Abstract

Coherent combination of laser beams from 37 fiber amplifiers in a tiled aperture configuration has been achieved thanks to an innovative iterative process. The high efficiency as well as the speed of the phase control demonstrated the relevance of the method for phase locking of a large array of fiber lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Active coherent combining of laser beam arrays by means of phase-intensity mapping in an optimization loop

D. Kabeya, V. Kermene, M. Fabert, J. Benoist, A. Desfarges-Berthelemot, and A. Barthelemy
Opt. Express 23(24) 31059-31068 (2015)

Coherent beam combining with multilevel optical phase-locked loops

Wei Liang, Naresh Satyan, Firooz Aflatouni, Amnon Yariv, Anthony Kewitsch, George Rakuljic, and Hossein Hashemi
J. Opt. Soc. Am. B 24(12) 2930-2939 (2007)

Active phase locking of fiber amplifiers using sine–cosine single-frequency dithering technique

Yanxing Ma, Pu Zhou, Xiaolin Wang, Haotong Ma, Xiaojun Xu, Lei Si, Zejin Liu, and Yijun Zhao
Appl. Opt. 50(19) 3330-3336 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Laser power beaming keeps drone fully charged http://optics.org/news/3/7/31 , Space-based solar power https://en.wikipedia.org/wiki/Space-based_solar_power
  2. Lee Billings, “$100-Million Plan Will Send Probes to the Nearest Star,” https://www.scientificamerican.com/article/100-million-plan-will-send-probes-to-the-nearest-star1/
  3. G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7(4), 258–261 (2013).
    [Crossref]
  4. D. J. Geisler, T. M. Yarnall, M. L. Stevens, C. M. Schieler, B. S. Robinson, and S. A. Hamilton, “Multi-aperture digital coherent combining for free-space optical communication receivers,” Opt. Express 24(12), 12661–12671 (2016).
    [Crossref] [PubMed]
  5. T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Opt. Lett. 35(8), 1136–1138 (2010).
    [Crossref] [PubMed]
  6. A. Brignon, Coherent Laser Beam Combining (Wiley, 2013).
  7. S. McNaught, C. Asman, H. Injeyan, A. Jankevics, A. Johnson, G. Jones, H. Komine, J. Machan, J. Marmo, M. MacClellan, R. Simpson, J. Sollee, M. Valley, M.Weber, and S. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics (Optical Society of America, 2009), paper FThD2.
  8. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, “Coherent combining of a 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36(14), 2686–2688 (2011).
    [Crossref] [PubMed]
  9. J. Bourderionnet, C. Bellanger, J. Primot, and A. Brignon, “Collective coherent phase combining of 64 fibers,” Opt. Express 19(18), 17053–17058 (2011).
    [Crossref] [PubMed]
  10. S. Redmond, K. Creedon, T. Y. Fan, A. Sanchez-Rubio, C. Yu, and J. Donnelly, “Active coherent combination using hill climbing based algorithms for fiber and semiconductor amplifiers,” in Coherent Laser Beam Combining, A. Brignon ed. (Wiley, 2013), pp. 114–117.
  11. A. Azarian, P. Bourdon, L. Lombard, Y. Jaouën, and O. Vasseur, “Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining,” Appl. Opt. 53(8), 1493–1502 (2014).
    [Crossref] [PubMed]
  12. R. Su, Z. Zhang, P. Zhou, Y. Ma, X. Wang, and X. Xu, “Coherent beam combining of a fiber lasers array based on cascaded phase control,” IEEE Photonics Technol. Lett. 28(22), 2585–2588 (2016).
    [Crossref]
  13. D. Kabeya, V. Kermene, M. Fabert, J. Benoist, A. Desfarges-Berthelemot, and A. Barthelemy, “Active coherent combining of laser beam arrays by means of phase-intensity mapping in an optimization loop,” Opt. Express 23(24), 31059–31068 (2015).
    [Crossref] [PubMed]
  14. R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

2016 (2)

R. Su, Z. Zhang, P. Zhou, Y. Ma, X. Wang, and X. Xu, “Coherent beam combining of a fiber lasers array based on cascaded phase control,” IEEE Photonics Technol. Lett. 28(22), 2585–2588 (2016).
[Crossref]

D. J. Geisler, T. M. Yarnall, M. L. Stevens, C. M. Schieler, B. S. Robinson, and S. A. Hamilton, “Multi-aperture digital coherent combining for free-space optical communication receivers,” Opt. Express 24(12), 12661–12671 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (1)

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7(4), 258–261 (2013).
[Crossref]

2011 (2)

2010 (1)

1972 (1)

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Alexandrov, S. A.

Augst, S. J.

Azarian, A.

Barthelemy, A.

Bellanger, C.

Benoist, J.

Bourderionnet, J.

Bourdon, P.

Brignon, A.

Brocklesby, B.

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7(4), 258–261 (2013).
[Crossref]

Desfarges-Berthelemot, A.

Fabert, M.

Fan, T. Y.

Geisler, D. J.

Gerchberg, R. W.

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Goldizen, K. C.

Gutzler, T.

Hamilton, S. A.

Hillman, T. R.

Jaouën, Y.

Kabeya, D.

Kermene, V.

Limpert, J.

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7(4), 258–261 (2013).
[Crossref]

Lombard, L.

Ma, Y.

R. Su, Z. Zhang, P. Zhou, Y. Ma, X. Wang, and X. Xu, “Coherent beam combining of a fiber lasers array based on cascaded phase control,” IEEE Photonics Technol. Lett. 28(22), 2585–2588 (2016).
[Crossref]

Mourou, G.

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7(4), 258–261 (2013).
[Crossref]

Murphy, D. V.

Primot, J.

Redmond, S. M.

Robinson, B. S.

Sampson, D. D.

Sanchez, A.

Schieler, C. M.

Stevens, M. L.

Su, R.

R. Su, Z. Zhang, P. Zhou, Y. Ma, X. Wang, and X. Xu, “Coherent beam combining of a fiber lasers array based on cascaded phase control,” IEEE Photonics Technol. Lett. 28(22), 2585–2588 (2016).
[Crossref]

Tajima, T.

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7(4), 258–261 (2013).
[Crossref]

Vasseur, O.

Wang, X.

R. Su, Z. Zhang, P. Zhou, Y. Ma, X. Wang, and X. Xu, “Coherent beam combining of a fiber lasers array based on cascaded phase control,” IEEE Photonics Technol. Lett. 28(22), 2585–2588 (2016).
[Crossref]

Xu, X.

R. Su, Z. Zhang, P. Zhou, Y. Ma, X. Wang, and X. Xu, “Coherent beam combining of a fiber lasers array based on cascaded phase control,” IEEE Photonics Technol. Lett. 28(22), 2585–2588 (2016).
[Crossref]

Yarnall, T. M.

Yu, C. X.

Zhang, Z.

R. Su, Z. Zhang, P. Zhou, Y. Ma, X. Wang, and X. Xu, “Coherent beam combining of a fiber lasers array based on cascaded phase control,” IEEE Photonics Technol. Lett. 28(22), 2585–2588 (2016).
[Crossref]

Zhou, P.

R. Su, Z. Zhang, P. Zhou, Y. Ma, X. Wang, and X. Xu, “Coherent beam combining of a fiber lasers array based on cascaded phase control,” IEEE Photonics Technol. Lett. 28(22), 2585–2588 (2016).
[Crossref]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

R. Su, Z. Zhang, P. Zhou, Y. Ma, X. Wang, and X. Xu, “Coherent beam combining of a fiber lasers array based on cascaded phase control,” IEEE Photonics Technol. Lett. 28(22), 2585–2588 (2016).
[Crossref]

Nat. Photonics (1)

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7(4), 258–261 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optik (Stuttg.) (1)

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Other (5)

Laser power beaming keeps drone fully charged http://optics.org/news/3/7/31 , Space-based solar power https://en.wikipedia.org/wiki/Space-based_solar_power

Lee Billings, “$100-Million Plan Will Send Probes to the Nearest Star,” https://www.scientificamerican.com/article/100-million-plan-will-send-probes-to-the-nearest-star1/

A. Brignon, Coherent Laser Beam Combining (Wiley, 2013).

S. McNaught, C. Asman, H. Injeyan, A. Jankevics, A. Johnson, G. Jones, H. Komine, J. Machan, J. Marmo, M. MacClellan, R. Simpson, J. Sollee, M. Valley, M.Weber, and S. Weiss, “100 kW coherently combined Nd:YAG MOPA laser array,” in Frontiers in Optics (Optical Society of America, 2009), paper FThD2.

S. Redmond, K. Creedon, T. Y. Fan, A. Sanchez-Rubio, C. Yu, and J. Donnelly, “Active coherent combination using hill climbing based algorithms for fiber and semiconductor amplifiers,” in Coherent Laser Beam Combining, A. Brignon ed. (Wiley, 2013), pp. 114–117.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Evolution of the convergence speed given as an average number of iterations needed to reach a phase-locking level of 96% for different array sizes (average on 200 sets of random initial phases) . Bars denote standard deviation.
Fig. 2
Fig. 2 Photograph of the laser with 37 YDFAs
Fig. 3
Fig. 3 a) drawing of the array of fiber collimators forming the laser beam. (b) Surface profile image of the phase plate used in the PIM device. (c) Photograph of the photodiodes array.
Fig. 4
Fig. 4 a) Far field pattern of the laser beam in open loop. (b) Far field pattern of the 37 laser source in closed loop. (c) Theoretical figure of the beam array in perfectly phase-locked condition. All figures are normalized and cannot be compared in terms of relative intensity.
Fig. 5
Fig. 5 (a) Peak intensity in the center of the far field according to time, initially in open loop state and then in closed loop operation. The inset is a recording on 100s showing the peak intensity stability when the loop is closed. (b) Comparison between theoretical and experimental profiles of a cross-section of the array far field.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η=  ( | k F k | k | F k | ) 2

Metrics