Abstract

Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wind turbine wake visualization and characteristics analysis by Doppler lidar

Songhua Wu, Bingyi Liu, Jintao Liu, Xiaochun Zhai, Changzhong Feng, Guining Wang, Hongwei Zhang, Jiaping Yin, Xitao Wang, Rongzhong Li, and Daniel Gallacher
Opt. Express 24(10) A762-A780 (2016)

Coherent Doppler lidar signal spectrum with wind turbulence

Rod Frehlich and Larry Cornman
Appl. Opt. 38(36) 7456-7466 (1999)

References

  • View by:
  • |
  • |
  • |

  1. P. Builtjes and P. Vermeulen, “Turbulence in wind turbine clusters,” in Proc. 4th Int. Symp. on Wind Energy Systems (1982), pp. 449–464.
  2. J. Ross and J. Ainslie, “Wake measurements in clusters of model wind turbines using laser Doppler anemometry,” in Proceedings of the Third BWEA Wind Energy Conference,Cranfield (1981), pp. 172–184.
  3. D. Green and A. Alexander, “Measurement of velocity and turbulence profiles in flow situations relevant to wind turbine performance. Final Report on ETSU contract E,” (5A/CON/5003/177/026, Loughborough University, 1985).
  4. A. Talmon, “The wake of a horizontal axis wind turbine model, measurements in uniform approach flow and in a simulated boundary layer,” TNO Division of Technology for Society Tech. Rep, 85–01021 (1985).
  5. D. Milborrow and J. Ross, “The influence of turbulence and rotor thrust on wind turbine wake characteristics,” CERL Memorandum No TPRD/L/AP/0098/M83 (1983).
  6. P. Alfredsson, F. Bark, and J. Dahlberg, “Some properties of the wake behind horizontal axis wind turbines,” in 3rd international symposium on wind energy systems (1980), pp. 469–484.
  7. S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, “Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation,” Renew. Energy 38(1), 16–30 (2012).
    [Crossref]
  8. D. Elliott and J. Barnard, “Observations of wind turbine wakes and surface roughness effects on wind flow variability,” Sol. Energy 45(5), 265–283 (1990).
    [Crossref]
  9. U. Högström, D. Asimakopoulos, H. Kambezidis, C. Helmis, and A. Smedman, “A field study of the wake behind a 2 MW wind turbine,” Atmos. Environ. (1967). 22(4), 803–820 (1988).
    [Crossref]
  10. R. Barthelmie, L. Folkerts, F. Ormel, P. Sanderhoff, P. Eecen, O. Stobbe, and N. Nielsen, “Offshore wind turbine wakes measured by SODAR,” J. Atmos. Ocean. Technol. 20(4), 466–477 (2003).
    [Crossref]
  11. L. Vermeer, J. N. Sørensen, and A. Crespo, “Wind turbine wake aerodynamics,” Prog. Aerosp. Sci. 39(6-7), 467–510 (2003).
    [Crossref]
  12. F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics part I: one-dimensional scanning,” Wind Energy (Chichester Engl.) 13(1), 51–61 (2010).
    [Crossref]
  13. J. Trujillo, F. Bingöl, G. C. Larsen, J. Mann, and M. Kühn, “Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning,” Wind Energy (Chichester Engl.) 14(1), 61–75 (2011).
    [Crossref]
  14. Y. Käsler, S. Rahm, R. Simmet, and M. Kühn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
    [Crossref]
  15. I. Smalikho, V. Banakh, Y. Pichugina, W. Brewer, R. Banta, J. Lundquist, and N. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Ocean. Technol. 30(11), 2554–2570 (2013).
    [Crossref]
  16. S. Wu, B. Liu, J. Liu, X. Zhai, C. Feng, G. Wang, H. Zhang, J. Yin, X. Wang, R. Li, and D. Gallacher, “Wind turbine wake visualization and characteristics analysis by Doppler lidar,” Opt. Express 24(10), A762–A780 (2016).
    [Crossref] [PubMed]
  17. R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
    [Crossref]
  18. G. V. Iungo, Y.-T. Wu, and F. Porté-Agel, “Field measurements of wind turbine wakes with lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
    [Crossref]
  19. S. Wu and X. Zhai, “Lidar Investigation of Wind Turbine Wake Characteristics Under Different Surface Roughness,” in Optics and Photonics for Energy and the Environment (Optical Society of America, 2016), p. EM2A. 3.
  20. D. Medici and P. Alfredsson, “Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding,” Wind Energy (Chichester Engl.) 9(3), 219–236 (2006).
    [Crossref]
  21. L. P. Chamorro and F. Porté-Agel, “A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects,” Boundary-Layer Meteorol. 132(1), 129–149 (2009).
    [Crossref]
  22. R. B. Smith, “Gravity wave effects on wind farm efficiency,” Wind Energy (Chichester Engl.) 13(5), 449–458 (2010).
    [Crossref]
  23. S. Emeis, Wind energy meteorology: atmospheric physics for wind power generation (Springer Science & Business Media, 2012).
  24. B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, “Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements,” Boundary-Layer Meteorol. 103(3), 361–389 (2002).
    [Crossref]
  25. R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Ocean. Technol. 14(1), 54–75 (1997).
    [Crossref]
  26. A. B. Davis and A. Marshak, “Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions,” J. Quant. Spectrosc. Radiat. Transf. 84(1), 3–34 (2004).
    [Crossref]
  27. R. Frehlich and L. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. Ocean. Technol. 19(3), 355–366 (2002).
    [Crossref]
  28. R. Frehlich and R. Sharman, “Maximum likelihood estimates of vortex parameters from simulated coherent Doppler lidar data,” J. Atmos. Ocean. Technol. 22(2), 117–130 (2005).
    [Crossref]
  29. R. Krishnamurthy, R. Calhoun, B. Billings, and J. Doyle, “Wind turbulence estimates in a valley by coherent Doppler lidar,” Meteorol. Appl. 18(3), 361–371 (2011).
    [Crossref]
  30. I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-um Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
    [Crossref]
  31. B. D. Hirth and J. L. Schroeder, “Documenting wind speed and power deficits behind a utility-scale wind turbine,” J. Appl. Meteorol. Climatol. 52(1), 39–46 (2013).
    [Crossref]
  32. J. Whale, K. H. Papadopoulos, C. G. Anderson, C. G. Helmis, and D. J. Skyner, “A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments,” Sol. Energy 56(6), 621–633 (1996).
    [Crossref]
  33. M. L. Aitken, R. M. Banta, Y. L. Pichugina, and J. K. Lundquist, “Quantifying wind turbine wake characteristics from scanning remote sensor data,” J. Atmos. Ocean. Technol. 31(4), 765–787 (2014).
    [Crossref]
  34. P. Sheng, J. Mao, J. Li, A. Zhang, J. Sang, and N. Pan, Atmospheric Physics (Beijing University Press, 2003), Chap. 9.

2016 (1)

2015 (1)

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

2014 (1)

M. L. Aitken, R. M. Banta, Y. L. Pichugina, and J. K. Lundquist, “Quantifying wind turbine wake characteristics from scanning remote sensor data,” J. Atmos. Ocean. Technol. 31(4), 765–787 (2014).
[Crossref]

2013 (3)

B. D. Hirth and J. L. Schroeder, “Documenting wind speed and power deficits behind a utility-scale wind turbine,” J. Appl. Meteorol. Climatol. 52(1), 39–46 (2013).
[Crossref]

G. V. Iungo, Y.-T. Wu, and F. Porté-Agel, “Field measurements of wind turbine wakes with lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
[Crossref]

I. Smalikho, V. Banakh, Y. Pichugina, W. Brewer, R. Banta, J. Lundquist, and N. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Ocean. Technol. 30(11), 2554–2570 (2013).
[Crossref]

2012 (1)

S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, “Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation,” Renew. Energy 38(1), 16–30 (2012).
[Crossref]

2011 (2)

J. Trujillo, F. Bingöl, G. C. Larsen, J. Mann, and M. Kühn, “Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning,” Wind Energy (Chichester Engl.) 14(1), 61–75 (2011).
[Crossref]

R. Krishnamurthy, R. Calhoun, B. Billings, and J. Doyle, “Wind turbulence estimates in a valley by coherent Doppler lidar,” Meteorol. Appl. 18(3), 361–371 (2011).
[Crossref]

2010 (3)

Y. Käsler, S. Rahm, R. Simmet, and M. Kühn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics part I: one-dimensional scanning,” Wind Energy (Chichester Engl.) 13(1), 51–61 (2010).
[Crossref]

R. B. Smith, “Gravity wave effects on wind farm efficiency,” Wind Energy (Chichester Engl.) 13(5), 449–458 (2010).
[Crossref]

2009 (1)

L. P. Chamorro and F. Porté-Agel, “A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects,” Boundary-Layer Meteorol. 132(1), 129–149 (2009).
[Crossref]

2006 (1)

D. Medici and P. Alfredsson, “Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding,” Wind Energy (Chichester Engl.) 9(3), 219–236 (2006).
[Crossref]

2005 (2)

R. Frehlich and R. Sharman, “Maximum likelihood estimates of vortex parameters from simulated coherent Doppler lidar data,” J. Atmos. Ocean. Technol. 22(2), 117–130 (2005).
[Crossref]

I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-um Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

2004 (1)

A. B. Davis and A. Marshak, “Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions,” J. Quant. Spectrosc. Radiat. Transf. 84(1), 3–34 (2004).
[Crossref]

2003 (2)

R. Barthelmie, L. Folkerts, F. Ormel, P. Sanderhoff, P. Eecen, O. Stobbe, and N. Nielsen, “Offshore wind turbine wakes measured by SODAR,” J. Atmos. Ocean. Technol. 20(4), 466–477 (2003).
[Crossref]

L. Vermeer, J. N. Sørensen, and A. Crespo, “Wind turbine wake aerodynamics,” Prog. Aerosp. Sci. 39(6-7), 467–510 (2003).
[Crossref]

2002 (2)

R. Frehlich and L. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. Ocean. Technol. 19(3), 355–366 (2002).
[Crossref]

B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, “Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements,” Boundary-Layer Meteorol. 103(3), 361–389 (2002).
[Crossref]

1997 (1)

R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Ocean. Technol. 14(1), 54–75 (1997).
[Crossref]

1996 (1)

J. Whale, K. H. Papadopoulos, C. G. Anderson, C. G. Helmis, and D. J. Skyner, “A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments,” Sol. Energy 56(6), 621–633 (1996).
[Crossref]

1990 (1)

D. Elliott and J. Barnard, “Observations of wind turbine wakes and surface roughness effects on wind flow variability,” Sol. Energy 45(5), 265–283 (1990).
[Crossref]

1988 (1)

U. Högström, D. Asimakopoulos, H. Kambezidis, C. Helmis, and A. Smedman, “A field study of the wake behind a 2 MW wind turbine,” Atmos. Environ. (1967). 22(4), 803–820 (1988).
[Crossref]

Ainslie, J.

J. Ross and J. Ainslie, “Wake measurements in clusters of model wind turbines using laser Doppler anemometry,” in Proceedings of the Third BWEA Wind Energy Conference,Cranfield (1981), pp. 172–184.

Aitken, M. L.

M. L. Aitken, R. M. Banta, Y. L. Pichugina, and J. K. Lundquist, “Quantifying wind turbine wake characteristics from scanning remote sensor data,” J. Atmos. Ocean. Technol. 31(4), 765–787 (2014).
[Crossref]

Alfredsson, P.

D. Medici and P. Alfredsson, “Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding,” Wind Energy (Chichester Engl.) 9(3), 219–236 (2006).
[Crossref]

Alvarez, R. J.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

Anderson, C. G.

J. Whale, K. H. Papadopoulos, C. G. Anderson, C. G. Helmis, and D. J. Skyner, “A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments,” Sol. Energy 56(6), 621–633 (1996).
[Crossref]

Ardhuin-Girard, F.

B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, “Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements,” Boundary-Layer Meteorol. 103(3), 361–389 (2002).
[Crossref]

Asimakopoulos, D.

U. Högström, D. Asimakopoulos, H. Kambezidis, C. Helmis, and A. Smedman, “A field study of the wake behind a 2 MW wind turbine,” Atmos. Environ. (1967). 22(4), 803–820 (1988).
[Crossref]

Banakh, V.

I. Smalikho, V. Banakh, Y. Pichugina, W. Brewer, R. Banta, J. Lundquist, and N. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Ocean. Technol. 30(11), 2554–2570 (2013).
[Crossref]

Banta, R.

I. Smalikho, V. Banakh, Y. Pichugina, W. Brewer, R. Banta, J. Lundquist, and N. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Ocean. Technol. 30(11), 2554–2570 (2013).
[Crossref]

Banta, R. M.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

M. L. Aitken, R. M. Banta, Y. L. Pichugina, and J. K. Lundquist, “Quantifying wind turbine wake characteristics from scanning remote sensor data,” J. Atmos. Ocean. Technol. 31(4), 765–787 (2014).
[Crossref]

Barnard, J.

D. Elliott and J. Barnard, “Observations of wind turbine wakes and surface roughness effects on wind flow variability,” Sol. Energy 45(5), 265–283 (1990).
[Crossref]

Barthelmie, R.

R. Barthelmie, L. Folkerts, F. Ormel, P. Sanderhoff, P. Eecen, O. Stobbe, and N. Nielsen, “Offshore wind turbine wakes measured by SODAR,” J. Atmos. Ocean. Technol. 20(4), 466–477 (2003).
[Crossref]

Bénech, B.

B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, “Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements,” Boundary-Layer Meteorol. 103(3), 361–389 (2002).
[Crossref]

Bernard, S.

B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, “Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements,” Boundary-Layer Meteorol. 103(3), 361–389 (2002).
[Crossref]

Billings, B.

R. Krishnamurthy, R. Calhoun, B. Billings, and J. Doyle, “Wind turbulence estimates in a valley by coherent Doppler lidar,” Meteorol. Appl. 18(3), 361–371 (2011).
[Crossref]

Bingöl, F.

J. Trujillo, F. Bingöl, G. C. Larsen, J. Mann, and M. Kühn, “Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning,” Wind Energy (Chichester Engl.) 14(1), 61–75 (2011).
[Crossref]

F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics part I: one-dimensional scanning,” Wind Energy (Chichester Engl.) 13(1), 51–61 (2010).
[Crossref]

Brewer, W.

I. Smalikho, V. Banakh, Y. Pichugina, W. Brewer, R. Banta, J. Lundquist, and N. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Ocean. Technol. 30(11), 2554–2570 (2013).
[Crossref]

Brewer, W. A.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

Builtjes, P.

P. Builtjes and P. Vermeulen, “Turbulence in wind turbine clusters,” in Proc. 4th Int. Symp. on Wind Energy Systems (1982), pp. 449–464.

Calhoun, R.

R. Krishnamurthy, R. Calhoun, B. Billings, and J. Doyle, “Wind turbulence estimates in a valley by coherent Doppler lidar,” Meteorol. Appl. 18(3), 361–371 (2011).
[Crossref]

Campistron, B.

B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, “Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements,” Boundary-Layer Meteorol. 103(3), 361–389 (2002).
[Crossref]

Carissimo, B.

B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, “Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements,” Boundary-Layer Meteorol. 103(3), 361–389 (2002).
[Crossref]

Castillo, L.

S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, “Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation,” Renew. Energy 38(1), 16–30 (2012).
[Crossref]

Chamorro, L. P.

L. P. Chamorro and F. Porté-Agel, “A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects,” Boundary-Layer Meteorol. 132(1), 129–149 (2009).
[Crossref]

Chowdhury, S.

S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, “Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation,” Renew. Energy 38(1), 16–30 (2012).
[Crossref]

Cornman, L.

R. Frehlich and L. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. Ocean. Technol. 19(3), 355–366 (2002).
[Crossref]

Crespo, A.

L. Vermeer, J. N. Sørensen, and A. Crespo, “Wind turbine wake aerodynamics,” Prog. Aerosp. Sci. 39(6-7), 467–510 (2003).
[Crossref]

Davis, A. B.

A. B. Davis and A. Marshak, “Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions,” J. Quant. Spectrosc. Radiat. Transf. 84(1), 3–34 (2004).
[Crossref]

Dessens, J.

B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, “Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements,” Boundary-Layer Meteorol. 103(3), 361–389 (2002).
[Crossref]

Doyle, J.

R. Krishnamurthy, R. Calhoun, B. Billings, and J. Doyle, “Wind turbulence estimates in a valley by coherent Doppler lidar,” Meteorol. Appl. 18(3), 361–371 (2011).
[Crossref]

Dupont, E.

B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, “Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements,” Boundary-Layer Meteorol. 103(3), 361–389 (2002).
[Crossref]

Eecen, P.

R. Barthelmie, L. Folkerts, F. Ormel, P. Sanderhoff, P. Eecen, O. Stobbe, and N. Nielsen, “Offshore wind turbine wakes measured by SODAR,” J. Atmos. Ocean. Technol. 20(4), 466–477 (2003).
[Crossref]

Elliott, D.

D. Elliott and J. Barnard, “Observations of wind turbine wakes and surface roughness effects on wind flow variability,” Sol. Energy 45(5), 265–283 (1990).
[Crossref]

Feng, C.

Folkerts, L.

R. Barthelmie, L. Folkerts, F. Ormel, P. Sanderhoff, P. Eecen, O. Stobbe, and N. Nielsen, “Offshore wind turbine wakes measured by SODAR,” J. Atmos. Ocean. Technol. 20(4), 466–477 (2003).
[Crossref]

Frehlich, R.

R. Frehlich and R. Sharman, “Maximum likelihood estimates of vortex parameters from simulated coherent Doppler lidar data,” J. Atmos. Ocean. Technol. 22(2), 117–130 (2005).
[Crossref]

R. Frehlich and L. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. Ocean. Technol. 19(3), 355–366 (2002).
[Crossref]

R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Ocean. Technol. 14(1), 54–75 (1997).
[Crossref]

Gallacher, D.

Hardesty, R. M.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

Helmis, C.

U. Högström, D. Asimakopoulos, H. Kambezidis, C. Helmis, and A. Smedman, “A field study of the wake behind a 2 MW wind turbine,” Atmos. Environ. (1967). 22(4), 803–820 (1988).
[Crossref]

Helmis, C. G.

J. Whale, K. H. Papadopoulos, C. G. Anderson, C. G. Helmis, and D. J. Skyner, “A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments,” Sol. Energy 56(6), 621–633 (1996).
[Crossref]

Hirth, B. D.

B. D. Hirth and J. L. Schroeder, “Documenting wind speed and power deficits behind a utility-scale wind turbine,” J. Appl. Meteorol. Climatol. 52(1), 39–46 (2013).
[Crossref]

Högström, U.

U. Högström, D. Asimakopoulos, H. Kambezidis, C. Helmis, and A. Smedman, “A field study of the wake behind a 2 MW wind turbine,” Atmos. Environ. (1967). 22(4), 803–820 (1988).
[Crossref]

Iungo, G. V.

G. V. Iungo, Y.-T. Wu, and F. Porté-Agel, “Field measurements of wind turbine wakes with lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
[Crossref]

Kambezidis, H.

U. Högström, D. Asimakopoulos, H. Kambezidis, C. Helmis, and A. Smedman, “A field study of the wake behind a 2 MW wind turbine,” Atmos. Environ. (1967). 22(4), 803–820 (1988).
[Crossref]

Käsler, Y.

Y. Käsler, S. Rahm, R. Simmet, and M. Kühn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

Kelley, N.

I. Smalikho, V. Banakh, Y. Pichugina, W. Brewer, R. Banta, J. Lundquist, and N. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Ocean. Technol. 30(11), 2554–2570 (2013).
[Crossref]

Kelley, N. D.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

Köpp, F.

I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-um Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

Krishnamurthy, R.

R. Krishnamurthy, R. Calhoun, B. Billings, and J. Doyle, “Wind turbulence estimates in a valley by coherent Doppler lidar,” Meteorol. Appl. 18(3), 361–371 (2011).
[Crossref]

Kühn, M.

J. Trujillo, F. Bingöl, G. C. Larsen, J. Mann, and M. Kühn, “Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning,” Wind Energy (Chichester Engl.) 14(1), 61–75 (2011).
[Crossref]

Y. Käsler, S. Rahm, R. Simmet, and M. Kühn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

Larsen, G. C.

J. Trujillo, F. Bingöl, G. C. Larsen, J. Mann, and M. Kühn, “Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning,” Wind Energy (Chichester Engl.) 14(1), 61–75 (2011).
[Crossref]

F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics part I: one-dimensional scanning,” Wind Energy (Chichester Engl.) 13(1), 51–61 (2010).
[Crossref]

Li, R.

Liu, B.

Liu, J.

Lundquist, J.

I. Smalikho, V. Banakh, Y. Pichugina, W. Brewer, R. Banta, J. Lundquist, and N. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Ocean. Technol. 30(11), 2554–2570 (2013).
[Crossref]

Lundquist, J. K.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

M. L. Aitken, R. M. Banta, Y. L. Pichugina, and J. K. Lundquist, “Quantifying wind turbine wake characteristics from scanning remote sensor data,” J. Atmos. Ocean. Technol. 31(4), 765–787 (2014).
[Crossref]

Mann, J.

J. Trujillo, F. Bingöl, G. C. Larsen, J. Mann, and M. Kühn, “Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning,” Wind Energy (Chichester Engl.) 14(1), 61–75 (2011).
[Crossref]

F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics part I: one-dimensional scanning,” Wind Energy (Chichester Engl.) 13(1), 51–61 (2010).
[Crossref]

Marshak, A.

A. B. Davis and A. Marshak, “Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions,” J. Quant. Spectrosc. Radiat. Transf. 84(1), 3–34 (2004).
[Crossref]

Medici, D.

D. Medici and P. Alfredsson, “Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding,” Wind Energy (Chichester Engl.) 9(3), 219–236 (2006).
[Crossref]

Messac, A.

S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, “Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation,” Renew. Energy 38(1), 16–30 (2012).
[Crossref]

Nielsen, N.

R. Barthelmie, L. Folkerts, F. Ormel, P. Sanderhoff, P. Eecen, O. Stobbe, and N. Nielsen, “Offshore wind turbine wakes measured by SODAR,” J. Atmos. Ocean. Technol. 20(4), 466–477 (2003).
[Crossref]

Ormel, F.

R. Barthelmie, L. Folkerts, F. Ormel, P. Sanderhoff, P. Eecen, O. Stobbe, and N. Nielsen, “Offshore wind turbine wakes measured by SODAR,” J. Atmos. Ocean. Technol. 20(4), 466–477 (2003).
[Crossref]

Papadopoulos, K. H.

J. Whale, K. H. Papadopoulos, C. G. Anderson, C. G. Helmis, and D. J. Skyner, “A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments,” Sol. Energy 56(6), 621–633 (1996).
[Crossref]

Pichugina, Y.

I. Smalikho, V. Banakh, Y. Pichugina, W. Brewer, R. Banta, J. Lundquist, and N. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Ocean. Technol. 30(11), 2554–2570 (2013).
[Crossref]

Pichugina, Y. L.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

M. L. Aitken, R. M. Banta, Y. L. Pichugina, and J. K. Lundquist, “Quantifying wind turbine wake characteristics from scanning remote sensor data,” J. Atmos. Ocean. Technol. 31(4), 765–787 (2014).
[Crossref]

Porté-Agel, F.

G. V. Iungo, Y.-T. Wu, and F. Porté-Agel, “Field measurements of wind turbine wakes with lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
[Crossref]

L. P. Chamorro and F. Porté-Agel, “A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects,” Boundary-Layer Meteorol. 132(1), 129–149 (2009).
[Crossref]

Rahm, S.

Y. Käsler, S. Rahm, R. Simmet, and M. Kühn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-um Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

Ross, J.

J. Ross and J. Ainslie, “Wake measurements in clusters of model wind turbines using laser Doppler anemometry,” in Proceedings of the Third BWEA Wind Energy Conference,Cranfield (1981), pp. 172–184.

Sandberg, S. P.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

Sanderhoff, P.

R. Barthelmie, L. Folkerts, F. Ormel, P. Sanderhoff, P. Eecen, O. Stobbe, and N. Nielsen, “Offshore wind turbine wakes measured by SODAR,” J. Atmos. Ocean. Technol. 20(4), 466–477 (2003).
[Crossref]

Schroeder, J. L.

B. D. Hirth and J. L. Schroeder, “Documenting wind speed and power deficits behind a utility-scale wind turbine,” J. Appl. Meteorol. Climatol. 52(1), 39–46 (2013).
[Crossref]

Sharman, R.

R. Frehlich and R. Sharman, “Maximum likelihood estimates of vortex parameters from simulated coherent Doppler lidar data,” J. Atmos. Ocean. Technol. 22(2), 117–130 (2005).
[Crossref]

Simmet, R.

Y. Käsler, S. Rahm, R. Simmet, and M. Kühn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

Skyner, D. J.

J. Whale, K. H. Papadopoulos, C. G. Anderson, C. G. Helmis, and D. J. Skyner, “A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments,” Sol. Energy 56(6), 621–633 (1996).
[Crossref]

Smalikho, I.

I. Smalikho, V. Banakh, Y. Pichugina, W. Brewer, R. Banta, J. Lundquist, and N. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Ocean. Technol. 30(11), 2554–2570 (2013).
[Crossref]

I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-um Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

Smedman, A.

U. Högström, D. Asimakopoulos, H. Kambezidis, C. Helmis, and A. Smedman, “A field study of the wake behind a 2 MW wind turbine,” Atmos. Environ. (1967). 22(4), 803–820 (1988).
[Crossref]

Smith, R. B.

R. B. Smith, “Gravity wave effects on wind farm efficiency,” Wind Energy (Chichester Engl.) 13(5), 449–458 (2010).
[Crossref]

Sørensen, J. N.

L. Vermeer, J. N. Sørensen, and A. Crespo, “Wind turbine wake aerodynamics,” Prog. Aerosp. Sci. 39(6-7), 467–510 (2003).
[Crossref]

Stobbe, O.

R. Barthelmie, L. Folkerts, F. Ormel, P. Sanderhoff, P. Eecen, O. Stobbe, and N. Nielsen, “Offshore wind turbine wakes measured by SODAR,” J. Atmos. Ocean. Technol. 20(4), 466–477 (2003).
[Crossref]

Trujillo, J.

J. Trujillo, F. Bingöl, G. C. Larsen, J. Mann, and M. Kühn, “Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning,” Wind Energy (Chichester Engl.) 14(1), 61–75 (2011).
[Crossref]

Vermeer, L.

L. Vermeer, J. N. Sørensen, and A. Crespo, “Wind turbine wake aerodynamics,” Prog. Aerosp. Sci. 39(6-7), 467–510 (2003).
[Crossref]

Vermeulen, P.

P. Builtjes and P. Vermeulen, “Turbulence in wind turbine clusters,” in Proc. 4th Int. Symp. on Wind Energy Systems (1982), pp. 449–464.

Wang, G.

Wang, X.

Weickmann, A. M.

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

Whale, J.

J. Whale, K. H. Papadopoulos, C. G. Anderson, C. G. Helmis, and D. J. Skyner, “A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments,” Sol. Energy 56(6), 621–633 (1996).
[Crossref]

Wu, S.

Wu, Y.-T.

G. V. Iungo, Y.-T. Wu, and F. Porté-Agel, “Field measurements of wind turbine wakes with lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
[Crossref]

Yin, J.

Zhai, X.

Zhang, H.

Zhang, J.

S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, “Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation,” Renew. Energy 38(1), 16–30 (2012).
[Crossref]

Atmos. Environ. (1967). (1)

U. Högström, D. Asimakopoulos, H. Kambezidis, C. Helmis, and A. Smedman, “A field study of the wake behind a 2 MW wind turbine,” Atmos. Environ. (1967). 22(4), 803–820 (1988).
[Crossref]

Boundary-Layer Meteorol. (2)

L. P. Chamorro and F. Porté-Agel, “A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects,” Boundary-Layer Meteorol. 132(1), 129–149 (2009).
[Crossref]

B. Campistron, S. Bernard, B. Bénech, F. Ardhuin-Girard, J. Dessens, E. Dupont, and B. Carissimo, “Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements,” Boundary-Layer Meteorol. 103(3), 361–389 (2002).
[Crossref]

J. Appl. Meteorol. Climatol. (1)

B. D. Hirth and J. L. Schroeder, “Documenting wind speed and power deficits behind a utility-scale wind turbine,” J. Appl. Meteorol. Climatol. 52(1), 39–46 (2013).
[Crossref]

J. Atmos. Ocean. Technol. (10)

I. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-um Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

R. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Ocean. Technol. 14(1), 54–75 (1997).
[Crossref]

R. Frehlich and L. Cornman, “Estimating spatial velocity statistics with coherent Doppler lidar,” J. Atmos. Ocean. Technol. 19(3), 355–366 (2002).
[Crossref]

R. Frehlich and R. Sharman, “Maximum likelihood estimates of vortex parameters from simulated coherent Doppler lidar data,” J. Atmos. Ocean. Technol. 22(2), 117–130 (2005).
[Crossref]

M. L. Aitken, R. M. Banta, Y. L. Pichugina, and J. K. Lundquist, “Quantifying wind turbine wake characteristics from scanning remote sensor data,” J. Atmos. Ocean. Technol. 31(4), 765–787 (2014).
[Crossref]

Y. Käsler, S. Rahm, R. Simmet, and M. Kühn, “Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar,” J. Atmos. Ocean. Technol. 27(9), 1529–1532 (2010).
[Crossref]

I. Smalikho, V. Banakh, Y. Pichugina, W. Brewer, R. Banta, J. Lundquist, and N. Kelley, “Lidar investigation of atmosphere effect on a wind turbine wake,” J. Atmos. Ocean. Technol. 30(11), 2554–2570 (2013).
[Crossref]

R. M. Banta, Y. L. Pichugina, W. A. Brewer, J. K. Lundquist, N. D. Kelley, S. P. Sandberg, R. J. Alvarez, R. M. Hardesty, and A. M. Weickmann, “3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution Doppler lidar,” J. Atmos. Ocean. Technol. 32(5), 904–914 (2015).
[Crossref]

G. V. Iungo, Y.-T. Wu, and F. Porté-Agel, “Field measurements of wind turbine wakes with lidars,” J. Atmos. Ocean. Technol. 30(2), 274–287 (2013).
[Crossref]

R. Barthelmie, L. Folkerts, F. Ormel, P. Sanderhoff, P. Eecen, O. Stobbe, and N. Nielsen, “Offshore wind turbine wakes measured by SODAR,” J. Atmos. Ocean. Technol. 20(4), 466–477 (2003).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. B. Davis and A. Marshak, “Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions,” J. Quant. Spectrosc. Radiat. Transf. 84(1), 3–34 (2004).
[Crossref]

Meteorol. Appl. (1)

R. Krishnamurthy, R. Calhoun, B. Billings, and J. Doyle, “Wind turbulence estimates in a valley by coherent Doppler lidar,” Meteorol. Appl. 18(3), 361–371 (2011).
[Crossref]

Opt. Express (1)

Prog. Aerosp. Sci. (1)

L. Vermeer, J. N. Sørensen, and A. Crespo, “Wind turbine wake aerodynamics,” Prog. Aerosp. Sci. 39(6-7), 467–510 (2003).
[Crossref]

Renew. Energy (1)

S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, “Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation,” Renew. Energy 38(1), 16–30 (2012).
[Crossref]

Sol. Energy (2)

D. Elliott and J. Barnard, “Observations of wind turbine wakes and surface roughness effects on wind flow variability,” Sol. Energy 45(5), 265–283 (1990).
[Crossref]

J. Whale, K. H. Papadopoulos, C. G. Anderson, C. G. Helmis, and D. J. Skyner, “A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments,” Sol. Energy 56(6), 621–633 (1996).
[Crossref]

Wind Energy (Chichester Engl.) (4)

D. Medici and P. Alfredsson, “Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding,” Wind Energy (Chichester Engl.) 9(3), 219–236 (2006).
[Crossref]

R. B. Smith, “Gravity wave effects on wind farm efficiency,” Wind Energy (Chichester Engl.) 13(5), 449–458 (2010).
[Crossref]

F. Bingöl, J. Mann, and G. C. Larsen, “Light detection and ranging measurements of wake dynamics part I: one-dimensional scanning,” Wind Energy (Chichester Engl.) 13(1), 51–61 (2010).
[Crossref]

J. Trujillo, F. Bingöl, G. C. Larsen, J. Mann, and M. Kühn, “Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning,” Wind Energy (Chichester Engl.) 14(1), 61–75 (2011).
[Crossref]

Other (9)

P. Builtjes and P. Vermeulen, “Turbulence in wind turbine clusters,” in Proc. 4th Int. Symp. on Wind Energy Systems (1982), pp. 449–464.

J. Ross and J. Ainslie, “Wake measurements in clusters of model wind turbines using laser Doppler anemometry,” in Proceedings of the Third BWEA Wind Energy Conference,Cranfield (1981), pp. 172–184.

D. Green and A. Alexander, “Measurement of velocity and turbulence profiles in flow situations relevant to wind turbine performance. Final Report on ETSU contract E,” (5A/CON/5003/177/026, Loughborough University, 1985).

A. Talmon, “The wake of a horizontal axis wind turbine model, measurements in uniform approach flow and in a simulated boundary layer,” TNO Division of Technology for Society Tech. Rep, 85–01021 (1985).

D. Milborrow and J. Ross, “The influence of turbulence and rotor thrust on wind turbine wake characteristics,” CERL Memorandum No TPRD/L/AP/0098/M83 (1983).

P. Alfredsson, F. Bark, and J. Dahlberg, “Some properties of the wake behind horizontal axis wind turbines,” in 3rd international symposium on wind energy systems (1980), pp. 469–484.

S. Emeis, Wind energy meteorology: atmospheric physics for wind power generation (Springer Science & Business Media, 2012).

S. Wu and X. Zhai, “Lidar Investigation of Wind Turbine Wake Characteristics Under Different Surface Roughness,” in Optics and Photonics for Energy and the Environment (Optical Society of America, 2016), p. EM2A. 3.

P. Sheng, J. Mao, J. Li, A. Zhang, J. Sang, and N. Pan, Atmospheric Physics (Beijing University Press, 2003), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Wind flow measurement with PCDL in (a) Longgang Mountain, Shandong Peninsula (b) Rudong tidal zone, Jiangsu Province (c) Hami Gobi desert, Xijiang Province.
Fig. 2
Fig. 2 LOS wind field by PCDL PPI scanning measurement at (a) Longgang Mountain from 1148 to 1154 LT 10 Jan 2014 (b) Rudong tidal zone from 1833 to 1835 LT 10 April 2014 (c) Hami Gobi desert from 1928 to 1931 LT 15 Nov 2015. The area circled in blue and green line is the chosen ambient wind area and wake area, respectively.
Fig. 3
Fig. 3 Transverse structure function estimates of turbulence using single PPI scanning on 1833 LT 10 April 2014 at Rudong with an elevation angle θ= 3 and range-gate distance R=1.275 km . Curves shows calculations of the corrected structure function D wgtcalculate (black dots), the von Kármán model D vvonkarman (black line), the Kolmgorov model D vKolmgorov (blue line) and the corrected von Kármán model D wgtmodel (red line) taking the volume average effect of lidar detection into consideration.
Fig. 4
Fig. 4 (a) Conical sector scan performed at an elevation angle of 1.5° at 1930 LT 15 Nov 2014 in Hami Gobi desert wind farm, (b) background wind velocity in blue circle, wake area velocity in red circle (upper), and the corresponding velocity deficit in blue circle (bottom), the black dash line corresponds to VD = 10%.
Fig. 5
Fig. 5 Turbulence energy dissipation rate ε versus (a) turbulence intensity I and (b) standard deviation of transverse velocity fluctuation σ v from the cases shown in Fig. 2. The blue and red circles represent the results from ambient wind area and wake area, respectively, with corresponding averaged estimates in red and blue triangles.
Fig. 6
Fig. 6 The relationship between ε and (a) I (b) σ v under three wind parks cases shown in Fig. 2. The blue, red and black circles represents the results from Longgang mountain, Rudong tidal zone and Hami Gobi desert case, respectively, with corresponding fitted curves in blue, red and black color.
Fig. 7
Fig. 7 Correlation analysis of the averaged turbulence characteristics including ε versus (a) I and (b) σ v in background wind area (marked with circles) and wake area (marked with triangles) under three wind parks, the blue, red and black symbols represent the results from Longgang mountain, Rudong tidal zone and Hami Gobi desert case, respectively.
Fig. 8
Fig. 8 Diurnal profiles of the (a) ambient wind velocity at 20 m, (b) wind direction at 30 m, (c) velocity deficit, (d) wake length as obtained from the data measured by CDL using PPI scanning on 10 April 2014 at Hami wind park.
Fig. 9
Fig. 9 Diurnal profiles of the (a) σ v (b) I (c) ε and (d) integral length scale L i from the data measured by CDL using PPI scanning on 10 April 2014 at Hami wind park. The black line with red triangles is the averaged estimates for each 1-hour interval.
Fig. 10
Fig. 10 (a) Velocity deficit and (b) wake length as function of wind velocity at 20 m. Blue circles and red squares are single estimates from data measured by CDL during the day (from 1000 to 2100 LT 10 April 2014) and at night (from 0000 to 0600 and from 2100 to 2350 LT 10 April 2014), respectively. Averaged estimates are shown as blue (daytime) and red (nighttime) triangles. The black bars represent the fluctuations of velocity deficit (a) and wake length (b) for each 1 m/s intervals.
Fig. 11
Fig. 11 As Fig. 10, but for I at 20 m versus (a) velocity deficit and (b) wake length, where the black bars represent the fluctuations of velocity deficit (a) and wake length (b) for each 0.1 intervals turbulence intensity.

Tables (4)

Tables Icon

Table 1 PCDL Scan parameters during different field campaigns

Tables Icon

Table 2 Parameters of wind turbines used in different field campaigns

Tables Icon

Table 3 The averaged value of ε, I and σ v in ambient area (A) and wake area (B). The ratio of the corresponding parameters in A and B is also listed.

Tables Icon

Table 4 The averaged value of ε, I and σ v in ambient area (A) and wake area (B) for each case study.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε= [ 2 1/3 π 3 Γ(1/3)Γ(4/3) ] 3/2 σ 3 L 0 =0.933668 σ 3 L 0 ,
L i = π Γ(5/6) Γ(1/3) L 0 =0.7468343 L 0 ,
I LOS (R)= σ LOS (R) U ¯ (R) ,
VD(x)= u ambient (x) u wake (x) u ambient (x) ×100%,
VD(x)=(1 U(x) U(x,1.2D) )×100%,
VD(x)=(1 u wake (x) u ¯ ambient )×100%,
VD(x)=(1 u min (x,Δϕ) u ¯ ambient )×100%,

Metrics