Abstract

We have theoretically and experimentally demonstrated electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) phenomena in a compact silicon ring-bus-ring-bus (RBRB) system. The two ring resonators in our RBRB system are both directly coupled and indirectly coupled through an asymmetric tricoupler. The coherent interference between a radiant mode and a subradiant mode in the two rings results in EIT and EIA effects at the through and drop ports, respectively. A theoretical model is established to analyze the proposed system based on temporal coupled mode theory. Finite-difference time-domain method is also employed to simulate the characteristics of this system. Consequently, RBRB structures were fabricated on a silicon-on-insulator platform and EIT and EIA transmissions have been observed simultaneously in the two outputs. The experimental results agree with our theoretical modeling and numerical simulations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer

Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang
J. Opt. Soc. Am. B 28(1) 28-36 (2011)

Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator

Qingzhong Huang, Zhan Shu, Ge Song, Juguang Chen, Jinsong Xia, and Jinzhong Yu
Opt. Express 22(3) 3219-3227 (2014)

Temporal coupled-mode theory of ring–bus–ring Mach–Zehnder interferometer

Yanbing Zhang, Ting Mei, and Dao Hua Zhang
Appl. Opt. 51(4) 504-508 (2012)

References

  • View by:
  • |
  • |
  • |

  1. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
    [Crossref]
  2. M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
    [Crossref]
  3. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
    [Crossref]
  4. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [Crossref] [PubMed]
  5. M. Mancinelli, P. Bettotti, J. M. Fedeli, and L. Pavesi, “Reconfigurable optical routers based on Coupled Resonator Induced Transparency resonances,” Opt. Express 20(21), 23856–23864 (2012).
    [Crossref] [PubMed]
  6. X. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, and W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21(17), 20179–20186 (2013).
    [Crossref] [PubMed]
  7. R. W. Boyd and D. J. Gauthier, “Photonics: Transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
    [Crossref] [PubMed]
  8. Q. Lu, Z. Wang, Q. Huang, W. Jiang, Z. Wu, Y. Wang, and J. Xia, “Plasmon-Induced Transparency and High-Performance Slow Light in a Plasmonic Single-Mode and Two-Mode Resonators Coupled System,” J. Lightwave Technol. 35(9), 1710–1717 (2017).
    [Crossref]
  9. M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
    [Crossref]
  10. C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012).
    [Crossref] [PubMed]
  11. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33(17), 1978–1980 (2008).
    [Crossref] [PubMed]
  12. L. Zhou, T. Ye, and J. Chen, “Coherent interference induced transparency in self-coupled optical waveguide-based resonators,” Opt. Lett. 36(1), 13–15 (2011).
    [Crossref] [PubMed]
  13. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [Crossref] [PubMed]
  14. S. Manipatruni, P. Dong, Q. Xu, and M. Lipson, “Tunable superluminal propagation on a silicon microchip,” Opt. Lett. 33(24), 2928–2930 (2008).
    [Crossref] [PubMed]
  15. A. Naweed, “Photonic coherence effects from dual-waveguide coupled pair of co-resonant microring resonators,” Opt. Express 23(10), 12573–12581 (2015).
    [Crossref] [PubMed]
  16. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
    [Crossref] [PubMed]
  17. J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
    [Crossref]
  18. Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
    [Crossref] [PubMed]
  19. M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
    [Crossref]
  20. C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
    [Crossref]
  21. Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
    [Crossref]
  22. Y. Wang, K. Zhang, S. Zhou, Y.-H. Wu, M.-B. Chi, and P. Hao, “Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator,” Opt. Lett. 41(8), 1825–1828 (2016).
    [Crossref] [PubMed]
  23. Y. Yang, S. Saurabh, J. Ward, and S. N. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
    [Crossref] [PubMed]
  24. X. Jin, Y. Dong, and K. Wang, “Stable controlling of electromagnetically induced transparency-like in a single quasi-cylindrical microresonator,” Opt. Express 24(26), 29773–29780 (2016).
    [Crossref] [PubMed]
  25. Y. Zhang, T. Mei, and D. H. Zhang, “Temporal coupled-mode theory of ring-bus-ring Mach-Zehnder interferometer,” Appl. Opt. 51(4), 504–508 (2012).
    [Crossref] [PubMed]
  26. S. Darmawan, L. Y. M. Tobing, and D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19(18), 17813–17819 (2011).
    [Crossref] [PubMed]
  27. X. Zhang, D. Huang, and X. Zhang, “Transmission characteristics of dual microring resonators coupled via 3x3 couplers,” Opt. Express 15(21), 13557–13573 (2007).
    [Crossref] [PubMed]
  28. M. S. Dahlem, “Studies of advanced integrated nano-photonic devices in silicon,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2011.
  29. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
    [Crossref]
  30. M. C. M. M. Souza, G. F. M. Rezende, L. A. M. Barea, G. S. Wiederhecker, and N. C. Frateschi, “Modeling quasi-dark states with temporal coupled-mode theory,” Opt. Express 24(17), 18960–18972 (2016).
    [Crossref] [PubMed]
  31. Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
    [Crossref] [PubMed]
  32. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  33. G. Wang, A. Shen, C. Zhao, L. Yang, T. Dai, Y. Wang, Y. Li, X. Jiang, and J. Yang, “Fano-resonance-based ultra-high-resolution ratio-metric wavelength monitor on silicon,” Opt. Lett. 41(3), 544–547 (2016).
    [Crossref] [PubMed]
  34. M. Bernard, F. R. Manzano, L. Pavesi, G. Pucker, I. Carusotto, and M. Ghulinyan, “Complete crossing of Fano resonances in an optical microcavity via nonlinear tuning,” Photon. Res. 5(3), 168–175 (2017).
    [Crossref]
  35. Q. Huang, G. Song, J. Chen, Z. Shu, and J. Yu, “Proposal and Fabrication of an Electrooptically Controlled Multimode Microresonator for Continuous Fast-to-Slow Light Tuning,” IEEE Photonics J. 6(4), 2201011 (2014).

2017 (2)

2016 (4)

2015 (2)

2014 (3)

Q. Huang, G. Song, J. Chen, Z. Shu, and J. Yu, “Proposal and Fabrication of an Electrooptically Controlled Multimode Microresonator for Continuous Fast-to-Slow Light Tuning,” IEEE Photonics J. 6(4), 2201011 (2014).

Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
[Crossref] [PubMed]

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

2013 (1)

2012 (4)

2011 (2)

2010 (1)

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

2009 (4)

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
[Crossref]

2008 (2)

2007 (3)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

X. Zhang, D. Huang, and X. Zhang, “Transmission characteristics of dual microring resonators coupled via 3x3 couplers,” Opt. Express 15(21), 13557–13573 (2007).
[Crossref] [PubMed]

2006 (2)

R. W. Boyd and D. J. Gauthier, “Photonics: Transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

2004 (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

2003 (1)

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

1999 (1)

M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

Akulshin, A. M.

M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

Armani, A. M.

Barea, L. A. M.

Barreiro, S.

M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

Beausoleil, R. G.

Bernard, M.

M. Bernard, F. R. Manzano, L. Pavesi, G. Pucker, I. Carusotto, and M. Ghulinyan, “Complete crossing of Fano resonances in an optical microcavity via nonlinear tuning,” Photon. Res. 5(3), 168–175 (2017).
[Crossref]

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Bettotti, P.

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Photonics: Transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

Carusotto, I.

M. Bernard, F. R. Manzano, L. Pavesi, G. Pucker, I. Carusotto, and M. Ghulinyan, “Complete crossing of Fano resonances in an optical microcavity via nonlinear tuning,” Photon. Res. 5(3), 168–175 (2017).
[Crossref]

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Chang, L.

Chen, J.

Chi, M.-B.

Chormaic, S. N.

Cui, J.-M.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Dai, T.

Darmawan, S.

Dong, C.-H.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Dong, P.

S. Manipatruni, P. Dong, Q. Xu, and M. Lipson, “Tunable superluminal propagation on a silicon microchip,” Opt. Lett. 33(24), 2928–2930 (2008).
[Crossref] [PubMed]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

Dong, Y.

Fan, H.

Fan, S.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

Fedeli, J. M.

Fejer, M. M.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Frateschi, N. C.

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Photonics: Transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

Ghulinyan, M.

M. Bernard, F. R. Manzano, L. Pavesi, G. Pucker, I. Carusotto, and M. Ghulinyan, “Complete crossing of Fano resonances in an optical microcavity via nonlinear tuning,” Photon. Res. 5(3), 168–175 (2017).
[Crossref]

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Guo, G.-C.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Han, Z.-F.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Hanamura, R.

Hao, P.

Harris, J. S.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

He, L.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Hua, S.

Huang, D.

Huang, Q.

Huo, Y.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Jiang, W.

Jiang, X.

Jin, X.

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Kwong, D. L.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Lezama, M.

M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

Li, G.

Li, Y.

Lipson, M.

S. Manipatruni, P. Dong, Q. Xu, and M. Lipson, “Tunable superluminal propagation on a silicon microchip,” Opt. Lett. 33(24), 2928–2930 (2008).
[Crossref] [PubMed]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Lu, Q.

Mancinelli, M.

Manipatruni, S.

Manzano, F. R.

M. Bernard, F. R. Manzano, L. Pavesi, G. Pucker, I. Carusotto, and M. Ghulinyan, “Complete crossing of Fano resonances in an optical microcavity via nonlinear tuning,” Photon. Res. 5(3), 168–175 (2017).
[Crossref]

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Matsumoto, T.

Mei, T.

Naweed, A.

Novikova, I.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Pan, J.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Pang, W.

Pavesi, L.

Povinelli, M. L.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Prtljaga, N.

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Pucker, G.

M. Bernard, F. R. Manzano, L. Pavesi, G. Pucker, I. Carusotto, and M. Ghulinyan, “Complete crossing of Fano resonances in an optical microcavity via nonlinear tuning,” Photon. Res. 5(3), 168–175 (2017).
[Crossref]

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

Rezende, G. F. M.

Sandhu, S.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Saurabh, S.

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Shen, A.

Shu, Z.

Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
[Crossref] [PubMed]

Q. Huang, G. Song, J. Chen, Z. Shu, and J. Yu, “Proposal and Fabrication of an Electrooptically Controlled Multimode Microresonator for Continuous Fast-to-Slow Light Tuning,” IEEE Photonics J. 6(4), 2201011 (2014).

Song, G.

Q. Huang, G. Song, J. Chen, Z. Shu, and J. Yu, “Proposal and Fabrication of an Electrooptically Controlled Multimode Microresonator for Continuous Fast-to-Slow Light Tuning,” IEEE Photonics J. 6(4), 2201011 (2014).

Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
[Crossref] [PubMed]

Song, M.

Souza, M. C. M. M.

Stuhrmann, N.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Suh, W.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Tobing, L. Y. M.

Tomita, M.

Totsuka, K.

Walsworth, R. L.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Wang, G.

Wang, K.

Wang, Y.

Wang, Z.

Q. Lu, Z. Wang, Q. Huang, W. Jiang, Z. Wu, Y. Wang, and J. Xia, “Plasmon-Induced Transparency and High-Performance Slow Light in a Plasmonic Single-Mode and Two-Mode Resonators Coupled System,” J. Lightwave Technol. 35(9), 1710–1717 (2017).
[Crossref]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

Ward, J.

Wiederhecker, G. S.

Willner, A. E.

Wong, C. W.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Wu, T.

Wu, Y.-H.

Wu, Z.

Xia, J.

Xiao, M.

Xiao, Y.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Xiao, Y.-F.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Xu, Q.

S. Manipatruni, P. Dong, Q. Xu, and M. Lipson, “Tunable superluminal propagation on a silicon microchip,” Opt. Lett. 33(24), 2928–2930 (2008).
[Crossref] [PubMed]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Yang, J.

Yang, L.

G. Wang, A. Shen, C. Zhao, L. Yang, T. Dai, Y. Wang, Y. Li, X. Jiang, and J. Yang, “Fano-resonance-based ultra-high-resolution ratio-metric wavelength monitor on silicon,” Opt. Lett. 41(3), 544–547 (2016).
[Crossref] [PubMed]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Yang, X.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Yang, Y.

Ye, T.

Yu, J.

Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
[Crossref] [PubMed]

Q. Huang, G. Song, J. Chen, Z. Shu, and J. Yu, “Proposal and Fabrication of an Electrooptically Controlled Multimode Microresonator for Continuous Fast-to-Slow Light Tuning,” IEEE Photonics J. 6(4), 2201011 (2014).

Yu, M.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Zhang, D. H.

Zhang, K.

Zhang, L.

Zhang, X.

Zhang, Y.

Zhao, C.

Zheng, C.

Zhou, L.

Zhou, S.

Zhou, X.

Zhu, J.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Zou, C.-L.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Zou, L.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

IEEE Photonics J. (1)

Q. Huang, G. Song, J. Chen, Z. Shu, and J. Yu, “Proposal and Fabrication of an Electrooptically Controlled Multimode Microresonator for Continuous Fast-to-Slow Light Tuning,” IEEE Photonics J. 6(4), 2201011 (2014).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009).
[Crossref]

Laser Photonics Rev. (1)

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Nat. Phys. (1)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

Nature (1)

R. W. Boyd and D. J. Gauthier, “Photonics: Transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

Opt. Express (9)

M. Mancinelli, P. Bettotti, J. M. Fedeli, and L. Pavesi, “Reconfigurable optical routers based on Coupled Resonator Induced Transparency resonances,” Opt. Express 20(21), 23856–23864 (2012).
[Crossref] [PubMed]

X. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, and W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21(17), 20179–20186 (2013).
[Crossref] [PubMed]

Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
[Crossref] [PubMed]

A. Naweed, “Photonic coherence effects from dual-waveguide coupled pair of co-resonant microring resonators,” Opt. Express 23(10), 12573–12581 (2015).
[Crossref] [PubMed]

C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012).
[Crossref] [PubMed]

X. Jin, Y. Dong, and K. Wang, “Stable controlling of electromagnetically induced transparency-like in a single quasi-cylindrical microresonator,” Opt. Express 24(26), 29773–29780 (2016).
[Crossref] [PubMed]

S. Darmawan, L. Y. M. Tobing, and D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19(18), 17813–17819 (2011).
[Crossref] [PubMed]

X. Zhang, D. Huang, and X. Zhang, “Transmission characteristics of dual microring resonators coupled via 3x3 couplers,” Opt. Express 15(21), 13557–13573 (2007).
[Crossref] [PubMed]

M. C. M. M. Souza, G. F. M. Rezende, L. A. M. Barea, G. S. Wiederhecker, and N. C. Frateschi, “Modeling quasi-dark states with temporal coupled-mode theory,” Opt. Express 24(17), 18960–18972 (2016).
[Crossref] [PubMed]

Opt. Lett. (6)

Photon. Res. (1)

Phys. Rev. A (2)

M. Ghulinyan, F. R. Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker, and I. Carusotto, “Intermode reactive coupling induced by waveguide-resonator interaction,” Phys. Rev. A 90(5), 053811 (2014).
[Crossref]

M. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Other (2)

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

M. S. Dahlem, “Studies of advanced integrated nano-photonic devices in silicon,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2011.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic illustration of the RBRB system in silicon-on-insulator. (b) The coupling between fields in the waveguides and resonators.
Fig. 2
Fig. 2 (a) The transmission spectra of T, D, T1, and T2 with ω1 = 1.21623 × 1015 rad/s (λ1 = 1549.83 nm), 1/τe1 = 1 × 1011 rad/s, and μ = −1.5 × 1011 rad/s. (b) The transmission spectra of T, T1, and T2 with ω1 = 1.21617 × 1015 rad/s (λ1 = 1549.91 nm), 1/τe1 = 5 × 1010 rad/s, and μ = −1 × 1011 rad/s. (c) The transmission spectra of T, T1, and T2 with ω1 = 1.21614 × 1015 rad/s (λ1 = 1549.95 nm), 1/τe1 = 1 × 1010 rad/s, and μ = −5 × 1010 rad/s. (d) The transmission spectra of T, T1, and T2 with ω1 = 1.21610 × 1015 rad/s (λ1 = 1550.00 nm),1/τe1 = 1 × 1011 rad/s, and μ = 0.
Fig. 3
Fig. 3 (a) The transmission spectra of the RBRB system at the through and drop ports, the ring 1 based all-pass filter and ring 2 based add-drop filter at their through ports simulated by FDTD method. (b) Field distributions of Ez in the RBRB system at the EIT peak (point A) and left-dip (point B) wavelengths.
Fig. 4
Fig. 4 (a) SEM image of a SOI based RBRB device, insets: (left) two-dimensional grating coupler, (right) zoom-in of the asymmetric tricoupler (b) The relation between resonant wavelength and radius for a ring based all-pass filter.
Fig. 5
Fig. 5 The transmission spectra of RBRB systems with (a) g1 = 0.15 μm, (b) g1 = 0.17 μm, and (c) g1 = 0.20 μm.
Fig. 6
Fig. 6 The measured transmission spectra (solid lines) of the RBRB system with g1 = 0.17 μm and proper R1 at the through and drop ports. The dash-dot lines are theoretical fitting results, with ω1 = 1.21674 × 1015 rad/s (λ1 = 1549.19 nm), ω2 = 1.21664 × 1015 rad/s (λ2 = 1549.31 nm), 1/τo1 = 1/τo2 = 1 × 1010 rad/s, 1/τe1 = 3 × 1010 rad/s, 1/τe2 = 3 × 1011 rad/s, and μ = −2 × 1011 rad/s.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d a d t = ( i Ω Γ l o s s Γ p o r t ) a + H T S i n , S t h r = S i n + H a ,
Ω = [ ω 1 μ μ ω 2 ] , Γ l o s s = [ 1 / τ o 1 0 0 1 / τ o 2 + 1 / τ e 2 ] ,
H = i [ 2 / τ e 1 2 / τ e 2 ] T , Γ p o r t = [ 1 / τ e 1 1 / ( τ e 1 τ e 2 ) 1 / ( τ e 1 τ e 2 ) 1 / τ e 2 ] ,
d a 1 d t = ( i ω 1 1 τ o 1 1 τ e 1 ) a 1 + ( i μ 1 τ e 1 τ e 2 ) a 2 + i 2 τ e 1 S i n , d a 2 d t = ( i ω 2 1 τ o 2 2 τ e 2 ) a 2 + ( i μ 1 τ e 1 τ e 2 ) a 1 + i 2 τ e 2 S i n , S t h r = S i n + i 2 τ e 1 a 1 + i 2 τ e 2 a 2 , S d r o p = i 2 τ e 2 a 2 .
t = 1 + γ 2 2 τ e 1 + γ 1 2 τ e 2 4 1 τ e 1 τ e 2 ( i μ 1 τ e 1 τ e 2 ) γ 1 γ 2 ( i μ 1 τ e 1 τ e 2 ) 2 ,
d = γ 1 2 τ e 2 2 1 τ e 1 τ e 2 ( i μ 1 τ e 1 τ e 2 ) γ 1 γ 2 ( i μ 1 τ e 1 τ e 2 ) 2 ,
t 1 = i ( ω ω 1 ) 1 / τ o 1 + 1 / τ e 1 i ( ω ω 1 ) 1 / τ o 1 1 / τ e 1 , t 2 = i ( ω ω 2 ) 1 / τ o 2 i ( ω ω 2 ) 1 / τ o 2 2 / τ e 2 .

Metrics