Abstract

The article reports on light enhancement by structural resonances in linear periodic arrays of identical dielectric elements. As the basic elements both subwavelength spheres and rods with circular cross section have been considered. In either case it has been demonstrated numerically that high-Q structural resonant modes originated from bound states in the continuum enable near-field amplitude enhancement by factor of 10–25 in the red-to-near infrared range in lossy silicon. The asymptotic behavior of the Q-factor with the number of elements in the array is explained theoretically by analyzing quasi-bound states propagation bands.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical response induced by bound states in the continuum in arrays of dielectric spheres

E. N. Bulgakov and D. N. Maksimov
J. Opt. Soc. Am. B 35(10) 2443-2452 (2018)

Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide

Evgeni A. Bezus, Dmitry A. Bykov, and Leonid L. Doskolovich
Photon. Res. 6(11) 1084-1093 (2018)

All-optical light storage in bound states in the continuum and release by demand

E. N. Bulgakov, K. N. Pichugin, and A. F. Sadreev
Opt. Express 23(17) 22520-22531 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Yu, Y.-Z. Long, B. Sun, and Z. Fan, “Recent advances in solar cells based on one-dimensional nanostructure arrays,” Nanoscale 4, 2783 (2012).
    [Crossref] [PubMed]
  2. M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Advanced Optical Materials 3, 722–743 (2015).
    [Crossref] [PubMed]
  3. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43, 579–587 (1983).
    [Crossref]
  4. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34, 2476–2482 (1995).
    [Crossref] [PubMed]
  5. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986 (2007).
    [Crossref] [PubMed]
  6. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Physica Status Solidi (a) 205, 2777–2795 (2008).
    [Crossref]
  7. C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Scientific Reports 3, 1025 (2013).
    [Crossref] [PubMed]
  8. N. Dhindsa, J. Walia, M. Pathirane, I. Khodadad, W. S. Wong, and S. S. Saini, “Adjustable optical response of amorphous silicon nanowires integrated with thin films,” Nanotechnology 27, 145703 (2016).
    [Crossref] [PubMed]
  9. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366 (2010).
    [Crossref] [PubMed]
  10. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [Crossref]
  11. Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
    [Crossref]
  12. S. John, “Why trap light?” Nature Materials 11, 997–999 (2012).
    [Crossref] [PubMed]
  13. G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103(R) (2009).
    [Crossref]
  14. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
    [Crossref] [PubMed]
  15. Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Letters 11, 893–897 (2011).
    [Crossref]
  16. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6, 4341–4348 (2012).
    [Crossref] [PubMed]
  17. J. Zhang, Z. Guo, C. Ge, W. Wang, R. Li, Y. Sun, F. Shen, S. Qu, and J. Gao, “Plasmonic focusing lens based on single-turn nano-pinholes array,” Opt. Express 23, 17883 (2015).
    [Crossref] [PubMed]
  18. T. Y. Jeon, D. J. Kim, S.-G. Park, S.-H. Kim, and D.-H. Kim, “Nanostructured plasmonic substrates for use as sers sensors,” Nano Convergence 3, 18 (2016).
    [Crossref]
  19. A. Zhang and Z. Guo, “Efficient light trapping in tapered silicon nanohole arrays,” Optik 127, 2861–2865 (2016).
    [Crossref]
  20. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78, 023825 (2008).
    [Crossref]
  21. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371 (2009).
    [Crossref] [PubMed]
  22. K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy & Environmental Science 7, 2725 (2014).
    [Crossref]
  23. M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93, 024301 (2016).
    [Crossref]
  24. R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
    [Crossref]
  25. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotechnology 11, 23–36 (2016).
    [Crossref] [PubMed]
  26. M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Scientific Reports 5, 12288 (2015).
    [Crossref] [PubMed]
  27. F. Borghese, P. Denti, R. Saija, G. Toscano, and O. I. Sindoni, “Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Il Nuovo Cimento D 6, 545–558 (1985).
    [Crossref]
  28. M. P. Ioannidou, N. C. Skaropoulos, and D. P. Chrissoulidis, “Study of interactive scattering by clusters of spheres,” J. Opt. Soc. Am. A 12, 1782–1789 (1995).
    [Crossref]
  29. Y.-l. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995).
    [Crossref] [PubMed]
  30. O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
    [Crossref]
  31. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters,” J. Opt. Soc. Am. B 27, 1083–1091 (2010).
    [Crossref]
  32. A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B 21, 121–131 (2004).
    [Crossref]
  33. G. S. Blaustein, M. I. Gozman, O. Samoylova, I. Y. Polishchuk, and A. L. Burin, “Guiding optical modes in chains of dielectric particles,” Opt. Express 15, 17380–17391 (2007).
    [Crossref] [PubMed]
  34. M. Gozman, I. Polishchuk, and A. Burin, “Light propagation in linear arrays of spherical particles,” Phys. Lett. A 372, 5250–5253 (2008).
    [Crossref]
  35. A. L. Burin, “Bound whispering gallery modes in circular arrays of dielectric spherical particles,” Phys. Rev. E 73, 066614 (2006).
    [Crossref]
  36. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Communications 4, 1527 (2013).
    [Crossref] [PubMed]
  37. U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
    [Crossref]
  38. P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
    [Crossref] [PubMed]
  39. J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
    [Crossref]
  40. R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89, 035435 (2014).
    [Crossref]
  41. E. N. Bulgakov and D. N. Maksimov, “Light guiding above the light line in arrays of dielectric nanospheres,” Opt. Lett. 41, 3888–3891 (2016).
    [Crossref] [PubMed]
  42. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [Crossref] [PubMed]
  43. D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
    [Crossref]
  44. K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
    [Crossref] [PubMed]
  45. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nature Reviews Materials 1, 16048 (2016).
    [Crossref]
  46. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
    [Crossref] [PubMed]
  47. J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-QOptical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
    [Crossref]
  48. S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
    [Crossref]
  49. Chia Wei Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
    [Crossref]
  50. G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
    [Crossref] [PubMed]
  51. A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states inpt-symmetric optical lattices,” Phys. Rev. Lett. 110, 223902 (2013).
    [Crossref]
  52. E. N. Bulgakov and A. F. Sadreev, “Bloch bound states in the radiation continuum in a periodic array of dielectric rods,” Phys. Rev. A 90, 053801 (2014).
    [Crossref]
  53. L. Yuan and Y. Y. Lu, “Propagating bloch modes above the lightline on a periodic array of cylinders,” Journal of Physics B: Atomic, Molecular and Optical Physics 50, 05LT01 (2016).
    [Crossref]
  54. P.-G. Luan and K.-D. Chang, “Transmission characteristics of finite periodic dielectric waveguides,” Opt. Express 14, 3263–3272 (2006).
    [Crossref] [PubMed]
  55. J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79, 205436 (2009).
    [Crossref]
  56. C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, “Resonant tunneling in a quantum waveguide: Effect of a finite-size attractive impurity,” Phys. Rev. B 60, 10962–10970 (1999).
    [Crossref]
  57. S. Venakides and S. P. Shipman, “Resonance and bound states in photonic crystal slabs,” SIAM Journal on Applied Mathematics 64, 322–342 (2003).
    [Crossref]
  58. M. Ladrón de Guevara, F. Claro, and P. Orellana, “Ghost fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B 67, 195335 (2003).
    [Crossref]
  59. S. Hein, W. Koch, and L. Nannen, “Trapped modes and fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
    [Crossref]
  60. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
    [Crossref] [PubMed]
  61. J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89, 165111 (2014).
    [Crossref]
  62. J. M. Foley and J. D. Phillips, “Normal incidence narrowband transmission filtering capabilities using symmetry-protected modes of a subwavelength, dielectric grating,” Opt. Lett. 40, 2637 (2015).
    [Crossref] [PubMed]
  63. X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Scientific Reports 6, 36066 (2016).
    [Crossref] [PubMed]
  64. E. N. Bulgakov and A. F. Sadreev, “Light trapping above the light cone in a one-dimensional array of dielectric spheres,” Phys. Rev. A 92, 023816 (2015).
    [Crossref]
  65. R. A. Shore and A. D. Yaghjian, “Traveling electromagnetic waves on linear periodic arrays of small lossless penetrable spheres,” Tech. rep., DTIC Document (2004).
  66. C. Linton, V. Zalipaev, and I. Thompson, “Electromagnetic guided waves on linear arrays of spheres,” Wave Motion 50, 29–40 (2013).
    [Crossref]
  67. E. N. Bulgakov and A. F. Sadreev, “Transfer of spin angular momentum of an incident wave into orbital angular momentum of the bound states in the continuum in an array of dielectric spheres,” Phys. Rev. A 94, 033856 (2016).
    [Crossref]
  68. E. Bulgakov and A. Sadreev, “Trapping of light with angular orbital momentum above the light cone,” Advanced Electromagnetics 6, 1 (2017).
    [Crossref]
  69. S. Romano, I. Rendina, and V. Mocella, “High field enhancement factors in photonic nanostructures,” in “2015 AEIT International Annual Conference (AEIT),” (2015).
  70. V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92, 155117 (2015).
    [Crossref]
  71. J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Scientific Reports 5, 18301 (2015).
    [Crossref] [PubMed]
  72. M. G. Silveirinha, “Trapping light in open plasmonic nanostructures,” Phys. Rev. A 89, 023813 (2014).
    [Crossref]
  73. A. Yamilov and H. Cao, “Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles,” Phys. Rev. B 68, 085111 (2003).
    [Crossref]
  74. K. Yasumoto, Electromagnetic theory and applications for photonic crystals (CRC Press, 2005).
    [Crossref]
  75. X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs,” Scientific Reports 6, 31908 (2016).
    [Crossref] [PubMed]
  76. L. Yuan and Y. Y. Lu, “Strong resonances on periodic arrays of cylinders and optical bistability with weak incident waves,” Phys. Rev. A 95, 023834 (2017).
    [Crossref]
  77. J. A. Stratton, Electromagnetic theory (McGraw-Hill Book Company, Inc., 1941).
  78. G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
    [Crossref]
  79. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Progress in Photovoltaics: Research and Applications 3, 189–192 (1995).
    [Crossref]
  80. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. Rodier, P. Lalanne, and D. Peyrade, “Ultra-high Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express 15, 16090 (2007).
    [Crossref] [PubMed]
  81. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
    [Crossref]
  82. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
    [Crossref] [PubMed]
  83. L. Ni, J. Jin, C. Peng, and Z. Li, “Analytical and statistical investigation on structural fluctuations induced radiation in photonic crystal slabs,” Opt. Express 25, 5580–5593 (2017).
    [Crossref] [PubMed]
  84. Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
    [Crossref]
  85. M. Rybin and Y. Kivshar, “Optical physics: Supercavity lasing,” Nature 541, 164–165 (2017).
    [Crossref] [PubMed]

2017 (6)

E. Bulgakov and A. Sadreev, “Trapping of light with angular orbital momentum above the light cone,” Advanced Electromagnetics 6, 1 (2017).
[Crossref]

L. Yuan and Y. Y. Lu, “Strong resonances on periodic arrays of cylinders and optical bistability with weak incident waves,” Phys. Rev. A 95, 023834 (2017).
[Crossref]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

L. Ni, J. Jin, C. Peng, and Z. Li, “Analytical and statistical investigation on structural fluctuations induced radiation in photonic crystal slabs,” Opt. Express 25, 5580–5593 (2017).
[Crossref] [PubMed]

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

M. Rybin and Y. Kivshar, “Optical physics: Supercavity lasing,” Nature 541, 164–165 (2017).
[Crossref] [PubMed]

2016 (12)

E. N. Bulgakov and A. F. Sadreev, “Transfer of spin angular momentum of an incident wave into orbital angular momentum of the bound states in the continuum in an array of dielectric spheres,” Phys. Rev. A 94, 033856 (2016).
[Crossref]

X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs,” Scientific Reports 6, 31908 (2016).
[Crossref] [PubMed]

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Scientific Reports 6, 36066 (2016).
[Crossref] [PubMed]

L. Yuan and Y. Y. Lu, “Propagating bloch modes above the lightline on a periodic array of cylinders,” Journal of Physics B: Atomic, Molecular and Optical Physics 50, 05LT01 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

E. N. Bulgakov and D. N. Maksimov, “Light guiding above the light line in arrays of dielectric nanospheres,” Opt. Lett. 41, 3888–3891 (2016).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nature Reviews Materials 1, 16048 (2016).
[Crossref]

N. Dhindsa, J. Walia, M. Pathirane, I. Khodadad, W. S. Wong, and S. S. Saini, “Adjustable optical response of amorphous silicon nanowires integrated with thin films,” Nanotechnology 27, 145703 (2016).
[Crossref] [PubMed]

T. Y. Jeon, D. J. Kim, S.-G. Park, S.-H. Kim, and D.-H. Kim, “Nanostructured plasmonic substrates for use as sers sensors,” Nano Convergence 3, 18 (2016).
[Crossref]

A. Zhang and Z. Guo, “Efficient light trapping in tapered silicon nanohole arrays,” Optik 127, 2861–2865 (2016).
[Crossref]

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93, 024301 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotechnology 11, 23–36 (2016).
[Crossref] [PubMed]

2015 (9)

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Scientific Reports 5, 12288 (2015).
[Crossref] [PubMed]

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Advanced Optical Materials 3, 722–743 (2015).
[Crossref] [PubMed]

J. Zhang, Z. Guo, C. Ge, W. Wang, R. Li, Y. Sun, F. Shen, S. Qu, and J. Gao, “Plasmonic focusing lens based on single-turn nano-pinholes array,” Opt. Express 23, 17883 (2015).
[Crossref] [PubMed]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Light trapping above the light cone in a one-dimensional array of dielectric spheres,” Phys. Rev. A 92, 023816 (2015).
[Crossref]

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92, 155117 (2015).
[Crossref]

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Scientific Reports 5, 18301 (2015).
[Crossref] [PubMed]

J. M. Foley and J. D. Phillips, “Normal incidence narrowband transmission filtering capabilities using symmetry-protected modes of a subwavelength, dielectric grating,” Opt. Lett. 40, 2637 (2015).
[Crossref] [PubMed]

2014 (7)

M. G. Silveirinha, “Trapping light in open plasmonic nanostructures,” Phys. Rev. A 89, 023813 (2014).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bloch bound states in the radiation continuum in a periodic array of dielectric rods,” Phys. Rev. A 90, 053801 (2014).
[Crossref]

J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89, 165111 (2014).
[Crossref]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89, 035435 (2014).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy & Environmental Science 7, 2725 (2014).
[Crossref]

2013 (7)

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Scientific Reports 3, 1025 (2013).
[Crossref] [PubMed]

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Chia Wei Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref] [PubMed]

A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states inpt-symmetric optical lattices,” Phys. Rev. Lett. 110, 223902 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Communications 4, 1527 (2013).
[Crossref] [PubMed]

C. Linton, V. Zalipaev, and I. Thompson, “Electromagnetic guided waves on linear arrays of spheres,” Wave Motion 50, 29–40 (2013).
[Crossref]

2012 (6)

S. Hein, W. Koch, and L. Nannen, “Trapped modes and fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-QOptical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]

S. John, “Why trap light?” Nature Materials 11, 997–999 (2012).
[Crossref] [PubMed]

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6, 4341–4348 (2012).
[Crossref] [PubMed]

M. Yu, Y.-Z. Long, B. Sun, and Z. Fan, “Recent advances in solar cells based on one-dimensional nanostructure arrays,” Nanoscale 4, 2783 (2012).
[Crossref] [PubMed]

2011 (4)

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Letters 11, 893–897 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

2010 (3)

2009 (3)

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371 (2009).
[Crossref] [PubMed]

G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103(R) (2009).
[Crossref]

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79, 205436 (2009).
[Crossref]

2008 (3)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Physica Status Solidi (a) 205, 2777–2795 (2008).
[Crossref]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78, 023825 (2008).
[Crossref]

M. Gozman, I. Polishchuk, and A. Burin, “Light propagation in linear arrays of spherical particles,” Phys. Lett. A 372, 5250–5253 (2008).
[Crossref]

2007 (4)

2006 (2)

A. L. Burin, “Bound whispering gallery modes in circular arrays of dielectric spherical particles,” Phys. Rev. E 73, 066614 (2006).
[Crossref]

P.-G. Luan and K.-D. Chang, “Transmission characteristics of finite periodic dielectric waveguides,” Opt. Express 14, 3263–3272 (2006).
[Crossref] [PubMed]

2004 (3)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B 21, 121–131 (2004).
[Crossref]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

2003 (3)

S. Venakides and S. P. Shipman, “Resonance and bound states in photonic crystal slabs,” SIAM Journal on Applied Mathematics 64, 322–342 (2003).
[Crossref]

M. Ladrón de Guevara, F. Claro, and P. Orellana, “Ghost fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B 67, 195335 (2003).
[Crossref]

A. Yamilov and H. Cao, “Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles,” Phys. Rev. B 68, 085111 (2003).
[Crossref]

1999 (1)

C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, “Resonant tunneling in a quantum waveguide: Effect of a finite-size attractive impurity,” Phys. Rev. B 60, 10962–10970 (1999).
[Crossref]

1995 (4)

1993 (1)

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

1985 (1)

F. Borghese, P. Denti, R. Saija, G. Toscano, and O. I. Sindoni, “Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Il Nuovo Cimento D 6, 545–558 (1985).
[Crossref]

1983 (1)

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43, 579–587 (1983).
[Crossref]

1982 (1)

Abelès, F.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Aitchison, J. S.

Aizpurua, J.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Bahari, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Baranov, D. G.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Bartal, G.

G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103(R) (2009).
[Crossref]

Belov, P. A.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89, 035435 (2014).
[Crossref]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

Bermel, P.

Bersch, C.

A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states inpt-symmetric optical lattices,” Phys. Rev. Lett. 110, 223902 (2013).
[Crossref]

Blaustein, G. S.

Bloch, A. N.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43, 579–587 (1983).
[Crossref]

Bogdanov, A. A.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Borghese, F.

F. Borghese, P. Denti, R. Saija, G. Toscano, and O. I. Sindoni, “Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Il Nuovo Cimento D 6, 545–558 (1985).
[Crossref]

Brener, I.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Bulgakov, E.

E. Bulgakov and A. Sadreev, “Trapping of light with angular orbital momentum above the light cone,” Advanced Electromagnetics 6, 1 (2017).
[Crossref]

Bulgakov, E. N.

E. N. Bulgakov and A. F. Sadreev, “Transfer of spin angular momentum of an incident wave into orbital angular momentum of the bound states in the continuum in an array of dielectric spheres,” Phys. Rev. A 94, 033856 (2016).
[Crossref]

E. N. Bulgakov and D. N. Maksimov, “Light guiding above the light line in arrays of dielectric nanospheres,” Opt. Lett. 41, 3888–3891 (2016).
[Crossref] [PubMed]

E. N. Bulgakov and A. F. Sadreev, “Light trapping above the light cone in a one-dimensional array of dielectric spheres,” Phys. Rev. A 92, 023816 (2015).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bloch bound states in the radiation continuum in a periodic array of dielectric rods,” Phys. Rev. A 90, 053801 (2014).
[Crossref]

Burin, A.

M. Gozman, I. Polishchuk, and A. Burin, “Light propagation in linear arrays of spherical particles,” Phys. Lett. A 372, 5250–5253 (2008).
[Crossref]

Burin, A. L.

Burresi, M.

M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Advanced Optical Materials 3, 722–743 (2015).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Cao, H.

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B 21, 121–131 (2004).
[Crossref]

A. Yamilov and H. Cao, “Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles,” Phys. Rev. B 68, 085111 (2003).
[Crossref]

Capolino, F.

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93, 024301 (2016).
[Crossref]

Chang, K.-D.

Charvolin, T.

Chen, H.

X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs,” Scientific Reports 6, 31908 (2016).
[Crossref] [PubMed]

Chen, W.

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Scientific Reports 3, 1025 (2013).
[Crossref] [PubMed]

Chichkov, B. N.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Chong, K. E.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

Chrissoulidis, D. P.

Christodoulides, D. N.

A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states inpt-symmetric optical lattices,” Phys. Rev. Lett. 110, 223902 (2013).
[Crossref]

Chua, S.-L.

Chia Wei Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-QOptical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]

Chui, S. T.

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79, 205436 (2009).
[Crossref]

Chutinan, A.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78, 023825 (2008).
[Crossref]

Claro, F.

M. Ladrón de Guevara, F. Claro, and P. Orellana, “Ghost fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B 67, 195335 (2003).
[Crossref]

Corrielli, G.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref] [PubMed]

Cosby, R. M.

C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, “Resonant tunneling in a quantum waveguide: Effect of a finite-size attractive impurity,” Phys. Rev. B 60, 10962–10970 (1999).
[Crossref]

Crespi, A.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref] [PubMed]

Cui, X.

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Scientific Reports 6, 36066 (2016).
[Crossref] [PubMed]

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy & Environmental Science 7, 2725 (2014).
[Crossref]

Dal Negro, L.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6, 4341–4348 (2012).
[Crossref] [PubMed]

Decker, M.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

Della Valle, G.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref] [PubMed]

Denti, P.

F. Borghese, P. Denti, R. Saija, G. Toscano, and O. I. Sindoni, “Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Il Nuovo Cimento D 6, 545–558 (1985).
[Crossref]

Dhindsa, N.

N. Dhindsa, J. Walia, M. Pathirane, I. Khodadad, W. S. Wong, and S. S. Saini, “Adjustable optical response of amorphous silicon nanowires integrated with thin films,” Nanotechnology 27, 145703 (2016).
[Crossref] [PubMed]

Dmitriev, P. A.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

Dominguez, J.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

Dreisow, F.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Du, J.

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79, 205436 (2009).
[Crossref]

Du, Y.

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Scientific Reports 6, 36066 (2016).
[Crossref] [PubMed]

Evlyukhin, A. B.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Eyraud, C.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Scientific Reports 5, 12288 (2015).
[Crossref] [PubMed]

Fahr, S.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Physica Status Solidi (a) 205, 2777–2795 (2008).
[Crossref]

Fainman, Y.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Fan, S.

K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy & Environmental Science 7, 2725 (2014).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366 (2010).
[Crossref] [PubMed]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

Fan, Z.

M. Yu, Y.-Z. Long, B. Sun, and Z. Fan, “Recent advances in solar cells based on one-dimensional nanostructure arrays,” Nanoscale 4, 2783 (2012).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Letters 11, 893–897 (2011).
[Crossref]

Figotin, A.

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93, 024301 (2016).
[Crossref]

Filonov, D. S.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Fisson, S.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Foley, J. M.

J. M. Foley and J. D. Phillips, “Normal incidence narrowband transmission filtering capabilities using symmetry-protected modes of a subwavelength, dielectric grating,” Opt. Lett. 40, 2637 (2015).
[Crossref] [PubMed]

J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89, 165111 (2014).
[Crossref]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Communications 4, 1527 (2013).
[Crossref] [PubMed]

Gao, J.

Gao, X.

X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs,” Scientific Reports 6, 31908 (2016).
[Crossref] [PubMed]

Ge, C.

Geffrin, J.-M.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Scientific Reports 5, 12288 (2015).
[Crossref] [PubMed]

González, F.

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

Gozman, M.

M. Gozman, I. Polishchuk, and A. Burin, “Light propagation in linear arrays of spherical particles,” Phys. Lett. A 372, 5250–5253 (2008).
[Crossref]

Gozman, M. I.

Green, M. A.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Progress in Photovoltaics: Research and Applications 3, 189–192 (1995).
[Crossref]

Gu, Q.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Guo, Z.

Hadji, E.

Hao, F.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Letters 11, 893–897 (2011).
[Crossref]

Hein, S.

S. Hein, W. Koch, and L. Nannen, “Trapped modes and fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
[Crossref]

Heine, C.

Heinrich, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Helgert, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Physica Status Solidi (a) 205, 2777–2795 (2008).
[Crossref]

Hopkins, B.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nature Reviews Materials 1, 16048 (2016).
[Crossref]

X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs,” Scientific Reports 6, 31908 (2016).
[Crossref] [PubMed]

Ioannidou, M. P.

Iorsh, I. V.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotechnology 11, 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotechnology 11, 23–36 (2016).
[Crossref] [PubMed]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

Jeon, T. Y.

T. Y. Jeon, D. J. Kim, S.-G. Park, S.-H. Kim, and D.-H. Kim, “Nanostructured plasmonic substrates for use as sers sensors,” Nano Convergence 3, 18 (2016).
[Crossref]

Jin, J.

Joannopoulos, J. D.

X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs,” Scientific Reports 6, 31908 (2016).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nature Reviews Materials 1, 16048 (2016).
[Crossref]

Chia Wei Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-QOptical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986 (2007).
[Crossref] [PubMed]

Joe, Y. S.

C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, “Resonant tunneling in a quantum waveguide: Effect of a finite-size attractive impurity,” Phys. Rev. B 60, 10962–10970 (1999).
[Crossref]

John, S.

S. John, “Why trap light?” Nature Materials 11, 997–999 (2012).
[Crossref] [PubMed]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78, 023825 (2008).
[Crossref]

Johnson, S. G.

Chia Wei Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Kanté, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Progress in Photovoltaics: Research and Applications 3, 189–192 (1995).
[Crossref]

Keil, R.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Khodadad, I.

N. Dhindsa, J. Walia, M. Pathirane, I. Khodadad, W. S. Wong, and S. S. Saini, “Adjustable optical response of amorphous silicon nanowires integrated with thin films,” Nanotechnology 27, 145703 (2016).
[Crossref] [PubMed]

Kim, C. S.

C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, “Resonant tunneling in a quantum waveguide: Effect of a finite-size attractive impurity,” Phys. Rev. B 60, 10962–10970 (1999).
[Crossref]

Kim, D. J.

T. Y. Jeon, D. J. Kim, S.-G. Park, S.-H. Kim, and D.-H. Kim, “Nanostructured plasmonic substrates for use as sers sensors,” Nano Convergence 3, 18 (2016).
[Crossref]

Kim, D.-H.

T. Y. Jeon, D. J. Kim, S.-G. Park, S.-H. Kim, and D.-H. Kim, “Nanostructured plasmonic substrates for use as sers sensors,” Nano Convergence 3, 18 (2016).
[Crossref]

Kim, S.-H.

T. Y. Jeon, D. J. Kim, S.-G. Park, S.-H. Kim, and D.-H. Kim, “Nanostructured plasmonic substrates for use as sers sensors,” Nano Convergence 3, 18 (2016).
[Crossref]

Kimerling, L. C.

Kivshar, Y.

M. Rybin and Y. Kivshar, “Optical physics: Supercavity lasing,” Nature 541, 164–165 (2017).
[Crossref] [PubMed]

Kivshar, Y. S.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89, 035435 (2014).
[Crossref]

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

Koch, W.

S. Hein, W. Koch, and L. Nannen, “Trapped modes and fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
[Crossref]

Kodigala, A.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Koshelev, K. L.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Krasnok, A. E.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

Kroll, M.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Physica Status Solidi (a) 205, 2777–2795 (2008).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Communications 4, 1527 (2013).
[Crossref] [PubMed]

Ladrón de Guevara, M.

M. Ladrón de Guevara, F. Claro, and P. Orellana, “Ghost fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B 67, 195335 (2003).
[Crossref]

Lalanne, P.

Lavrinenko, A. V.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Lederer, F.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Physica Status Solidi (a) 205, 2777–2795 (2008).
[Crossref]

Lee, J.

Chia Wei Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-QOptical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]

Lepetit, T.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Lerosey, G.

G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103(R) (2009).
[Crossref]

Li, R.

Li, Z.

Lin, C.

Lin, X.

X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs,” Scientific Reports 6, 31908 (2016).
[Crossref] [PubMed]

Lin, Z.

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79, 205436 (2009).
[Crossref]

Linton, C.

C. Linton, V. Zalipaev, and I. Thompson, “Electromagnetic guided waves on linear arrays of spheres,” Wave Motion 50, 29–40 (2013).
[Crossref]

Litman, A.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Scientific Reports 5, 12288 (2015).
[Crossref] [PubMed]

Liu, S.

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79, 205436 (2009).
[Crossref]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy & Environmental Science 7, 2725 (2014).
[Crossref]

Long, Y.-Z.

M. Yu, Y.-Z. Long, B. Sun, and Z. Fan, “Recent advances in solar cells based on one-dimensional nanostructure arrays,” Nanoscale 4, 2783 (2012).
[Crossref] [PubMed]

Longhi, S.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref] [PubMed]

Lu, Y. Y.

L. Yuan and Y. Y. Lu, “Strong resonances on periodic arrays of cylinders and optical bistability with weak incident waves,” Phys. Rev. A 95, 023834 (2017).
[Crossref]

L. Yuan and Y. Y. Lu, “Propagating bloch modes above the lightline on a periodic array of cylinders,” Journal of Physics B: Atomic, Molecular and Optical Physics 50, 05LT01 (2016).
[Crossref]

Luan, P.-G.

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Communications 4, 1527 (2013).
[Crossref] [PubMed]

Luo, C.

Magnusson, R.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Scientific Reports 5, 18301 (2015).
[Crossref] [PubMed]

Makarov, S. V.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

Maksimov, D. N.

Malureanu, R.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Merchiers, O.

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

Milichko, V. A.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

Miri, M.-A.

A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states inpt-symmetric optical lattices,” Phys. Rev. Lett. 110, 223902 (2013).
[Crossref]

Miroshnichenko, A. E.

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89, 035435 (2014).
[Crossref]

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Communications 4, 1527 (2013).
[Crossref] [PubMed]

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

Mocella, V.

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92, 155117 (2015).
[Crossref]

S. Romano, I. Rendina, and V. Mocella, “High field enhancement factors in photonic nanostructures,” in “2015 AEIT International Annual Conference (AEIT),” (2015).

Mojahedi, M.

Moreno, F.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Scientific Reports 5, 12288 (2015).
[Crossref] [PubMed]

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

Morf, R. H.

Mukhin, I. S.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

Näger, J.

A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states inpt-symmetric optical lattices,” Phys. Rev. Lett. 110, 223902 (2013).
[Crossref]

Nannen, L.

S. Hein, W. Koch, and L. Nannen, “Trapped modes and fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
[Crossref]

Nenasheva, E. A.

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Neshev, D. N.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

Nguyen Van, V.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Ni, L.

Nolte, S.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Letters 11, 893–897 (2011).
[Crossref]

Onishchukov, G.

A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states inpt-symmetric optical lattices,” Phys. Rev. Lett. 110, 223902 (2013).
[Crossref]

Orellana, P.

M. Ladrón de Guevara, F. Claro, and P. Orellana, “Ghost fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B 67, 195335 (2003).
[Crossref]

Osellame, R.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref] [PubMed]

Othman, M. A. K.

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93, 024301 (2016).
[Crossref]

Park, S.-G.

T. Y. Jeon, D. J. Kim, S.-G. Park, S.-H. Kim, and D.-H. Kim, “Nanostructured plasmonic substrates for use as sers sensors,” Nano Convergence 3, 18 (2016).
[Crossref]

Pasquale, A. J.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6, 4341–4348 (2012).
[Crossref] [PubMed]

Pathirane, M.

N. Dhindsa, J. Walia, M. Pathirane, I. Khodadad, W. S. Wong, and S. S. Saini, “Adjustable optical response of amorphous silicon nanowires integrated with thin films,” Nanotechnology 27, 145703 (2016).
[Crossref] [PubMed]

Peleg, O.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Peng, C.

Peng, Q.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Letters 11, 893–897 (2011).
[Crossref]

Pertsch, T.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Physica Status Solidi (a) 205, 2777–2795 (2008).
[Crossref]

Peschel, U.

A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states inpt-symmetric optical lattices,” Phys. Rev. Lett. 110, 223902 (2013).
[Crossref]

Peyrade, D.

Phillips, J. D.

J. M. Foley and J. D. Phillips, “Normal incidence narrowband transmission filtering capabilities using symmetry-protected modes of a subwavelength, dielectric grating,” Opt. Lett. 40, 2637 (2015).
[Crossref] [PubMed]

J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89, 165111 (2014).
[Crossref]

Picard, E.

Plotnik, Y.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Polishchuk, I.

M. Gozman, I. Polishchuk, and A. Burin, “Light propagation in linear arrays of spherical particles,” Phys. Lett. A 372, 5250–5253 (2008).
[Crossref]

Polishchuk, I. Y.

Povinelli, M. L.

Pratesi, F.

M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Advanced Optical Materials 3, 722–743 (2015).
[Crossref] [PubMed]

Qiu, W.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-QOptical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]

Qu, S.

Raman, A.

K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy & Environmental Science 7, 2725 (2014).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366 (2010).
[Crossref] [PubMed]

Ratner, M. A.

Regensburger, A.

A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states inpt-symmetric optical lattices,” Phys. Rev. Lett. 110, 223902 (2013).
[Crossref]

Reinhard, B. M.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6, 4341–4348 (2012).
[Crossref] [PubMed]

Reinhardt, C.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Rendina, I.

S. Romano, I. Rendina, and V. Mocella, “High field enhancement factors in photonic nanostructures,” in “2015 AEIT International Annual Conference (AEIT),” (2015).

Riboli, F.

M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Advanced Optical Materials 3, 722–743 (2015).
[Crossref] [PubMed]

Rivory, J.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Rockstuhl, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Physica Status Solidi (a) 205, 2777–2795 (2008).
[Crossref]

Rodier, J.

Romano, S.

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92, 155117 (2015).
[Crossref]

S. Romano, I. Rendina, and V. Mocella, “High field enhancement factors in photonic nanostructures,” in “2015 AEIT International Annual Conference (AEIT),” (2015).

Rybin, M.

M. Rybin and Y. Kivshar, “Optical physics: Supercavity lasing,” Nature 541, 164–165 (2017).
[Crossref] [PubMed]

Sadreev, A.

E. Bulgakov and A. Sadreev, “Trapping of light with angular orbital momentum above the light cone,” Advanced Electromagnetics 6, 1 (2017).
[Crossref]

Sadreev, A. F.

E. N. Bulgakov and A. F. Sadreev, “Transfer of spin angular momentum of an incident wave into orbital angular momentum of the bound states in the continuum in an array of dielectric spheres,” Phys. Rev. A 94, 033856 (2016).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Light trapping above the light cone in a one-dimensional array of dielectric spheres,” Phys. Rev. A 92, 023816 (2015).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bloch bound states in the radiation continuum in a periodic array of dielectric rods,” Phys. Rev. A 90, 053801 (2014).
[Crossref]

Sadrieva, Z. F.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Saija, R.

F. Borghese, P. Denti, R. Saija, G. Toscano, and O. I. Sindoni, “Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Il Nuovo Cimento D 6, 545–558 (1985).
[Crossref]

Saini, S. S.

N. Dhindsa, J. Walia, M. Pathirane, I. Khodadad, W. S. Wong, and S. S. Saini, “Adjustable optical response of amorphous silicon nanowires integrated with thin films,” Nanotechnology 27, 145703 (2016).
[Crossref] [PubMed]

Saiz, J. M.

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

Samoylova, O.

Samusev, A.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Samusev, A. K.

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

Satanin, A. M.

C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, “Resonant tunneling in a quantum waveguide: Effect of a finite-size attractive impurity,” Phys. Rev. B 60, 10962–10970 (1999).
[Crossref]

Savelev, R. S.

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89, 035435 (2014).
[Crossref]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B 21, 121–131 (2004).
[Crossref]

Schmidt, M. K.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Segev, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Shapira, O.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-QOptical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]

Shen, F.

Sheng, P.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43, 579–587 (1983).
[Crossref]

Shi, G.

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Scientific Reports 6, 36066 (2016).
[Crossref] [PubMed]

Shipman, S. P.

S. Venakides and S. P. Shipman, “Resonance and bound states in photonic crystal slabs,” SIAM Journal on Applied Mathematics 64, 322–342 (2003).
[Crossref]

Shore, R. A.

R. A. Shore and A. D. Yaghjian, “Traveling electromagnetic waves on linear periodic arrays of small lossless penetrable spheres,” Tech. rep., DTIC Document (2004).

Silveirinha, M. G.

M. G. Silveirinha, “Trapping light in open plasmonic nanostructures,” Phys. Rev. A 89, 023813 (2014).
[Crossref]

Sindoni, O. I.

F. Borghese, P. Denti, R. Saija, G. Toscano, and O. I. Sindoni, “Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Il Nuovo Cimento D 6, 545–558 (1985).
[Crossref]

Sinev, I. S.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Skaropoulos, N. C.

Slobozhanyuk, A. P.

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89, 035435 (2014).
[Crossref]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Soljacic, M.

X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs,” Scientific Reports 6, 31908 (2016).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nature Reviews Materials 1, 16048 (2016).
[Crossref]

Chia Wei Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-QOptical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]

Song, S. H.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Scientific Reports 5, 18301 (2015).
[Crossref] [PubMed]

Song, W.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Letters 11, 893–897 (2011).
[Crossref]

Staude, I.

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

Stepleman, R. S.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43, 579–587 (1983).
[Crossref]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nature Reviews Materials 1, 16048 (2016).
[Crossref]

Stratton, J. A.

J. A. Stratton, Electromagnetic theory (McGraw-Hill Book Company, Inc., 1941).

Suh, W.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

Sukhorukov, A. A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Sun, B.

M. Yu, Y.-Z. Long, B. Sun, and Z. Fan, “Recent advances in solar cells based on one-dimensional nanostructure arrays,” Nanoscale 4, 2783 (2012).
[Crossref] [PubMed]

Sun, C.

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Scientific Reports 3, 1025 (2013).
[Crossref] [PubMed]

Sun, Y.

Szameit, A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Takayama, O.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Thompson, I.

C. Linton, V. Zalipaev, and I. Thompson, “Electromagnetic guided waves on linear arrays of spheres,” Wave Motion 50, 29–40 (2013).
[Crossref]

Tian, H.

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Scientific Reports 6, 36066 (2016).
[Crossref] [PubMed]

Toscano, G.

F. Borghese, P. Denti, R. Saija, G. Toscano, and O. I. Sindoni, “Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Il Nuovo Cimento D 6, 545–558 (1985).
[Crossref]

Tribelsky, M. I.

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Scientific Reports 5, 12288 (2015).
[Crossref] [PubMed]

Tünnermann, A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Velha, P.

Venakides, S.

S. Venakides and S. P. Shipman, “Resonance and bound states in photonic crystal slabs,” SIAM Journal on Applied Mathematics 64, 322–342 (2003).
[Crossref]

Vuye, G.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Walia, J.

N. Dhindsa, J. Walia, M. Pathirane, I. Khodadad, W. S. Wong, and S. S. Saini, “Adjustable optical response of amorphous silicon nanowires integrated with thin films,” Nanotechnology 27, 145703 (2016).
[Crossref] [PubMed]

Wang, C.

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Scientific Reports 3, 1025 (2013).
[Crossref] [PubMed]

Wang, J.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Letters 11, 893–897 (2011).
[Crossref]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy & Environmental Science 7, 2725 (2014).
[Crossref]

Wang, W.

Wang, Y.

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Wang, Z.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

Wei Hsu, Chia

Chia Wei Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Weimann, S.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Wheeler, M. S.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Wiersma, D. S.

M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Advanced Optical Materials 3, 722–743 (2015).
[Crossref] [PubMed]

Wong, W. S.

N. Dhindsa, J. Walia, M. Pathirane, I. Khodadad, W. S. Wong, and S. S. Saini, “Adjustable optical response of amorphous silicon nanowires integrated with thin films,” Nanotechnology 27, 145703 (2016).
[Crossref] [PubMed]

Xu, Y.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Xu, Y.-l.

Yablonovitch, E.

Yaghjian, A. D.

R. A. Shore and A. D. Yaghjian, “Traveling electromagnetic waves on linear periodic arrays of small lossless penetrable spheres,” Tech. rep., DTIC Document (2004).

Yamilov, A.

A. Yamilov and H. Cao, “Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles,” Phys. Rev. B 68, 085111 (2003).
[Crossref]

Yasumoto, K.

K. Yasumoto, Electromagnetic theory and applications for photonic crystals (CRC Press, 2005).
[Crossref]

Yazdi, F.

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93, 024301 (2016).
[Crossref]

Yoon, J. W.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Scientific Reports 5, 18301 (2015).
[Crossref] [PubMed]

Young, S. M.

J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89, 165111 (2014).
[Crossref]

Yu, M.

M. Yu, Y.-Z. Long, B. Sun, and Z. Fan, “Recent advances in solar cells based on one-dimensional nanostructure arrays,” Nanoscale 4, 2783 (2012).
[Crossref] [PubMed]

Yu, S.

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Scientific Reports 3, 1025 (2013).
[Crossref] [PubMed]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Communications 4, 1527 (2013).
[Crossref] [PubMed]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy & Environmental Science 7, 2725 (2014).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366 (2010).
[Crossref] [PubMed]

Yuan, L.

L. Yuan and Y. Y. Lu, “Strong resonances on periodic arrays of cylinders and optical bistability with weak incident waves,” Phys. Rev. A 95, 023834 (2017).
[Crossref]

L. Yuan and Y. Y. Lu, “Propagating bloch modes above the lightline on a periodic array of cylinders,” Journal of Physics B: Atomic, Molecular and Optical Physics 50, 05LT01 (2016).
[Crossref]

Zalipaev, V.

C. Linton, V. Zalipaev, and I. Thompson, “Electromagnetic guided waves on linear arrays of spheres,” Wave Motion 50, 29–40 (2013).
[Crossref]

Zeng, L.

Zhang, A.

A. Zhang and Z. Guo, “Efficient light trapping in tapered silicon nanohole arrays,” Optik 127, 2861–2865 (2016).
[Crossref]

Zhang, J.

Zhang, X.

G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103(R) (2009).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nature Reviews Materials 1, 16048 (2016).
[Crossref]

X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs,” Scientific Reports 6, 31908 (2016).
[Crossref] [PubMed]

Chia Wei Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-QOptical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]

Zhou, Z.

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Scientific Reports 6, 36066 (2016).
[Crossref] [PubMed]

Zhu, X.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Letters 11, 893–897 (2011).
[Crossref]

Zi, J.

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79, 205436 (2009).
[Crossref]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

Zywietz, U.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

ACS Nano (1)

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6, 4341–4348 (2012).
[Crossref] [PubMed]

ACS Photonics (2)

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Advanced Electromagnetics (1)

E. Bulgakov and A. Sadreev, “Trapping of light with angular orbital momentum above the light cone,” Advanced Electromagnetics 6, 1 (2017).
[Crossref]

Advanced Optical Materials (1)

M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Advanced Optical Materials 3, 722–743 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. A (1)

Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[Crossref]

Appl. Phys. Lett. (2)

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43, 579–587 (1983).
[Crossref]

D. S. Filonov, A. P. Slobozhanyuk, A. E. Krasnok, P. A. Belov, E. A. Nenasheva, B. Hopkins, A. E. Miroshnichenko, and Y. S. Kivshar, “Near-field mapping of fano resonances in all-dielectric oligomers,” Appl. Phys. Lett. 104, 021104 (2014).
[Crossref]

Energy & Environmental Science (1)

K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, “Light trapping in photonic crystals,” Energy & Environmental Science 7, 2725 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

Il Nuovo Cimento D (1)

F. Borghese, P. Denti, R. Saija, G. Toscano, and O. I. Sindoni, “Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects,” Il Nuovo Cimento D 6, 545–558 (1985).
[Crossref]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

J. Fluid Mech. (1)

S. Hein, W. Koch, and L. Nannen, “Trapped modes and fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Journal of Physics B: Atomic, Molecular and Optical Physics (1)

L. Yuan and Y. Y. Lu, “Propagating bloch modes above the lightline on a periodic array of cylinders,” Journal of Physics B: Atomic, Molecular and Optical Physics 50, 05LT01 (2016).
[Crossref]

Nano Convergence (1)

T. Y. Jeon, D. J. Kim, S.-G. Park, S.-H. Kim, and D.-H. Kim, “Nanostructured plasmonic substrates for use as sers sensors,” Nano Convergence 3, 18 (2016).
[Crossref]

Nano Letters (1)

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Letters 11, 893–897 (2011).
[Crossref]

Nanoscale (2)

M. Yu, Y.-Z. Long, B. Sun, and Z. Fan, “Recent advances in solar cells based on one-dimensional nanostructure arrays,” Nanoscale 4, 2783 (2012).
[Crossref] [PubMed]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

N. Dhindsa, J. Walia, M. Pathirane, I. Khodadad, W. S. Wong, and S. S. Saini, “Adjustable optical response of amorphous silicon nanowires integrated with thin films,” Nanotechnology 27, 145703 (2016).
[Crossref] [PubMed]

Nature (3)

Chia Wei Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

M. Rybin and Y. Kivshar, “Optical physics: Supercavity lasing,” Nature 541, 164–165 (2017).
[Crossref] [PubMed]

Nature Communications (1)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Communications 4, 1527 (2013).
[Crossref] [PubMed]

Nature Materials (2)

S. John, “Why trap light?” Nature Materials 11, 997–999 (2012).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Nature Nanotechnology (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature Nanotechnology 11, 23–36 (2016).
[Crossref] [PubMed]

Nature Reviews Materials (1)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nature Reviews Materials 1, 16048 (2016).
[Crossref]

Opt. Express (9)

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

P.-G. Luan and K.-D. Chang, “Transmission characteristics of finite periodic dielectric waveguides,” Opt. Express 14, 3263–3272 (2006).
[Crossref] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371 (2009).
[Crossref] [PubMed]

G. S. Blaustein, M. I. Gozman, O. Samoylova, I. Y. Polishchuk, and A. L. Burin, “Guiding optical modes in chains of dielectric particles,” Opt. Express 15, 17380–17391 (2007).
[Crossref] [PubMed]

J. Zhang, Z. Guo, C. Ge, W. Wang, R. Li, Y. Sun, F. Shen, S. Qu, and J. Gao, “Plasmonic focusing lens based on single-turn nano-pinholes array,” Opt. Express 23, 17883 (2015).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366 (2010).
[Crossref] [PubMed]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986 (2007).
[Crossref] [PubMed]

L. Ni, J. Jin, C. Peng, and Z. Li, “Analytical and statistical investigation on structural fluctuations induced radiation in photonic crystal slabs,” Opt. Express 25, 5580–5593 (2017).
[Crossref] [PubMed]

P. Velha, E. Picard, T. Charvolin, E. Hadji, J. Rodier, P. Lalanne, and D. Peyrade, “Ultra-high Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express 15, 16090 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Spectrosc. (1)

R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, “From optical magnetic resonance to dielectric nanophotonics (a review),” Opt. Spectrosc. 119, 551–568 (2015).
[Crossref]

Optik (1)

A. Zhang and Z. Guo, “Efficient light trapping in tapered silicon nanohole arrays,” Optik 127, 2861–2865 (2016).
[Crossref]

Phys. Lett. A (1)

M. Gozman, I. Polishchuk, and A. Burin, “Light propagation in linear arrays of spherical particles,” Phys. Lett. A 372, 5250–5253 (2008).
[Crossref]

Phys. Rev. A (9)

O. Merchiers, F. Moreno, F. González, and J. M. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A 76, 043834 (2007).
[Crossref]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78, 023825 (2008).
[Crossref]

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding,” Phys. Rev. A 83, 035803 (2011).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bloch bound states in the radiation continuum in a periodic array of dielectric rods,” Phys. Rev. A 90, 053801 (2014).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Light trapping above the light cone in a one-dimensional array of dielectric spheres,” Phys. Rev. A 92, 023816 (2015).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Transfer of spin angular momentum of an incident wave into orbital angular momentum of the bound states in the continuum in an array of dielectric spheres,” Phys. Rev. A 94, 033856 (2016).
[Crossref]

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79, 205436 (2009).
[Crossref]

M. G. Silveirinha, “Trapping light in open plasmonic nanostructures,” Phys. Rev. A 89, 023813 (2014).
[Crossref]

L. Yuan and Y. Y. Lu, “Strong resonances on periodic arrays of cylinders and optical bistability with weak incident waves,” Phys. Rev. A 95, 023834 (2017).
[Crossref]

Phys. Rev. B (8)

A. Yamilov and H. Cao, “Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles,” Phys. Rev. B 68, 085111 (2003).
[Crossref]

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92, 155117 (2015).
[Crossref]

C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, “Resonant tunneling in a quantum waveguide: Effect of a finite-size attractive impurity,” Phys. Rev. B 60, 10962–10970 (1999).
[Crossref]

M. Ladrón de Guevara, F. Claro, and P. Orellana, “Ghost fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B 67, 195335 (2003).
[Crossref]

J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating,” Phys. Rev. B 89, 165111 (2014).
[Crossref]

R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “Subwavelength waveguides composed of dielectric nanoparticles,” Phys. Rev. B 89, 035435 (2014).
[Crossref]

M. A. K. Othman, F. Yazdi, A. Figotin, and F. Capolino, “Giant gain enhancement in photonic crystals with a degenerate band edge,” Phys. Rev. B 93, 024301 (2016).
[Crossref]

G. Bartal, G. Lerosey, and X. Zhang, “Subwavelength dynamic focusing in plasmonic nanostructures using time reversal,” Phys. Rev. B 79, 201103(R) (2009).
[Crossref]

Phys. Rev. E (1)

A. L. Burin, “Bound whispering gallery modes in circular arrays of dielectric spherical particles,” Phys. Rev. E 73, 066614 (2006).
[Crossref]

Phys. Rev. Lett. (5)

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref] [PubMed]

A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states inpt-symmetric optical lattices,” Phys. Rev. Lett. 110, 223902 (2013).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-QOptical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Physica Status Solidi (a) (1)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Physica Status Solidi (a) 205, 2777–2795 (2008).
[Crossref]

Progress in Photovoltaics: Research and Applications (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Progress in Photovoltaics: Research and Applications 3, 189–192 (1995).
[Crossref]

Scientific Reports (5)

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Scientific Reports 5, 18301 (2015).
[Crossref] [PubMed]

X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs,” Scientific Reports 6, 31908 (2016).
[Crossref] [PubMed]

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Scientific Reports 3, 1025 (2013).
[Crossref] [PubMed]

M. I. Tribelsky, J.-M. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Scientific Reports 5, 12288 (2015).
[Crossref] [PubMed]

X. Cui, H. Tian, Y. Du, G. Shi, and Z. Zhou, “Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings,” Scientific Reports 6, 36066 (2016).
[Crossref] [PubMed]

SIAM Journal on Applied Mathematics (1)

S. Venakides and S. P. Shipman, “Resonance and bound states in photonic crystal slabs,” SIAM Journal on Applied Mathematics 64, 322–342 (2003).
[Crossref]

Small (1)

K. E. Chong, B. Hopkins, I. Staude, A. E. Miroshnichenko, J. Dominguez, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Observation of fano resonances in all-dielectric nanoparticle oligomers,” Small 10, 1985–1990 (2014).
[Crossref] [PubMed]

Thin Solid Films (1)

G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, “Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry,” Thin Solid Films 233, 166–170 (1993).
[Crossref]

Wave Motion (1)

C. Linton, V. Zalipaev, and I. Thompson, “Electromagnetic guided waves on linear arrays of spheres,” Wave Motion 50, 29–40 (2013).
[Crossref]

Other (4)

S. Romano, I. Rendina, and V. Mocella, “High field enhancement factors in photonic nanostructures,” in “2015 AEIT International Annual Conference (AEIT),” (2015).

R. A. Shore and A. D. Yaghjian, “Traveling electromagnetic waves on linear periodic arrays of small lossless penetrable spheres,” Tech. rep., DTIC Document (2004).

J. A. Stratton, Electromagnetic theory (McGraw-Hill Book Company, Inc., 1941).

K. Yasumoto, Electromagnetic theory and applications for photonic crystals (CRC Press, 2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 BCSs in arrays of dielectric rods. Left panel: set-up of the array in x0y-plane. Right panel: field patterns of BSCs 2, 3 from Table 1.
Fig. 2
Fig. 2 Light scattering in the parametric vicinity of symmetry protected BSCs for dielectric = 15 arrays of rods under illumination by a TM plane wave with unit amplitude. Top panel: expansion coefficients cm (j) vs. the number of the rod j for N = 50 for BSC 3. The impinging wave parameters are tuned to the first resonance Eq. (7). The resulting field pattern is shown on top of the subplot. South-west: mean value of the leading coefficient 〈cm0〉 vs. k0, kx in the vicinity of BSC 2 for N = 50. South-east: The same for BSC 3. White dash lines correspond to asymptotic behavior by Eq. (5). The frequencies of structural resonances by Eq. (8) are shown by red horizontal lines.
Fig. 3
Fig. 3 Light scattering in the parametric vicinity of BSCs unprotected by symmetry for dielectric = 15 arrays of rods under illumination by a TM plane wave with unit amplitude. Left panel: Standing wave BSC 5 unprotected by symmetry; mean value of the leading coefficient 〈cm0Eq. (6) vs. k0, kx in the parametric vicinity of the BSC for N = 50 rods. The BSC field pattern is shown on top of the subplot. Right panel: the same for Bloch BSC 6; the star shows the position of BSC 6 in the parametric space k0, kx. The BSC field pattern is shown on top of the subplot in form of the real part of the travelling wave amplitude. White dash lines correspond to asymptotic behavior by Eq. (5). The frequencies of structural resonances by Eq. (8) are shown by red horizontal lines.
Fig. 4
Fig. 4 BCS in arrays of dielectric spheres. Left panel: set-up of the array. Right panel: The field patterns in form of Hy component for BSC 7 and Hx component for BSC 8 in x0z-plane.
Fig. 5
Fig. 5 Light scattering by structural resonances in the parametric vicinity of BSC 8 in arrays of dielectric spheres. Top panel: the leading coefficients in Eq. (10) for the first structural resonance N = 50. Bottom panel: the leading coefficients in Eq. (10) for the second structural resonance N = 200. The insets show the response function Eq. (6) evaluated with leading Mie coefficients a 1 0 ( j ), a 3 0 ( j ) against the Bloch wave vector kx.
Fig. 6
Fig. 6 Q-factors for structural resonances against the number of dielectric elements N. Left panel: arrays of rods; BCR with k0a = 2.8908, kx a = π, R/a = 0.44. Right panel: arrays of spheres; BCR with k0a = 2.052, kx a = π, R/a = 0.40. The black dash line shows the best result found in [33]. The horizontal lines show the limits due to material losses in silicon.
Fig. 7
Fig. 7 The enhancement factor of dielectric arrays. Left panel: arrays of rods. Right panel: arrays of spheres.

Tables (2)

Tables Icon

Table 1 BSCs in linear arrays of dielectric cylinders, = 15. SP stands for symmetry protected.

Tables Icon

Table 2 BSCs in linear arrays of dielectric spheres, = 15. SP stands for symmetry protected.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E z ( x , y ) = j m = 0 c m ( j ) e i m θ j J m ( k 0 ρ j ) ,
E z ( x , y ) = j m = 0 c ¯ m ( j ) e i m θ j H m ( 1 ) ( k 0 ρ j ) ,
c m ( j ) = c m ( 0 ) e i k x a j , c ¯ m ( j ) = c ¯ m ( 0 ) e i k x a j ,
{ k 0 a } = a ν ( k x a k x BSC a ) ν + 𝒪 [ ( k x a k x BSC a ) ν + 2 ] ,
{ k 0 a } = k 0 BSC a a μ ( k x a k x BSC a ) μ + 𝒪 [ ( k x a k x BSC a ) μ + 1 ] ,
| c m 0 | = 1 N j = 1 N | c m 0 ( j ) | ,
Na k x ( p ) = π p , p = 1 , 2 , , .
{ k 0 ( p ) a } = k 0 BSC a a μ ( π p N k x BSC a ) μ ,
E z ( p ) ( x ) f ( x , y ) sin ( π p x Na ) ,
E ( r ) = j n = m * [ a n m ( j ) M n m ( r r j ) + b n m ( j ) N n m ( r r j ) ] ,
a n m ( j ) = a n m ( 0 ) e i k x a j , b n m ( j ) = b n m ( 0 ) e i k x a j .
Q = ω γ ,
F = 1 I 0 V V d r I ( r ) .

Metrics