Abstract

Engineering the surrounding electromagnetic environment of light emitters by photonic engineering, e.g. photonic crystal cavity, can dramatically enhance its spontaneous emission rate through the Purcell effect. Here we report an enhanced spontaneous emission rate of monolayer molybdenum disulfide (MoS2) by coupling it to a 1D silicon nitride photonic crystal. A four times stronger photoluminescence (PL) intensity of MoS2 in a 1D photonic crystal cavity than un-coupled emission is observed. Considering the relative ease of fabrication and the natural integration with a silicon-based system, the high Purcell factor renders this device as a highly promising platform for applications such as visible solid-state cavity quantum electrodynamics (QED).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced electron-hole droplet emission from surface-oxidized silicon photonic crystal nanocavities

Hisashi Sumikura, Eiichi Kuramochi, Hideaki Taniyama, and Masaya Notomi
Opt. Express 24(2) 1072-1081 (2016)

Ultrathin platelet antennas mediated light-matter interaction in monolayer MoS2

Yingyi Yang, Di Wang, Zheng Jie Tan, Xiang Xiong, Mu Wang, Ruwen Peng, and Nicholas X. Fang
Opt. Express 25(9) 10261-10269 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  2. X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
    [Crossref]
  3. D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States,” Phys. Rev. Lett. 111(21), 216805 (2013).
    [Crossref] [PubMed]
  4. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
    [Crossref] [PubMed]
  5. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
    [Crossref] [PubMed]
  6. X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
    [Crossref] [PubMed]
  7. W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).
  8. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36(3), 421–423 (2011).
    [Crossref] [PubMed]
  9. M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16(23), 19136–19145 (2008).
    [Crossref] [PubMed]
  10. C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
    [Crossref] [PubMed]
  11. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
    [Crossref] [PubMed]
  12. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
    [Crossref] [PubMed]
  13. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals,” Science 308(5726), 1296–1298 (2005).
    [Crossref] [PubMed]

2014 (4)

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

2013 (2)

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States,” Phys. Rev. Lett. 111(21), 216805 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (3)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

2008 (1)

2005 (2)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Aaron, M. J.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Al-Saab, F.

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Arka, M.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Aslan, O. B.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Babinec, T.

Berkelbach, T. C.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Brus, L. E.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Chernikov, A.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

da Jornada, F. H.

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States,” Phys. Rev. Lett. 111(21), 216805 (2013).
[Crossref] [PubMed]

David, G. M.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Dean, C. R.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Deotare, P.

Englund, D.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Fai Mak, K.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Fariba, H.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Gan, X.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Gao, Y.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Gholipour, B.

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

Hatami, F.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Heinz, T. F.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hewak, D. W.

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

Hill, H. M.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Hone, J.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Huang, C.-C.

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

Hybertsen, M. S.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Jason, S. R.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Jelena, V.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Jiaqiang, Y.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Khan, M.

Kim, P.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Lee, C.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Li, Y.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Loncar, M.

Louie, S. G.

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States,” Phys. Rev. Lett. 111(21), 216805 (2013).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

McCutcheon, M. W.

Meric, I.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Nirmal, J. G.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Noda, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Ou, J.-Y.

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

Qiu, D. Y.

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States,” Phys. Rev. Lett. 111(21), 216805 (2013).
[Crossref] [PubMed]

Reichman, D. R.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Rigosi, A.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

Ryu, S.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Sanfeng, W.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shepard, K. L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Shiue, R.-J.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Simpson, R. E.

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Sonia, B.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Sorgenfrei, S.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Taniguchi, T.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Trusheim, M. E.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

van der Zande, A.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Walker, J. C.

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

Wang, L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Wang, S.

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

Wang, Y.

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Watanabe, K.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Xiao, D.

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

Xiaodong, X.

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

Xu, X.

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Yan, H.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Yao, W.

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

Yao, X.

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Young, A. F.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

2D Materials (1)

W. Sanfeng, B. Sonia, M. J. Aaron, S. R. Jason, J. G. Nirmal, Y. Jiaqiang, G. M. David, Y. Wang, H. Fariba, V. Jelena, M. Arka, and X. Xiaodong, “Control of two-dimensional excitonic light emission via photonic crystal,” 2D Materials 1, 011001 (2014).

ACS Nano (1)

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

X. Gan, Y. Gao, K. Fai Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, and D. Englund, “Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity,” Appl. Phys. Lett. 103(18), 181119 (2013).
[Crossref] [PubMed]

Nanoscale (1)

C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, “Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature,” Nanoscale 6(21), 12792–12797 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides,” Nat. Phys. 10(5), 343–350 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (4)

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States,” Phys. Rev. Lett. 111(21), 216805 (2013).
[Crossref] [PubMed]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS(2).,” Phys. Rev. Lett. 113(7), 076802 (2014).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Science (1)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic diagram shows the 1D photonic crystal integrated with monolayer MoS2. (b) Simulated electric field intensity | E | 2 for the cavity optical mode. The resonance wavelength is 667.9 nm, and simulated Q is about 1.3 × 105 without considering the waveguide losses and mode volume is V m 0.55 ( λ/n ) 3 . (c) Scanning electron micrograph of a fabricated cavity structure before MoS2 transfer. The substrate is silicon, and nanobeam of silicon nitride is suspended above it.
Fig. 2
Fig. 2 (a) PL and (b) Raman spectra of atmospheric pressure chemical vapor deposition (APCVD) grown MoS2 thin films on c-plane sapphire substrate. The peak separation between A1g and E 2g 1 is 19.02 cm−1. This value of peak separation between two Raman peaks ( E 2g 1 and A1g) can be used to identify the number of MoS2 layers, which shows a single layer for our grown MoS2. The narrow full width at half maximum of E 2g 1 peak implies MoS2 thin films grown on c-plane sapphire are close to single crystal structures. (c) Lorentzian fit of Raman peaks. The full width at half maximum of peak E 2g 1 is 3.94 cm−1.
Fig. 3
Fig. 3 (a) Micro-PL spatial intensity mapping of the fabricated nanocavity before MoS2 transfer. The brightest area corresponds to area of cavity part of PC nanocavity. (b) The corresponding SEM image of the PC area with defined axes. (c) PL spectra with 600/mm grating, are measured on PC and cavity regions, as indicated by the circles with corresponding colors in (b). The inset: Cavity resonance measured with a high-resolution 1800/mm grating and Lorentzian fit. A fit to a Lorentzian gives Q = 2050.
Fig. 4
Fig. 4 PL spectra are measured on PC, cavity and substrate regions.

Metrics