Abstract

We proposed and fabricated a tilted moiré FBG (TMFBG), whose grating section was made up of two consecutive scribed TFBGs. By adjusting the Bragg wavelengths and the tilt angles of the two TFBGs, the two cladding mode combs of the transmission spectrum are non-overlapped. When the TMFBG was used for refractive index detection, its resolution can reach 2 × 10−7 RIU, which is an order of magnitude higher than that of a single TFBG. And this result also has a good performance of temperature-insensitivity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser

Ruize Wang, Jinhai Si, Tao Chen, Lihe Yan, Houjun Cao, Xuantung Pham, and Xun Hou
Opt. Express 25(20) 23684-23689 (2017)

High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity

Jean-Michel Renoirt, Chao Zhang, Marc Debliquy, Marie-Georges Olivier, Patrice Mégret, and Christophe Caucheteur
Opt. Express 21(23) 29073-29082 (2013)

Temperature-insensitive simultaneous rotation and displacement (bending) sensor based on tilted fiber Bragg grating

Piotr Kisała, Damian Harasim, and Janusz Mroczka
Opt. Express 24(26) 29922-29929 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
    [Crossref] [PubMed]
  2. X. Guo and L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16(19), 14429–14434 (2008).
    [Crossref] [PubMed]
  3. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
    [Crossref]
  4. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [Crossref] [PubMed]
  5. H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
    [Crossref]
  6. J. Villatoro and D. Monzon-Hernandez, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol. 24(3), 1409–1413 (2006).
    [Crossref]
  7. A. Seki, K. Narita, and K. Watanabe, “Refractive index measurement in sucrose solution and beverage using surface plasmon resonance sensor based on hetero-core structured fiber optic,” Procedia Chem. 20, 115–117 (2016).
    [Crossref]
  8. Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
    [Crossref]
  9. H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
    [Crossref]
  10. Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
    [Crossref]
  11. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
    [Crossref]
  12. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  13. K. S. Lee and T. Erdogan, “Fiber mode coupling in transmissive and reflective tilted fiber gratings,” Appl. Opt. 39(9), 1394–1404 (2000).
    [Crossref] [PubMed]
  14. C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photonics Technol. Lett. 20(24), 2153–2155 (2008).
    [Crossref]
  15. Y.-C. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” J. Lightwave Technol. 28(11), 1677–1684 (2010).
    [Crossref]
  16. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
    [Crossref]
  17. C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17(12), 2703–2705 (2005).
    [Crossref]
  18. X. Chen, J. Xu, X. Zhang, T. Guo, and B.-O. Guan, “Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
    [Crossref]
  19. X. Qiu, X. Chen, F. Liu, B.-O. Guan, and T. Guo, “Plasmonic fiber-optic refractometers based on a high Q-factor amplitude interrogation,” IEEE Sens. J. 16(15), 5974–5978 (2016).
    [Crossref]
  20. C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
    [Crossref] [PubMed]
  21. D. C. J. Reid, C. M. Ragdale, I. Bennion, J. Buus, and W. J. Stewart, “Phase-shifted Moire grating fibre resonators,” Electron. Lett. 26(1), 10–12 (1990).
    [Crossref]
  22. A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Simultaneous two-parameter sensing using a single tilted Moiré fiber Bragg grating with discrete wavelet transform technique,” IEEE Photonics Technol. Lett. 22(21), 1574–1576 (2010).
    [Crossref]
  23. L. Zhao, L. Li, A. Luo, J. Z. Xia, R. H. Qu, and Z. Fang, “Bandwidth controllable transmission filter based on Moiré fiber Bragg grating,” Optik (Stuttg.) 113(9), 464–468 (2002).
    [Crossref]
  24. A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Tilted Moiré fiber Bragg grating optical filters with controllable passband and stopband,” J. Lightwave Technol. 28(6), 898–904 (2010).
    [Crossref]
  25. W. Wang, Y. Yu, Y. Geng, and X. Li, “Measurements of thermo-optic coefficient of standard single mode fiber in large temperature range,” in International Conference on Optical Instruments and Technology (International Society for Optics and Photonics, 2015), paper 96200Y.
  26. S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979).
    [Crossref]

2017 (1)

X. Chen, J. Xu, X. Zhang, T. Guo, and B.-O. Guan, “Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

2016 (4)

X. Qiu, X. Chen, F. Liu, B.-O. Guan, and T. Guo, “Plasmonic fiber-optic refractometers based on a high Q-factor amplitude interrogation,” IEEE Sens. J. 16(15), 5974–5978 (2016).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

A. Seki, K. Narita, and K. Watanabe, “Refractive index measurement in sucrose solution and beverage using surface plasmon resonance sensor based on hetero-core structured fiber optic,” Procedia Chem. 20, 115–117 (2016).
[Crossref]

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

2014 (1)

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

2010 (3)

2008 (4)

X. Guo and L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16(19), 14429–14434 (2008).
[Crossref] [PubMed]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photonics Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

2007 (2)

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

2002 (1)

L. Zhao, L. Li, A. Luo, J. Z. Xia, R. H. Qu, and Z. Fang, “Bandwidth controllable transmission filter based on Moiré fiber Bragg grating,” Optik (Stuttg.) 113(9), 464–468 (2002).
[Crossref]

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

2000 (1)

1997 (1)

1996 (1)

1990 (1)

D. C. J. Reid, C. M. Ragdale, I. Bennion, J. Buus, and W. J. Stewart, “Phase-shifted Moire grating fibre resonators,” Electron. Lett. 26(1), 10–12 (1990).
[Crossref]

1979 (1)

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photonics Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Barnes, J.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Bennion, I.

D. C. J. Reid, C. M. Ragdale, I. Bennion, J. Buus, and W. J. Stewart, “Phase-shifted Moire grating fibre resonators,” Electron. Lett. 26(1), 10–12 (1990).
[Crossref]

Bette, S.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photonics Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Bock, W.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Brambilla, G.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

Buus, J.

D. C. J. Reid, C. M. Ragdale, I. Bennion, J. Buus, and W. J. Stewart, “Phase-shifted Moire grating fibre resonators,” Electron. Lett. 26(1), 10–12 (1990).
[Crossref]

Caucheteur, C.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photonics Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

Chen, C.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photonics Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Chen, X.

X. Chen, J. Xu, X. Zhang, T. Guo, and B.-O. Guan, “Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

X. Qiu, X. Chen, F. Liu, B.-O. Guan, and T. Guo, “Plasmonic fiber-optic refractometers based on a high Q-factor amplitude interrogation,” IEEE Sens. J. 16(15), 5974–5978 (2016).
[Crossref]

Chen, Z. H.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

Ding, Y.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

Ding, Y. M.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

Dulashko, Y.

Erdogan, T.

Fan, X.

Fang, Z.

L. Zhao, L. Li, A. Luo, J. Z. Xia, R. H. Qu, and Z. Fang, “Bandwidth controllable transmission filter based on Moiré fiber Bragg grating,” Optik (Stuttg.) 113(9), 464–468 (2002).
[Crossref]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Fraser, J. M.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Geng, R.

Giovinazzo, M.

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Tilted Moiré fiber Bragg grating optical filters with controllable passband and stopband,” J. Lightwave Technol. 28(6), 898–904 (2010).
[Crossref]

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Simultaneous two-parameter sensing using a single tilted Moiré fiber Bragg grating with discrete wavelet transform technique,” IEEE Photonics Technol. Lett. 22(21), 1574–1576 (2010).
[Crossref]

Greig, P.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Guan, B.-O.

X. Chen, J. Xu, X. Zhang, T. Guo, and B.-O. Guan, “Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

X. Qiu, X. Chen, F. Liu, B.-O. Guan, and T. Guo, “Plasmonic fiber-optic refractometers based on a high Q-factor amplitude interrogation,” IEEE Sens. J. 16(15), 5974–5978 (2016).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Guo, M.

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

Guo, T.

X. Chen, J. Xu, X. Zhang, T. Guo, and B.-O. Guan, “Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

X. Qiu, X. Chen, F. Liu, B.-O. Guan, and T. Guo, “Plasmonic fiber-optic refractometers based on a high Q-factor amplitude interrogation,” IEEE Sens. J. 16(15), 5974–5978 (2016).
[Crossref]

Guo, X.

Jian, S.

Kanie, T.

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

Katayama, M.

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Lee, K. S.

Li, L.

L. Zhao, L. Li, A. Luo, J. Z. Xia, R. H. Qu, and Z. Fang, “Bandwidth controllable transmission filter based on Moiré fiber Bragg grating,” Optik (Stuttg.) 113(9), 464–468 (2002).
[Crossref]

Li, Q. G.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

Liu, C.

Liu, F.

X. Qiu, X. Chen, F. Liu, B.-O. Guan, and T. Guo, “Plasmonic fiber-optic refractometers based on a high Q-factor amplitude interrogation,” IEEE Sens. J. 16(15), 5974–5978 (2016).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Loock, H. P.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Lu, C.

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Simultaneous two-parameter sensing using a single tilted Moiré fiber Bragg grating with discrete wavelet transform technique,” IEEE Photonics Technol. Lett. 22(21), 1574–1576 (2010).
[Crossref]

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Tilted Moiré fiber Bragg grating optical filters with controllable passband and stopband,” J. Lightwave Technol. 28(6), 898–904 (2010).
[Crossref]

Lu, Y.-C.

Luo, A.

L. Zhao, L. Li, A. Luo, J. Z. Xia, R. H. Qu, and Z. Fang, “Bandwidth controllable transmission filter based on Moiré fiber Bragg grating,” Optik (Stuttg.) 113(9), 464–468 (2002).
[Crossref]

Lv, H.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

Mansuripur, M.

Megret, P.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photonics Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Mégret, P.

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

Monzon-Hernandez, D.

Narita, K.

A. Seki, K. Narita, and K. Watanabe, “Refractive index measurement in sucrose solution and beverage using surface plasmon resonance sensor based on hetero-core structured fiber optic,” Procedia Chem. 20, 115–117 (2016).
[Crossref]

Ning, T.

Oleschuk, R. D.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Peng, G.

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Simultaneous two-parameter sensing using a single tilted Moiré fiber Bragg grating with discrete wavelet transform technique,” IEEE Photonics Technol. Lett. 22(21), 1574–1576 (2010).
[Crossref]

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Tilted Moiré fiber Bragg grating optical filters with controllable passband and stopband,” J. Lightwave Technol. 28(6), 898–904 (2010).
[Crossref]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Qiu, X.

X. Qiu, X. Chen, F. Liu, B.-O. Guan, and T. Guo, “Plasmonic fiber-optic refractometers based on a high Q-factor amplitude interrogation,” IEEE Sens. J. 16(15), 5974–5978 (2016).
[Crossref]

Qu, R. H.

L. Zhao, L. Li, A. Luo, J. Z. Xia, R. H. Qu, and Z. Fang, “Bandwidth controllable transmission filter based on Moiré fiber Bragg grating,” Optik (Stuttg.) 113(9), 464–468 (2002).
[Crossref]

Ragdale, C. M.

D. C. J. Reid, C. M. Ragdale, I. Bennion, J. Buus, and W. J. Stewart, “Phase-shifted Moire grating fibre resonators,” Electron. Lett. 26(1), 10–12 (1990).
[Crossref]

Reid, D. C. J.

D. C. J. Reid, C. M. Ragdale, I. Bennion, J. Buus, and W. J. Stewart, “Phase-shifted Moire grating fibre resonators,” Electron. Lett. 26(1), 10–12 (1990).
[Crossref]

Seki, A.

A. Seki, K. Narita, and K. Watanabe, “Refractive index measurement in sucrose solution and beverage using surface plasmon resonance sensor based on hetero-core structured fiber optic,” Procedia Chem. 20, 115–117 (2016).
[Crossref]

Shibata, S.

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979).
[Crossref]

Sipe, J. E.

Stewart, W. J.

D. C. J. Reid, C. M. Ragdale, I. Bennion, J. Buus, and W. J. Stewart, “Phase-shifted Moire grating fibre resonators,” Electron. Lett. 26(1), 10–12 (1990).
[Crossref]

Sumetsky, M.

Takahashi, S.

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979).
[Crossref]

Tam, H.

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Simultaneous two-parameter sensing using a single tilted Moiré fiber Bragg grating with discrete wavelet transform technique,” IEEE Photonics Technol. Lett. 22(21), 1574–1576 (2010).
[Crossref]

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Tilted Moiré fiber Bragg grating optical filters with controllable passband and stopband,” J. Lightwave Technol. 28(6), 898–904 (2010).
[Crossref]

Tazawa, H.

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

Tian, Z.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Tong, L.

Villatoro, J.

Wang, C.

Wang, F.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

Wang, Q.

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

Watanabe, K.

A. Seki, K. Narita, and K. Watanabe, “Refractive index measurement in sucrose solution and beverage using surface plasmon resonance sensor based on hetero-core structured fiber optic,” Procedia Chem. 20, 115–117 (2016).
[Crossref]

Wei, W.

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

Windeler, R. S.

Wong, A. C. L.

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Tilted Moiré fiber Bragg grating optical filters with controllable passband and stopband,” J. Lightwave Technol. 28(6), 898–904 (2010).
[Crossref]

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Simultaneous two-parameter sensing using a single tilted Moiré fiber Bragg grating with discrete wavelet transform technique,” IEEE Photonics Technol. Lett. 22(21), 1574–1576 (2010).
[Crossref]

Wuilpart, M.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photonics Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Xia, J. Z.

L. Zhao, L. Li, A. Luo, J. Z. Xia, R. H. Qu, and Z. Fang, “Bandwidth controllable transmission filter based on Moiré fiber Bragg grating,” Optik (Stuttg.) 113(9), 464–468 (2002).
[Crossref]

Xiong, L. B.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

Xu, F.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

Xu, J.

X. Chen, J. Xu, X. Zhang, T. Guo, and B.-O. Guan, “Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

Yam, S. S. H.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Yi, X. N.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

Yu, H. Q.

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

Zhang, F.

Zhang, X.

X. Chen, J. Xu, X. Zhang, T. Guo, and B.-O. Guan, “Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

Zhao, L.

L. Zhao, L. Li, A. Luo, J. Z. Xia, R. H. Qu, and Z. Fang, “Bandwidth controllable transmission filter based on Moiré fiber Bragg grating,” Optik (Stuttg.) 113(9), 464–468 (2002).
[Crossref]

Zhao, Y.

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[Crossref]

Electron. Lett. (1)

D. C. J. Reid, C. M. Ragdale, I. Bennion, J. Buus, and W. J. Stewart, “Phase-shifted Moire grating fibre resonators,” Electron. Lett. 26(1), 10–12 (1990).
[Crossref]

IEEE Photonics Technol. Lett. (5)

A. C. L. Wong, M. Giovinazzo, H. Tam, C. Lu, and G. Peng, “Simultaneous two-parameter sensing using a single tilted Moiré fiber Bragg grating with discrete wavelet transform technique,” IEEE Photonics Technol. Lett. 22(21), 1574–1576 (2010).
[Crossref]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted fiber Bragg grating refractometer using polarization-dependent loss measurement,” IEEE Photonics Technol. Lett. 20(24), 2153–2155 (2008).
[Crossref]

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

X. Chen, J. Xu, X. Zhang, T. Guo, and B.-O. Guan, “Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating,” IEEE Photonics Technol. Lett. 29(9), 719–722 (2017).
[Crossref]

IEEE Sens. J. (1)

X. Qiu, X. Chen, F. Liu, B.-O. Guan, and T. Guo, “Plasmonic fiber-optic refractometers based on a high Q-factor amplitude interrogation,” IEEE Sens. J. 16(15), 5974–5978 (2016).
[Crossref]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979).
[Crossref]

J. Opt. Soc. Am. A (2)

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[Crossref]

Nat. Commun. (1)

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lasers Eng. (1)

H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng. 56, 50–53 (2014).
[Crossref]

Opt. Lett. (1)

Optik (Stuttg.) (1)

L. Zhao, L. Li, A. Luo, J. Z. Xia, R. H. Qu, and Z. Fang, “Bandwidth controllable transmission filter based on Moiré fiber Bragg grating,” Optik (Stuttg.) 113(9), 464–468 (2002).
[Crossref]

Procedia Chem. (1)

A. Seki, K. Narita, and K. Watanabe, “Refractive index measurement in sucrose solution and beverage using surface plasmon resonance sensor based on hetero-core structured fiber optic,” Procedia Chem. 20, 115–117 (2016).
[Crossref]

Sens. Actuators B Chem. (1)

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators B Chem. 222, 159–165 (2016).
[Crossref]

Other (1)

W. Wang, Y. Yu, Y. Geng, and X. Li, “Measurements of thermo-optic coefficient of standard single mode fiber in large temperature range,” in International Conference on Optical Instruments and Technology (International Society for Optics and Photonics, 2015), paper 96200Y.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The structure diagram of a tilted moiré FBG
Fig. 2
Fig. 2 Fabrication procedure for the tilted moiré FBG
Fig. 3
Fig. 3 The transmission spectrum of the TMFBG in the air (The modes marked by arrows will be used to study the temperature response in the following experiment.)
Fig. 4
Fig. 4 Overlapped transmission spectra of the TMFBG varied with temperature. The left inset shows the zooming of the core mode of the TFBG1 and the right inset shows the zooming of the ghost mode of the TFBG2.
Fig. 5
Fig. 5 The relationship between the wavelength of the core mode and temperature and the linear fitting of the corresponding data for TFBG1 and TFBG2.
Fig. 6
Fig. 6 Evolution of the TMFBG spectrum versus n ext .
Fig. 7
Fig. 7 The cut-off point of the TMFBG as n ext =1.4224 (the blue star and the green star marked the cut-off mode)
Fig. 8
Fig. 8 Relative wavelength shifts in the distance of the cut-off mode to the Bragg wavelength as a function of the refractive index of glycerin solution at 598.3 nm:(a) the TFBG1, (b)the TFBG2.

Tables (1)

Tables Icon

Table 1 The temperature sensing sensitivity of the cladding modes and their differences with the temperature sensing sensitivity of the respective core mode.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ Bragg =2 n eff,core Λ cosθ
λ clad,i =( n eff,core + n eff,clad,i ) Λ cosθ
Δ λ Bragg = λ Bragg ( 1 n eff,core d n eff,core dT + 1 Λ dΛ dT )ΔT = λ Bragg ( α+β )ΔT
Δ λ clad,i =[ Λ cosθ d( n eff,core + n eff,clad,i ) dT + n eff,core + n eff,clad,i cosθ dΛ dT ]ΔT = λ clad,i ( A i +β )ΔT
Δ λ Bragg Δ λ clad,i ΔT =( λ Bragg λ clad,i )β+( λ Bragg α λ clad,i A i ) ( λ Bragg λ clad,i )( β+α )
Δ λ Bragg Δ λ clad,i ΔT <100nm*( β+α )=0.87pm K 1
R total = R L R R = 2pm 545.818nmRI U 1 2pm 547.229nmRI U 1 =2× 10 7 RIU

Metrics