Abstract

A photonic scheme to generate a multi-frequency phase-coded microwave signal based on a dual-output Mach-Zehnder modulator (DOMZM) and balanced detection is proposed in this paper. The DOMZM driven by an electrical coding data modulates a coherent multi-wavelength light source (CMWL), and a balanced photodetector (BPD) demodulates the output of the DOMZM; as a result, a multi-frequency phase-coded microwave signal is generated. Experiments generate two two-frequency phase-coded signals: one is 5GHz/10GHz signal with a coding rate of 2Gb/s, and the other is 10GHz/20GHz signal with a coding rate of 4Gb/s. Their autocorrelation results show a good pulse compression capability. Each frequency of a two-frequency signal has similar performances with the other in terms of peak-to-side lobe ratio (PSR) and the full width at half-maximum (FWHM) of the main lobe. The proposed scheme can be applied to radar to reduce false detections in adverse conditions. With its potential flexible frequency agility, it can be used for jamming resistance and elimination of the Doppler blind speed during moving target detection.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-frequency phase-coded microwave signal generation based on polarization modulation and balanced detection

Dan Zhu, Weiyuan Xu, Zhengwu Wei, and Shilong Pan
Opt. Lett. 41(1) 107-110 (2016)

Photonic generation of a phase-coded microwave signal based on a single dual-drive Mach–Zehnder modulator

Zhenzhou Tang, Tingting Zhang, Fangzheng Zhang, and Shilong Pan
Opt. Lett. 38(24) 5365-5368 (2013)

Phase-coded microwave signal generation based on a single electro-optical modulator and its application in accurate distance measurement

Fangzheng Zhang, Xiaozhong Ge, Bindong Gao, and Shilong Pan
Opt. Express 23(17) 21867-21874 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Skolnik, Introduction to Radar (Radar Handbook 2, 1962).
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002).
    [Crossref] [PubMed]
  4. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  5. Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
    [Crossref]
  6. M. Li, Z. Li, and J. Yao, “Photonic Generation of Precisely $\ pi $ Phase-Shifted Binary Phase-Coded Microwave Signal,” IEEE Photonics Technol. Lett. 24(22), 2001–2004 (2012).
    [Crossref]
  7. H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett. 38(8), 1361–1363 (2013).
    [Crossref] [PubMed]
  8. Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
    [Crossref]
  9. H. Chi and J. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
    [Crossref]
  10. W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photonics Technol. Lett. 25(19), 1867–1870 (2013).
    [Crossref]
  11. W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 5501507 (2013).
    [Crossref]
  12. Z. Tang, T. Zhang, F. Zhang, and S. Pan, “Photonic generation of a phase-coded microwave signal based on a single dual-drive Mach-Zehnder modulator,” Opt. Lett. 38(24), 5365–5368 (2013).
    [Crossref] [PubMed]
  13. S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett. 39(13), 3958–3961 (2014).
    [Crossref] [PubMed]
  14. Y. Dai and J. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett. 32(24), 3486–3488 (2007).
    [Crossref] [PubMed]
  15. H. Chi and J. Yao, “An approach to photonic generation of high-frequency phase-coded RF pulses,” IEEE Photonics Technol. Lett. 19(10), 768–770 (2007).
    [Crossref]
  16. W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
    [Crossref] [PubMed]
  17. L. Gao, X. Chen, and J. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photonics Technol. Lett. 25(10), 899–902 (2013).
    [Crossref]
  18. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
    [Crossref]
  19. W. Li, W. T. Wang, W. H. Sun, L. X. Wang, and N. H. Zhu, “Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM,” Opt. Express 22(7), 7446–7457 (2014).
    [Crossref] [PubMed]
  20. P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express 21(1), 631–639 (2013).
    [Crossref] [PubMed]
  21. Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
    [Crossref]
  22. F. Zhang, X. Ge, B. Gao, and S. Pan, “Phase-coded microwave signal generation based on a single electro-optical modulator and its application in accurate distance measurement,” Opt. Express 23(17), 21867–21874 (2015).
    [Crossref] [PubMed]
  23. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48(9), 1151–1157 (2012).
    [Crossref]
  24. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  25. F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
    [Crossref]
  26. D. Zhu, W. Xu, Z. Wei, and S. Pan, “Multi-frequency phase-coded microwave signal generation based on polarization modulation and balanced detection,” Opt. Lett. 41(1), 107–110 (2016).
    [Crossref] [PubMed]
  27. V. Ravenni, “Performance evaluations of frequency diversity radar system,” in Proceedings of Microwave Conference (IEEE, 2007), pp. 1715–1718.
  28. Y. Quan, Y. Li, Y. Wu, L. Ran, M. Xing, and M. Liu, “Moving target detection for frequency agility radar by sparse reconstruction,” Rev. Sci. Instrum. 87(9), 094703 (2016).
    [Crossref] [PubMed]
  29. S. J. Spector, M. W. Geis, G.-R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008).
    [Crossref] [PubMed]
  30. K. Hasebe, T. Sato, K. Takeda, T. Fujii, T. Kakitsuka, and S. Matsuo, “High-speed modulation of lateral pin diode structure electro-absorption modulator integrated with DFB laser,” J. Lightwave Technol. 33(6), 1235–1240 (2015).
    [Crossref]
  31. K. Corp and E. Newark, “The advantages of hybrid optical integration, as demonstrated by a 4x25Gb/s transceiver (TROSA),” in Optical Fiber Communication Conference (Optical Society of America, 2017), pp. M3B. 3.

2016 (2)

Y. Quan, Y. Li, Y. Wu, L. Ran, M. Xing, and M. Liu, “Moving target detection for frequency agility radar by sparse reconstruction,” Rev. Sci. Instrum. 87(9), 094703 (2016).
[Crossref] [PubMed]

D. Zhu, W. Xu, Z. Wei, and S. Pan, “Multi-frequency phase-coded microwave signal generation based on polarization modulation and balanced detection,” Opt. Lett. 41(1), 107–110 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

2013 (8)

P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express 21(1), 631–639 (2013).
[Crossref] [PubMed]

H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett. 38(8), 1361–1363 (2013).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[Crossref] [PubMed]

Z. Tang, T. Zhang, F. Zhang, and S. Pan, “Photonic generation of a phase-coded microwave signal based on a single dual-drive Mach-Zehnder modulator,” Opt. Lett. 38(24), 5365–5368 (2013).
[Crossref] [PubMed]

Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

L. Gao, X. Chen, and J. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photonics Technol. Lett. 25(10), 899–902 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photonics Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 5501507 (2013).
[Crossref]

2012 (3)

M. Li, Z. Li, and J. Yao, “Photonic Generation of Precisely $\ pi $ Phase-Shifted Binary Phase-Coded Microwave Signal,” IEEE Photonics Technol. Lett. 24(22), 2001–2004 (2012).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48(9), 1151–1157 (2012).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

2011 (3)

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

2008 (2)

2007 (3)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

H. Chi and J. Yao, “An approach to photonic generation of high-frequency phase-coded RF pulses,” IEEE Photonics Technol. Lett. 19(10), 768–770 (2007).
[Crossref]

Y. Dai and J. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett. 32(24), 3486–3488 (2007).
[Crossref] [PubMed]

2002 (1)

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48(9), 1151–1157 (2012).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chen, X.

L. Gao, X. Chen, and J. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photonics Technol. Lett. 25(10), 899–902 (2013).
[Crossref]

Chen, Y.

Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express 21(1), 631–639 (2013).
[Crossref] [PubMed]

Chi, H.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

H. Chi and J. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

H. Chi and J. Yao, “An approach to photonic generation of high-frequency phase-coded RF pulses,” IEEE Photonics Technol. Lett. 19(10), 768–770 (2007).
[Crossref]

Corp, K.

K. Corp and E. Newark, “The advantages of hybrid optical integration, as demonstrated by a 4x25Gb/s transceiver (TROSA),” in Optical Fiber Communication Conference (Optical Society of America, 2017), pp. M3B. 3.

Dai, Y.

Fujii, T.

Gan, F.

Gao, B.

Gao, L.

L. Gao, X. Chen, and J. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photonics Technol. Lett. 25(10), 899–902 (2013).
[Crossref]

Ge, X.

Geis, M. W.

Ghelfi, P.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48(9), 1151–1157 (2012).
[Crossref]

Grein, M. E.

Hasebe, K.

Ippen, E. P.

Jiang, H. Y.

Kakitsuka, T.

Kärtner, F. Z.

Laghezza, F.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48(9), 1151–1157 (2012).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Leaird, D. E.

Lennon, D. M.

Li, M.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photonics Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 5501507 (2013).
[Crossref]

M. Li, Z. Li, and J. Yao, “Photonic Generation of Precisely $\ pi $ Phase-Shifted Binary Phase-Coded Microwave Signal,” IEEE Photonics Technol. Lett. 24(22), 2001–2004 (2012).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Li, W.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, and N. H. Zhu, “Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM,” Opt. Express 22(7), 7446–7457 (2014).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photonics Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 5501507 (2013).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Li, Y.

Y. Quan, Y. Li, Y. Wu, L. Ran, M. Xing, and M. Liu, “Moving target detection for frequency agility radar by sparse reconstruction,” Rev. Sci. Instrum. 87(9), 094703 (2016).
[Crossref] [PubMed]

P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, “A novel approach to photonic generation of RF binary digital modulation signals,” Opt. Express 21(1), 631–639 (2013).
[Crossref] [PubMed]

Li, Z.

M. Li, Z. Li, and J. Yao, “Photonic Generation of Precisely $\ pi $ Phase-Shifted Binary Phase-Coded Microwave Signal,” IEEE Photonics Technol. Lett. 24(22), 2001–2004 (2012).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Liu, M.

Y. Quan, Y. Li, Y. Wu, L. Ran, M. Xing, and M. Liu, “Moving target detection for frequency agility radar by sparse reconstruction,” Rev. Sci. Instrum. 87(9), 094703 (2016).
[Crossref] [PubMed]

Liu, S.

Luo, B.

Lyszczarz, T. M.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Matsuo, S.

McKinney, J. D.

Newark, E.

K. Corp and E. Newark, “The advantages of hybrid optical integration, as demonstrated by a 4x25Gb/s transceiver (TROSA),” in Optical Fiber Communication Conference (Optical Society of America, 2017), pp. M3B. 3.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pan, S.

Pan, W.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Popovic, M. A.

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Quan, Y.

Y. Quan, Y. Li, Y. Wu, L. Ran, M. Xing, and M. Liu, “Moving target detection for frequency agility radar by sparse reconstruction,” Rev. Sci. Instrum. 87(9), 094703 (2016).
[Crossref] [PubMed]

Ran, L.

Y. Quan, Y. Li, Y. Wu, L. Ran, M. Xing, and M. Liu, “Moving target detection for frequency agility radar by sparse reconstruction,” Rev. Sci. Instrum. 87(9), 094703 (2016).
[Crossref] [PubMed]

Ravenni, V.

V. Ravenni, “Performance evaluations of frequency diversity radar system,” in Proceedings of Microwave Conference (IEEE, 2007), pp. 1715–1718.

Sato, T.

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48(9), 1151–1157 (2012).
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Spector, S. J.

Sun, W. H.

Takeda, K.

Tang, Z.

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wang, H.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 5501507 (2013).
[Crossref]

Wang, L. X.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, and N. H. Zhu, “Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM,” Opt. Express 22(7), 7446–7457 (2014).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photonics Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 5501507 (2013).
[Crossref]

Wang, W. T.

Wei, Z.

Weiner, A. M.

Wen, A.

Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

Wu, Y.

Y. Quan, Y. Li, Y. Wu, L. Ran, M. Xing, and M. Liu, “Moving target detection for frequency agility radar by sparse reconstruction,” Rev. Sci. Instrum. 87(9), 094703 (2016).
[Crossref] [PubMed]

Xiang, P.

Xing, M.

Y. Quan, Y. Li, Y. Wu, L. Ran, M. Xing, and M. Liu, “Moving target detection for frequency agility radar by sparse reconstruction,” Rev. Sci. Instrum. 87(9), 094703 (2016).
[Crossref] [PubMed]

Xu, W.

Yan, L. S.

Yao, J.

Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

L. Gao, X. Chen, and J. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photonics Technol. Lett. 25(10), 899–902 (2013).
[Crossref]

M. Li, Z. Li, and J. Yao, “Photonic Generation of Precisely $\ pi $ Phase-Shifted Binary Phase-Coded Microwave Signal,” IEEE Photonics Technol. Lett. 24(22), 2001–2004 (2012).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

H. Chi and J. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

Y. Dai and J. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett. 32(24), 3486–3488 (2007).
[Crossref] [PubMed]

H. Chi and J. Yao, “An approach to photonic generation of high-frequency phase-coded RF pulses,” IEEE Photonics Technol. Lett. 19(10), 768–770 (2007).
[Crossref]

Ye, J.

Yoon, J. U.

Zhang, F.

Zhang, H.

Zhang, T.

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Zheng, X.

Zhou, G.-R.

Zhu, D.

Zhu, N. H.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, and N. H. Zhu, “Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM,” Opt. Express 22(7), 7446–7457 (2014).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Photonic generation of widely tunable and background-free binary phase-coded radio-frequency pulses,” Opt. Lett. 38(17), 3441–3444 (2013).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photonics Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 5501507 (2013).
[Crossref]

Zou, X.

IEEE J. Quantum Electron. (1)

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48(9), 1151–1157 (2012).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (2)

Z. Li, M. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

H. Chi and J. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

IEEE Photonics J. (1)

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 5501507 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (6)

W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation,” IEEE Photonics Technol. Lett. 25(19), 1867–1870 (2013).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

M. Li, Z. Li, and J. Yao, “Photonic Generation of Precisely $\ pi $ Phase-Shifted Binary Phase-Coded Microwave Signal,” IEEE Photonics Technol. Lett. 24(22), 2001–2004 (2012).
[Crossref]

H. Chi and J. Yao, “An approach to photonic generation of high-frequency phase-coded RF pulses,” IEEE Photonics Technol. Lett. 19(10), 768–770 (2007).
[Crossref]

L. Gao, X. Chen, and J. Yao, “Photonic generation of a phase-coded microwave waveform with ultra-wide frequency tunable range,” IEEE Photonics Technol. Lett. 25(10), 899–902 (2013).
[Crossref]

Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Tech. 63(2), 546–552 (2015).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Rev. Sci. Instrum. (1)

Y. Quan, Y. Li, Y. Wu, L. Ran, M. Xing, and M. Liu, “Moving target detection for frequency agility radar by sparse reconstruction,” Rev. Sci. Instrum. 87(9), 094703 (2016).
[Crossref] [PubMed]

Other (3)

M. I. Skolnik, Introduction to Radar (Radar Handbook 2, 1962).

V. Ravenni, “Performance evaluations of frequency diversity radar system,” in Proceedings of Microwave Conference (IEEE, 2007), pp. 1715–1718.

K. Corp and E. Newark, “The advantages of hybrid optical integration, as demonstrated by a 4x25Gb/s transceiver (TROSA),” in Optical Fiber Communication Conference (Optical Society of America, 2017), pp. M3B. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Conceptual diagram of the proposed phase-coded system. CMWL, coherent multi-wavelength laser; DOMZM, dual-output Mach–Zehnder modulator; BPD, balanced photodetector.
Fig. 2
Fig. 2 Experimental setup of the proposed system. CW, continuous wave laser; MSG, microwave signal generator; EDFA, erbium-doped fiber amplifier; PPG, pulse pattern generator; OSA, optical spectrum analyzer; OSC, oscilloscope; PSA, spectrum analyzer; Trig, trigger.
Fig. 3
Fig. 3 (a) Spectrum of the dual sideband modulated laser with a frequency interval of 5GHz. (b) Electrical spectrum of the simultaneously generated 5GHz and 10GHz phase-coded signal.
Fig. 4
Fig. 4 (a) Phased-coded 5-GHz signal, and (b) the recovered phase information from (a). (c) Phased-coded 10-GHz signal, and (d) the recovered phase information from (c). The interval of the CMWL is 5GHz, and the coding rate is 2Gbit/s.
Fig. 5
Fig. 5 (a) Autocorrelation of the 5GHz phase-coded signal, and (b) the zoom-in view of the main lobe. (c) Autocorrelation of the 10GHz phase-coded signal, and (d) the zoom-in view of the main lobe. The interval of the CMWL is 5GHz, and the coding rate is 2Gbit/s.
Fig. 6
Fig. 6 (a) Spectrum of the dual sideband modulated laser with a frequency interval of 10GHz. (b) Electrical spectrum of the simultaneously generated 10GHz and 20GHz phase-coded signal.
Fig. 7
Fig. 7 (a) Generated phased-coded signal of 10GHz, and (b) the recovered phase information from (a). (c) Generated phased-coded signal of 20GHz, and (d) the recovered phase information from (c). The interval of the CMWL is 10GHz, and the coding rate is 4Gbit/s.
Fig. 8
Fig. 8 (a) Autocorrelation of the generated 10GHz phase-coded signal, and (b) the zoom-in view of the main lobe. (c) Autocorrelation of the generated 20GHz phase-coded signal, and (d) the zoom-in view of the main lobe. The interval of the CMWL is 10GHz, and the coding rate is 4Gbit/s.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( t )= 1 2 E 0 ( t )[ exp( jπV( t )/ V π +jφ )+exp( jπV( t )/ V π ) ] E 2 ( t )= 1 2 E 0 ( t )[ exp( jπV( t )/ V π +jφ )exp( jπV( t )/ V π ) ]
I( t ) E 1 ( t ) E 1 ( t ) E 2 ( t ) E 2 ( t ) = 1 2 | E 0 ( t ) | 2 { 2+2cos[ 2π V π V( t )+φ ] } 1 2 | E 0 ( t ) | 2 { 22cos[ 2π V π V( t )+φ ] } =2 | E 0 ( t ) | 2 cos[ 2π V π V( t )+φ ]
I( t )2 | E 0 ( t ) | 2 sin[ 2π V π V( t ) ]
I( t )2ϕ( t ) | E 0 ( t ) | 2 sin( 2π V π V 0 )
E 0 ( t )= A 0 exp( j ω 0 t )+ A 1 exp( j( ω 0 +Δω )t )++A e n xp( j( ω 0 +nΔω )t )
I( t )2ϕ( t )sin( 2π V π V 0 )[ k=0 n A k +2 k=1 n m=0 nk A m A m+k cos( kΔωt ) ]
I( t )4ϕ( t )sin( 2π V π V 0 ) k=1 n m=0 nk A m A m+k cos( kΔωt )
N= BC Δf 1
C Δf 2

Metrics