[Crossref] [PubMed]

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Ma, J.

Mackenzie, J. I.

Malov, A. V.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

Mao, D.

D. Mao, B. Q. Jiang, W. D. Zhang, and J. L. Zhao, “Pulse-State Switchable Fiber Laser Mode-Locked by Carbon Nanotubes,” IEEE Photonics Technol. Lett. 27(3), 253–256 (2015).

Menard, V.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

Moncorgé, R.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

Novikov, A. A.

Osiko, V. V.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Pan, Z.

Parsonage, T. L.

Peng, J.

Petermann, K.

P. Koopmann, P. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2μm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-pruity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Laser Operation and Spectroscopic Investigations of Tm:LuScO3,” in CLEO/Europe (2011), paper CA1–4.

Peters, P.

P. Koopmann, P. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2μm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

Peters, R.

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-pruity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

Phua, P. B.

Qian, L. J.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

Qin, Z. P.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Renard, S.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

Risk, W. P.

Romanov, K. N.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[Crossref] [PubMed]

Ryabochkina, P. A.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[Crossref] [PubMed]

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Ryba-Romanowski, W.

Sadowski, B.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Sakharov, N. V.

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Sanghera, J.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Saraceno, C. J.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

Schellhorn, M.

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

Scholle, K.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Laser Operation and Spectroscopic Investigations of Tm:LuScO3,” in CLEO/Europe (2011), paper CA1–4.

Schriber, C.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

Shaw, B.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Shen, D.

Shen, H. B.

Shy, J. T.

P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06 μm,” Appl. Phys. B 109(2), 327–331 (2012).
[Crossref]

Sibbett, W.

Sloyan, K. A.

Solarz, P.

Soulard, R.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Südmeyer, T.

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

Szela, J. W.

Tang, D.

Tang, D. Y.

Tao, X. T.

Tigreat, P. Y.

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

Toh, B. T.

Toh, S. W.

Tu, C. Y.

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Ushakov, S. N.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Villalobos, G.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Wang, H.

Wang, J.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

H. Yu, Z. Pan, H. Zhang, Z. Wang, J. Wang, and M. Jiang, “Efficient Tm:LuVO4 laser at 1.9 μm,” Opt. Lett. 36(13), 2402–2404 (2011).
[Crossref] [PubMed]

Wang, Q. P.

Wang, Y.

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Topological insulator Bi2Se3 based Q-switched Nd:LiYF4 nanosecond laser at 1313 nm,” Opt. Express 23(6), 7674–7680 (2015).
[Crossref] [PubMed]

Wang, Z.

Weng, J.

Wu, R. F.

Xie, G. Q.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

Xu, B.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Topological insulator Bi2Se3 based Q-switched Nd:LiYF4 nanosecond laser at 1313 nm,” Opt. Express 23(6), 7674–7680 (2015).
[Crossref] [PubMed]

Xu, H.

Xu, H. Y.

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Xu, J.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Xu, X.

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

Xu, X. D.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Yan, D.

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

Yang, H.

Yu, H.

Yuan, P.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

Zakharov, N. G.

Zhang, H.

Zhang, H. N.

Zhang, J.

Zhang, W. D.

D. Mao, B. Q. Jiang, W. D. Zhang, and J. L. Zhao, “Pulse-State Switchable Fiber Laser Mode-Locked by Carbon Nanotubes,” IEEE Photonics Technol. Lett. 27(3), 253–256 (2015).

Zhang, X. Y.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

H. N. Zhang, X. H. Chen, Q. P. Wang, X. Y. Zhang, J. Chang, L. Gao, H. B. Shen, Z. H. Cong, Z. J. Liu, X. T. Tao, and P. Li, “High efficiency Nd:YAG ceramic eye-safe laser operating at 1442.8 nm,” Opt. Lett. 38(16), 3075–3077 (2013).
[Crossref] [PubMed]

Zhao, J. L.

D. Mao, B. Q. Jiang, W. D. Zhang, and J. L. Zhao, “Pulse-State Switchable Fiber Laser Mode-Locked by Carbon Nanotubes,” IEEE Photonics Technol. Lett. 27(3), 253–256 (2015).

Zhou, D. H.

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Zhou, Z. Y.

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

Zinoviev, A. P.

Appl. Phys. B (6)

P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06 μm,” Appl. Phys. B 109(2), 327–331 (2012).
[Crossref]

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116(4), 967–976 (2014).
[Crossref]

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

A. Braud, P. Y. Tigreat, J. L. Doualan, and R. Moncorgé, “Spectroscopy and cw operation of a 1.85 µm Tm:KY3F10 laser,” Appl. Phys. B 72(8), 909–912 (2001).
[Crossref]

K. Beil, C. J. Saraceno, C. Schriber, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, U. Keller, C. Kränkel, and G. Huber, “Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup,” Appl. Phys. B 113(1), 13–18 (2013).
[Crossref]

P. Koopmann, P. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2μm,” Appl. Phys. B 102(1), 19–24 (2011).
[Crossref]

Ceram. Int. (1)

D. Yan, X. Xu, H. Lu, Y. Wang, P. Liu, and J. Zhang, “Fabrication and properties of Y2O3 transparent ceramic by sintering aid combinations,” Ceram. Int. 42(15), 16640–16643 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Mao, B. Q. Jiang, W. D. Zhang, and J. L. Zhao, “Pulse-State Switchable Fiber Laser Mode-Locked by Carbon Nanotubes,” IEEE Photonics Technol. Lett. 27(3), 253–256 (2015).

J. L. Lan, X. Y. Zhang, Z. Y. Zhou, B. Xu, H. Y. Xu, Z. P. Cai, N. Chen, J. Wang, X. D. Xu, R. Soulard, and R. Moncorgé, “Passively Q-Switched Tm:CaYAlO4 Laser Using a MoS2 Saturable Absorber,” IEEE Photonics Technol. Lett. 29(6), 515–518 (2017).
[Crossref]

J. Cryst. Growth (1)

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-pruity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

Z. P. Qin, J. G. Liu, G. Q. Xie, J. Ma, W. L. Gao, L. J. Qian, P. Yuan, X. D. Xu, J. Xu, and D. H. Zhou, “Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal,” Laser Phys. 23(10), 105806 (2013).
[Crossref]

Lasers Med. Sci. (1)

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramics laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Opt. Commun. (1)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Menard, and R. Moncorgé, “Tm3+:CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4-6), 395–402 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Opt. Mater. (2)

Y. Wang, J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, Z. P. Cai, Y. Wang, and C. Y. Tu, “Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal,” Opt. Mater. 66, 185–188 (2017).
[Crossref]

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
[Crossref]

Opt. Mater. Express (2)

Proc. SPIE (1)

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium Doped Laser Materials for Eye-safe Solid State Laser Application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Quantum Electron. (1)

P. A. Ryabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
[Crossref]

Other (2)

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Laser Operation and Spectroscopic Investigations of Tm:LuScO3,” in CLEO/Europe (2011), paper CA1–4.

A. A. Lagatsky, P. Koopmann, O. L. Antipov, C. T. A. Brown, G. Huber, and W. Sibbett, “Femtosecond pulse generation with Tm-doped sesquioxides,” CLEO/Europe (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Absorption spectra of Tm3+:LuScO3 ceramic with (a) the optical density of Tm3+ ions and photo of Tm3+:LuScO3 ceramic; (b) the absorption cross section for the 3H63H4 transition of Tm3+ ions.
Fig. 2
Fig. 2 Fluorescence spectrum of Tm3+:LuScO3 ceramic around 2 μm.
Fig. 3
Fig. 3 Fluorescence decay curve of the 3F4 multiplet in Tm3+:LuScO3 ceramic.
Fig. 4
Fig. 4 Experimental setup of Tm3+:LuScO3 ceramic lasers in CW and QS regimes.
Fig. 5
Fig. 5 Output power versus absorbed power of CW Tm3+:LuScO3 ceramic laser.
Fig. 6
Fig. 6 Laser spectrum of CW and Q-switched Tm3+:LuScO3 ceramic laser.
Fig. 7
Fig. 7 Output power versus absorbed power of Q-switched Tm3+:LuScO3 ceramic laser.
Fig. 8
Fig. 8 Single pulse profile showing the shortest pulse width of 0.59 μs; inset: pulse trains at maximum output power.
Fig. 9
Fig. 9 The dependences of (a) pulse width, (b) pulse repetition rate, (c) pulse energy and (d) pulse peak power on absorbed power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = η a η c λ p λ o T T + L

Metrics