Abstract

A novel long-period fiber grating (LPFG), fabricated by periodically cascading a series of screw-type distortions, is proposed and experimentally demonstrated. These screw-type distortions are induced by twisting the fiber during CO2 laser beam exposure. The resulting LPFG will either be left- or right-hand helical, depending on the twist rate and direction used during fabrication, with a certain frozen shear strain. Due to the independence between grating pitch and twist rate, this type of LPFG could be more flexible than the helical- or chiral-fiber gratings reported previously. During LPFG twisting, the device displays good directional dependence and an enhanced torsion sensitivity of 0.1604 nm/(rad/m), which implies the structure could be an excellent candidate for torsion sensors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of helical long-period fiber gratings by use of a CO2 laser

Seungtae Oh, Kyung Rok Lee, Un-Chul Paek, and Youngjoo Chung
Opt. Lett. 29(13) 1464-1466 (2004)

Torsion characteristics of long-period fiber gratings induced by high-frequency CO2 laser pulses

Yi-Ping Wang, Jian-Ping Chen, and Yun-Jiang Rao
J. Opt. Soc. Am. B 22(6) 1167-1172 (2005)

Chiral long-period gratings: fabrication, highly sensitive torsion sensing, and tunable single-band filtering

Xudong Kong, Kaili Ren, Liyong Ren, Jian Liang, and Haijuan Ju
Appl. Opt. 56(16) 4702-4707 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
    [Crossref]
  2. L. A. Wang, C. Y. Lin, and G. W. Chern, “A torsion sensor made of a corrugated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
    [Crossref]
  3. H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
    [Crossref]
  4. Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol. 29(18), 2715–2724 (2011).
    [Crossref]
  5. F. Yang, Z. Fang, Z. Pan, Q. Ye, H. Cai, and R. Qu, “Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings,” Opt. Express 20(27), 28839–28845 (2012).
    [Crossref] [PubMed]
  6. B. Song, H. Zhang, Y. Miao, W. Lin, J. Wu, H. Liu, D. Yan, and B. Liu, “Highly sensitive twist sensor employing Sagnac interferometer based on PM-elliptical core fibers,” Opt. Express 23(12), 15372–15379 (2015).
    [Crossref] [PubMed]
  7. P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
    [Crossref]
  8. J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
    [Crossref] [PubMed]
  9. Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photonics Technol. Lett. 15(2), 251–253 (2003).
    [Crossref]
  10. Y. P. Wang, J. P. Chen, and Y. J. Rao, “CO2-laser induced LPFG’s torsion characteristics depending on the length of the twisted fiber,” Am. J. Addict. 9(1), 94–95 (2000).
    [PubMed]
  11. Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
    [Crossref]
  12. Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
    [Crossref]
  13. S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29(13), 1464–1466 (2004).
    [Crossref] [PubMed]
  14. W. Shin, B. A. Yu, Y. L. Lee, Y. C. Noh, D. K. Ko, and J. Lee, “High strength coupling and low polarization-dependent long-period fiber gratings based on the helicoidal structure,” Opt. Fiber Technol. 14(4), 323–327 (2008).
    [Crossref]
  15. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
    [Crossref]
  16. R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
    [Crossref] [PubMed]
  17. L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
    [Crossref]
  18. L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
    [Crossref] [PubMed]
  19. L. P. Sun, J. Li, L. Jin, and B. O. Guan, “Structural microfiber long-period gratings,” Opt. Express 20(16), 18079–18084 (2012).
    [Crossref] [PubMed]
  20. G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
    [Crossref]
  21. X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).
  22. G. M. Rego, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fibre gratings,” Opt. Commun. 262(2), 152–156 (2006).
    [Crossref]
  23. M. Yang, Y. Li, and D. N. Wang, “Long-period fiber gratings fabricated by use of defocused CO2 laser beam for polarization-dependent loss enhancement,” J. Opt. Soc. Am. B 26(6), 1203–1208 (2009).
    [Crossref]

2016 (1)

L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
[Crossref]

2015 (1)

2014 (4)

R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
[Crossref] [PubMed]

L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
[Crossref] [PubMed]

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).

2012 (3)

2011 (3)

L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol. 29(18), 2715–2724 (2011).
[Crossref]

2010 (1)

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

2009 (1)

2008 (1)

W. Shin, B. A. Yu, Y. L. Lee, Y. C. Noh, D. K. Ko, and J. Lee, “High strength coupling and low polarization-dependent long-period fiber gratings based on the helicoidal structure,” Opt. Fiber Technol. 14(4), 323–327 (2008).
[Crossref]

2006 (2)

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

G. M. Rego, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fibre gratings,” Opt. Commun. 262(2), 152–156 (2006).
[Crossref]

2004 (2)

S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29(13), 1464–1466 (2004).
[Crossref] [PubMed]

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

2003 (1)

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photonics Technol. Lett. 15(2), 251–253 (2003).
[Crossref]

2001 (1)

L. A. Wang, C. Y. Lin, and G. W. Chern, “A torsion sensor made of a corrugated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
[Crossref]

2000 (1)

Y. P. Wang, J. P. Chen, and Y. J. Rao, “CO2-laser induced LPFG’s torsion characteristics depending on the length of the twisted fiber,” Am. J. Addict. 9(1), 94–95 (2000).
[PubMed]

1999 (1)

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

Cai, H.

Chan, C. C.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, J. P.

Y. P. Wang, J. P. Chen, and Y. J. Rao, “CO2-laser induced LPFG’s torsion characteristics depending on the length of the twisted fiber,” Am. J. Addict. 9(1), 94–95 (2000).
[PubMed]

Chen, L. H.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, X.

Chern, G. W.

L. A. Wang, C. Y. Lin, and G. W. Chern, “A torsion sensor made of a corrugated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
[Crossref]

Chiang, K. S.

L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Chung, Y.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29(13), 1464–1466 (2004).
[Crossref] [PubMed]

Dong, X.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Fan, Y. E.

L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Fang, Z.

Gao, R.

Gong, T.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Guan, B. O.

He, J.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Hu, A. Z.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photonics Technol. Lett. 15(2), 251–253 (2003).
[Crossref]

Jiang, L.

Jiang, M.

Jiang, Y.

Jin, L.

Jin, Y.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Kim, B.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, H. M.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, T. H.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Ko, D. K.

W. Shin, B. A. Yu, Y. L. Lee, Y. C. Noh, D. K. Ko, and J. Lee, “High strength coupling and low polarization-dependent long-period fiber gratings based on the helicoidal structure,” Opt. Fiber Technol. 14(4), 323–327 (2008).
[Crossref]

Lee, J.

W. Shin, B. A. Yu, Y. L. Lee, Y. C. Noh, D. K. Ko, and J. Lee, “High strength coupling and low polarization-dependent long-period fiber gratings based on the helicoidal structure,” Opt. Fiber Technol. 14(4), 323–327 (2008).
[Crossref]

Lee, K. R.

Lee, Y. L.

W. Shin, B. A. Yu, Y. L. Lee, Y. C. Noh, D. K. Ko, and J. Lee, “High strength coupling and low polarization-dependent long-period fiber gratings based on the helicoidal structure,” Opt. Fiber Technol. 14(4), 323–327 (2008).
[Crossref]

Lemarquand, V.

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

Li, H.

Li, J.

Li, Y.

Liao, C.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Liao, C. R.

X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).

Lin, C. Y.

L. A. Wang, C. Y. Lin, and G. W. Chern, “A torsion sensor made of a corrugated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
[Crossref]

Lin, W.

Liu, B.

Liu, D.

Liu, H.

Liu, Y.

L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
[Crossref]

Malnou, M.

Miao, Y.

Mo, Q. J.

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

Mou, C.

Noh, Y. C.

W. Shin, B. A. Yu, Y. L. Lee, Y. C. Noh, D. K. Ko, and J. Lee, “High strength coupling and low polarization-dependent long-period fiber gratings based on the helicoidal structure,” Opt. Fiber Technol. 14(4), 323–327 (2008).
[Crossref]

Oh, S.

Paek, U. C.

Pan, Z.

Qu, R.

Ran, Z. L.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photonics Technol. Lett. 15(2), 251–253 (2003).
[Crossref]

Rao, Y.

L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Rao, Y. J.

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photonics Technol. Lett. 15(2), 251–253 (2003).
[Crossref]

Y. P. Wang, J. P. Chen, and Y. J. Rao, “CO2-laser induced LPFG’s torsion characteristics depending on the length of the twisted fiber,” Am. J. Addict. 9(1), 94–95 (2000).
[PubMed]

Rego, G. M.

G. M. Rego, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fibre gratings,” Opt. Commun. 262(2), 152–156 (2006).
[Crossref]

Salgado, H. M.

G. M. Rego, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fibre gratings,” Opt. Commun. 262(2), 152–156 (2006).
[Crossref]

Santos, J. L.

G. M. Rego, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fibre gratings,” Opt. Commun. 262(2), 152–156 (2006).
[Crossref]

Shi, L.

L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Shin, W.

W. Shin, B. A. Yu, Y. L. Lee, Y. C. Noh, D. K. Ko, and J. Lee, “High strength coupling and low polarization-dependent long-period fiber gratings based on the helicoidal structure,” Opt. Fiber Technol. 14(4), 323–327 (2008).
[Crossref]

Shum, P. P.

Song, B.

Sun, B.

X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Sun, L. P.

Sun, Q.

Tang, J.

X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).

Wang, D. N.

Wang, G.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Wang, G. J.

X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).

Wang, L. A.

L. A. Wang, C. Y. Lin, and G. W. Chern, “A torsion sensor made of a corrugated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
[Crossref]

Wang, P.

Wang, T.

L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
[Crossref]

Wang, Y.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Wang, Y. P.

X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photonics Technol. Lett. 15(2), 251–253 (2003).
[Crossref]

Y. P. Wang, J. P. Chen, and Y. J. Rao, “CO2-laser induced LPFG’s torsion characteristics depending on the length of the twisted fiber,” Am. J. Addict. 9(1), 94–95 (2000).
[PubMed]

Wo, J.

Wu, J.

Xian, L.

Yan, D.

Yan, Z.

Yang, F.

Yang, M.

Ye, Q.

Yin, G.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Yin, G. L.

X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).

Yu, B. A.

W. Shin, B. A. Yu, Y. L. Lee, Y. C. Noh, D. K. Ko, and J. Lee, “High strength coupling and low polarization-dependent long-period fiber gratings based on the helicoidal structure,” Opt. Fiber Technol. 14(4), 323–327 (2008).
[Crossref]

Zhang, H.

Zhang, J.

Zhang, L.

L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
[Crossref]

Z. Yan, C. Mou, K. Zhou, X. Chen, and L. Zhang, “UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol. 29(18), 2715–2724 (2011).
[Crossref]

Zhang, Y.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Zhao, Y.

L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
[Crossref]

Zhong, X.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Zhong, X. Y.

X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).

Zhou, J.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Zhou, J. T.

X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).

Zhou, K.

Zhu, T.

L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photonics Technol. Lett. 15(2), 251–253 (2003).
[Crossref]

Zu, P.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Am. J. Addict. (1)

Y. P. Wang, J. P. Chen, and Y. J. Rao, “CO2-laser induced LPFG’s torsion characteristics depending on the length of the twisted fiber,” Am. J. Addict. 9(1), 94–95 (2000).
[PubMed]

Electron. Lett. (1)

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

IEEE Photonics J. (1)

X. Y. Zhong, Y. P. Wang, C. R. Liao, G. L. Yin, J. T. Zhou, G. J. Wang, B. Sun, and J. Tang, “Long period fiber gratings inscribed with an improved two-dimensional scanning technique,” IEEE Photonics J. 6(4), 8 (2014).

IEEE Photonics Technol. Lett. (5)

L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
[Crossref]

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber,” IEEE Photonics Technol. Lett. 26(7), 698–701 (2014).
[Crossref]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photonics Technol. Lett. 15(2), 251–253 (2003).
[Crossref]

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

IEEE Trans. Magn. (1)

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

L. A. Wang, C. Y. Lin, and G. W. Chern, “A torsion sensor made of a corrugated long period fibre grating,” Meas. Sci. Technol. 12(7), 793–799 (2001).
[Crossref]

Opt. Commun. (3)

L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

G. M. Rego, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fibre gratings,” Opt. Commun. 262(2), 152–156 (2006).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

W. Shin, B. A. Yu, Y. L. Lee, Y. C. Noh, D. K. Ko, and J. Lee, “High strength coupling and low polarization-dependent long-period fiber gratings based on the helicoidal structure,” Opt. Fiber Technol. 14(4), 323–327 (2008).
[Crossref]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) A sketch of the experimental setup for PT-LPFG fabrication. The (b) schematic image and (c) microscopic image of a right-hand helix PT-LPFG with fabrication parameters of Λ = 410 µm, β = π/2, and ν = 5°/s. The c.w and c.c.w are respectively defined as the clockwise and counter clockwise direction along the light propagating. The pre-twist rate with c.w and c.c.w direction will induce the right-and left-hand helix screw type deformation, respectively.
Fig. 2
Fig. 2 The transmission spectrum evolution of a right-helix PT-LPFG with a grating pitch of 410 µm and a mode field diagram at a wavelength of 1552.4 nm
Fig. 3
Fig. 3 Measured resonant wavelengths versus grating pitch for right-helix PT-LPFGs with the same fabrication parameters and different grating pitches of 400, 410, 420, 430, and 440 µm, with β = π/3 and Λ = 30.
Fig. 4
Fig. 4 The spectra of a (a) left-hand helix and (b) right-hand helix PT-LPFG with the same grating pitch Λ = 410 µm but with β varying from π/3 to π in intervals of π/6.
Fig. 5
Fig. 5 The transmission spectra of two PT-LPFGs with opposite helicity and a C-LPFG without helicity under the same grating pitch of 420 µm.
Fig. 6
Fig. 6 A sketch of the torsion test system used for LPFGs.
Fig. 7
Fig. 7 Resonant wavelength shifts for (a) a right-hand helix PT-LPFG and (b) a left-hand helix PT-LPFG under an applied torsion ranging from −57.1 rad/m to 57.1 rad/m. (c) A C -LPFG without helicity with 30 grating periods and a grating pitch of 420 µm. (d) The linear fitter between the torsion and wavelength shifts for all three LPFGs.
Fig. 8
Fig. 8 The PDL of a (a) C-LPFG and (b) a right-hand helix PT-LPFG for β = π/2 with the same grating pitch of Λ = 410 µm and 30 grating periods (N).

Metrics