Abstract

We demonstrate a quantum cascade laser with active regions consisting of InAs quantum dots deposited on GaAs buffer layers that are embedded in InGaAs wells confined by InAlAs barriers. Continuous wave room temperature lasing at the wavelength of 7.2 μm has been demonstrated with the threshold current density as low as 1.89 kA/cm2, while in pulsed operational mode lasing at temperatures as high as 110 °C had been observed. A phenomenological theory explaining the improved performance due to weak localization of states had been formulated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers

Mingchu Tang, Siming Chen, Jiang Wu, Qi Jiang, Vitaliy G. Dorogan, Mourad Benamara, Yuriy I. Mazur, Gregory J. Salamo, Alwyn Seeds, and Huiyun Liu
Opt. Express 22(10) 11528-11535 (2014)

Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding

Toshihide Ide, Toshihiko Baba, Jun Tatebayashi, Satoshi Iwamoto, Toshihiro Nakaoka, and Yasuhiko Arakawa
Opt. Express 13(5) 1615-1620 (2005)

Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate

Katsuaki Tanabe, Masahiro Nomura, Denis Guimard, Satoshi Iwamoto, and Yasuhiko Arakawa
Opt. Express 17(9) 7036-7042 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [Crossref] [PubMed]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
    [Crossref] [PubMed]
  3. J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
    [Crossref]
  4. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
    [Crossref]
  5. Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
    [Crossref]
  6. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  7. K. Fujita, S. Furuta, T. Dougakiuchi, A. Sugiyama, T. Edamura, and M. Yamanishi, “Broad-gain (Δλ/λ0</~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers,” Opt. Express 19(3), 2694–2701 (2011).
    [Crossref] [PubMed]
  8. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express 20(4), 4382–4388 (2012).
    [Crossref] [PubMed]
  9. M. Bahriz, G. Lollia, A. N. Baranov, and R. Teissier, “High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23(2), 1523–1528 (2015).
    [Crossref] [PubMed]
  10. A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
    [Crossref]
  11. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  12. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
    [Crossref] [PubMed]
  13. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
    [Crossref] [PubMed]
  14. N. S. Wingreen and C. A. Stafford, “Quantum-Dot Cascade Laser: Proposal for an Ultralow-Threshold Semiconductor Laser,” IEEE J. Quantum Electron. 33(7), 1170–1173 (1997).
    [Crossref]
  15. C. Hsu, J. O, andP. Zory, “Intersubband quantum-box semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 491–503 (2000).
    [Crossref]
  16. I. A. Dmitriev and R. A. Suris, “Quantum cascade lasers based on quantum dot superlattice,” Phys. Status Solidi 202(6), 987–991 (2005).
    [Crossref]
  17. D. Wasserman and S. A. Lyon, “Midinfrared luminescence from InAs quantum dots in unipolar devices,” Appl. Phys. Lett. 81(15), 2848–2850 (2002).
    [Crossref]
  18. S. Anders, L. Rebohle, F. F. Schrey, W. Schrenk, K. Unterrainer, and G. Strasser, “Electroluminescence of a quantum dot cascade structure,” Appl. Phys. Lett. 82(22), 3862–3864 (2003).
    [Crossref]
  19. N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
    [Crossref]
  20. D. Wasserman, T. Ribaudo, S. A. Lyon, S. K. Lyo, and E. A. Shaner, “Room temperature midinfrared electroluminescence from InAs quantum dots,” Appl. Phys. Lett. 94(6), 061101 (2009).
    [Crossref]
  21. V. Liverini, A. Bismuto, L. Nevou, M. Beck, and J. Faist, “Midinfrared electroluminescence from InAs/InP quantum dashes,” Appl. Phys. Lett. 97(22), 221109 (2010).
    [Crossref]
  22. V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett. 101(26), 261113 (2012).
    [Crossref]
  23. J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres, and T. Benyattou, “Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP(001),” Appl. Phys. Lett. 73(20), 2932–2934 (1998).
    [Crossref]
  24. N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144 (2014).
    [Crossref] [PubMed]
  25. N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μ m strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
    [Crossref]
  26. J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
    [Crossref]
  27. J. B. Khurgin, “Inhomogeneous origin of the interface roughness broadening of intersubband transitions,” Appl. Phys. Lett. 93(9), 091104 (2008).
    [Crossref]

2016 (1)

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

2015 (3)

2014 (2)

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144 (2014).
[Crossref] [PubMed]

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μ m strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

2012 (4)

J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express 20(4), 4382–4388 (2012).
[Crossref] [PubMed]

V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett. 101(26), 261113 (2012).
[Crossref]

2011 (2)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

K. Fujita, S. Furuta, T. Dougakiuchi, A. Sugiyama, T. Edamura, and M. Yamanishi, “Broad-gain (Δλ/λ0</~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers,” Opt. Express 19(3), 2694–2701 (2011).
[Crossref] [PubMed]

2010 (3)

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

V. Liverini, A. Bismuto, L. Nevou, M. Beck, and J. Faist, “Midinfrared electroluminescence from InAs/InP quantum dashes,” Appl. Phys. Lett. 97(22), 221109 (2010).
[Crossref]

2009 (2)

D. Wasserman, T. Ribaudo, S. A. Lyon, S. K. Lyo, and E. A. Shaner, “Room temperature midinfrared electroluminescence from InAs quantum dots,” Appl. Phys. Lett. 94(6), 061101 (2009).
[Crossref]

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[Crossref]

2008 (1)

J. B. Khurgin, “Inhomogeneous origin of the interface roughness broadening of intersubband transitions,” Appl. Phys. Lett. 93(9), 091104 (2008).
[Crossref]

2005 (1)

I. A. Dmitriev and R. A. Suris, “Quantum cascade lasers based on quantum dot superlattice,” Phys. Status Solidi 202(6), 987–991 (2005).
[Crossref]

2003 (2)

S. Anders, L. Rebohle, F. F. Schrey, W. Schrenk, K. Unterrainer, and G. Strasser, “Electroluminescence of a quantum dot cascade structure,” Appl. Phys. Lett. 82(22), 3862–3864 (2003).
[Crossref]

N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
[Crossref]

2002 (2)

D. Wasserman and S. A. Lyon, “Midinfrared luminescence from InAs quantum dots in unipolar devices,” Appl. Phys. Lett. 81(15), 2848–2850 (2002).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

2000 (1)

C. Hsu, J. O, andP. Zory, “Intersubband quantum-box semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 491–503 (2000).
[Crossref]

C. Hsu, J. O, andP. Zory, “Intersubband quantum-box semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 491–503 (2000).
[Crossref]

1998 (1)

J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres, and T. Benyattou, “Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP(001),” Appl. Phys. Lett. 73(20), 2932–2934 (1998).
[Crossref]

1997 (1)

N. S. Wingreen and C. A. Stafford, “Quantum-Dot Cascade Laser: Proposal for an Ultralow-Threshold Semiconductor Laser,” IEEE J. Quantum Electron. 33(7), 1170–1173 (1997).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Abstreiter, G.

N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
[Crossref]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Anders, S.

S. Anders, L. Rebohle, F. F. Schrey, W. Schrenk, K. Unterrainer, and G. Strasser, “Electroluminescence of a quantum dot cascade structure,” Appl. Phys. Lett. 82(22), 3862–3864 (2003).
[Crossref]

Bahriz, M.

Bai, Y.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μ m strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Bandyopadhyay, N.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μ m strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Baranov, A. N.

Bauer, J.

N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
[Crossref]

Beck, M.

V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett. 101(26), 261113 (2012).
[Crossref]

V. Liverini, A. Bismuto, L. Nevou, M. Beck, and J. Faist, “Midinfrared electroluminescence from InAs/InP quantum dashes,” Appl. Phys. Lett. 97(22), 221109 (2010).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Benyattou, T.

J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres, and T. Benyattou, “Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP(001),” Appl. Phys. Lett. 73(20), 2932–2934 (1998).
[Crossref]

Bismuto, A.

V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett. 101(26), 261113 (2012).
[Crossref]

V. Liverini, A. Bismuto, L. Nevou, M. Beck, and J. Faist, “Midinfrared electroluminescence from InAs/InP quantum dashes,” Appl. Phys. Lett. 97(22), 221109 (2010).
[Crossref]

Botez, D.

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[Crossref]

Boy, R.

N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
[Crossref]

Brault, J.

J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres, and T. Benyattou, “Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP(001),” Appl. Phys. Lett. 73(20), 2932–2934 (1998).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Castellano, F.

V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett. 101(26), 261113 (2012).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

D’Souza, M.

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[Crossref]

Darvish, S. R.

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

De Natale, P.

Desieres, Y.

J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres, and T. Benyattou, “Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP(001),” Appl. Phys. Lett. 73(20), 2932–2934 (1998).
[Crossref]

Dikmelik, Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Dmitriev, I. A.

I. A. Dmitriev and R. A. Suris, “Quantum cascade lasers based on quantum dot superlattice,” Phys. Status Solidi 202(6), 987–991 (2005).
[Crossref]

Dougakiuchi, T.

Edamura, T.

Escarra, M. D.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Faist, J.

V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett. 101(26), 261113 (2012).
[Crossref]

V. Liverini, A. Bismuto, L. Nevou, M. Beck, and J. Faist, “Midinfrared electroluminescence from InAs/InP quantum dashes,” Appl. Phys. Lett. 97(22), 221109 (2010).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Fan, J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Figueiredo, P.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Franz, K. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Fujita, K.

Furuta, S.

Gendry, M.

J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres, and T. Benyattou, “Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP(001),” Appl. Phys. Lett. 73(20), 2932–2934 (1998).
[Crossref]

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Go, R.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express 20(4), 4382–4388 (2012).
[Crossref] [PubMed]

Gramm, F.

V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett. 101(26), 261113 (2012).
[Crossref]

Grenet, G.

J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres, and T. Benyattou, “Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP(001),” Appl. Phys. Lett. 73(20), 2932–2934 (1998).
[Crossref]

Heydari, D.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Hollinger, G.

J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres, and T. Benyattou, “Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP(001),” Appl. Phys. Lett. 73(20), 2932–2934 (1998).
[Crossref]

Hsu, C.

C. Hsu, J. O, andP. Zory, “Intersubband quantum-box semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 491–503 (2000).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Khurgin, J. B.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

J. B. Khurgin, “Inhomogeneous origin of the interface roughness broadening of intersubband transitions,” Appl. Phys. Lett. 93(9), 091104 (2008).
[Crossref]

Kirch, J.

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[Crossref]

Kuboya, S.

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Li, L.

J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
[Crossref]

Liu, F. Q.

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144 (2014).
[Crossref] [PubMed]

J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
[Crossref]

Liu, J. Q.

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144 (2014).
[Crossref] [PubMed]

J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
[Crossref]

Liu, P. Q.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Liu, Z.

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[Crossref]

Liverini, V.

V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett. 101(26), 261113 (2012).
[Crossref]

V. Liverini, A. Bismuto, L. Nevou, M. Beck, and J. Faist, “Midinfrared electroluminescence from InAs/InP quantum dashes,” Appl. Phys. Lett. 97(22), 221109 (2010).
[Crossref]

Lollia, G.

Lu, Q. Y.

Lyakh, A.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express 20(4), 4382–4388 (2012).
[Crossref] [PubMed]

Lyo, S. K.

D. Wasserman, T. Ribaudo, S. A. Lyon, S. K. Lyo, and E. A. Shaner, “Room temperature midinfrared electroluminescence from InAs quantum dots,” Appl. Phys. Lett. 94(6), 061101 (2009).
[Crossref]

Lyon, S. A.

D. Wasserman, T. Ribaudo, S. A. Lyon, S. K. Lyo, and E. A. Shaner, “Room temperature midinfrared electroluminescence from InAs quantum dots,” Appl. Phys. Lett. 94(6), 061101 (2009).
[Crossref]

D. Wasserman and S. A. Lyon, “Midinfrared luminescence from InAs quantum dots in unipolar devices,” Appl. Phys. Lett. 81(15), 2848–2850 (2002).
[Crossref]

Maulini, R.

Mawst, L. J.

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[Crossref]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Meyer, J. R.

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[Crossref]

Nevou, L.

V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett. 101(26), 261113 (2012).
[Crossref]

V. Liverini, A. Bismuto, L. Nevou, M. Beck, and J. Faist, “Midinfrared electroluminescence from InAs/InP quantum dashes,” Appl. Phys. Lett. 97(22), 221109 (2010).
[Crossref]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Patel, C. K. N.

Razeghi, M.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μ m strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Rebohle, L.

S. Anders, L. Rebohle, F. F. Schrey, W. Schrenk, K. Unterrainer, and G. Strasser, “Electroluminescence of a quantum dot cascade structure,” Appl. Phys. Lett. 82(22), 3862–3864 (2003).
[Crossref]

Ribaudo, T.

D. Wasserman, T. Ribaudo, S. A. Lyon, S. K. Lyo, and E. A. Shaner, “Room temperature midinfrared electroluminescence from InAs quantum dots,” Appl. Phys. Lett. 94(6), 061101 (2009).
[Crossref]

Scalari, G.

Scarpa, G.

N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
[Crossref]

Schmult, S.

N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
[Crossref]

Schrenk, W.

S. Anders, L. Rebohle, F. F. Schrey, W. Schrenk, K. Unterrainer, and G. Strasser, “Electroluminescence of a quantum dot cascade structure,” Appl. Phys. Lett. 82(22), 3862–3864 (2003).
[Crossref]

Schrey, F. F.

S. Anders, L. Rebohle, F. F. Schrey, W. Schrenk, K. Unterrainer, and G. Strasser, “Electroluminescence of a quantum dot cascade structure,” Appl. Phys. Lett. 82(22), 3862–3864 (2003).
[Crossref]

Schuh, D.

N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
[Crossref]

Shaner, E. A.

D. Wasserman, T. Ribaudo, S. A. Lyon, S. K. Lyo, and E. A. Shaner, “Room temperature midinfrared electroluminescence from InAs quantum dots,” Appl. Phys. Lett. 94(6), 061101 (2009).
[Crossref]

Shin, J. C.

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Slivken, S.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μ m strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Stafford, C. A.

N. S. Wingreen and C. A. Stafford, “Quantum-Dot Cascade Laser: Proposal for an Ultralow-Threshold Semiconductor Laser,” IEEE J. Quantum Electron. 33(7), 1170–1173 (1997).
[Crossref]

Strasser, G.

S. Anders, L. Rebohle, F. F. Schrey, W. Schrenk, K. Unterrainer, and G. Strasser, “Electroluminescence of a quantum dot cascade structure,” Appl. Phys. Lett. 82(22), 3862–3864 (2003).
[Crossref]

Sugiyama, A.

Suris, R. A.

I. A. Dmitriev and R. A. Suris, “Quantum cascade lasers based on quantum dot superlattice,” Phys. Status Solidi 202(6), 987–991 (2005).
[Crossref]

Suttinger, M.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Tan, S.

J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
[Crossref]

Teissier, R.

Todi, A.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Tsekoun, A.

Ulbrich, N.

N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
[Crossref]

Unterrainer, K.

S. Anders, L. Rebohle, F. F. Schrey, W. Schrenk, K. Unterrainer, and G. Strasser, “Electroluminescence of a quantum dot cascade structure,” Appl. Phys. Lett. 82(22), 3862–3864 (2003).
[Crossref]

Vitiello, M. S.

Vurgaftman, I.

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[Crossref]

Wang, L. J.

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144 (2014).
[Crossref] [PubMed]

J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
[Crossref]

Wang, X.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Wang, Z. G.

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144 (2014).
[Crossref] [PubMed]

J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
[Crossref]

Wasserman, D.

D. Wasserman, T. Ribaudo, S. A. Lyon, S. K. Lyo, and E. A. Shaner, “Room temperature midinfrared electroluminescence from InAs quantum dots,” Appl. Phys. Lett. 94(6), 061101 (2009).
[Crossref]

D. Wasserman and S. A. Lyon, “Midinfrared luminescence from InAs quantum dots in unipolar devices,” Appl. Phys. Lett. 81(15), 2848–2850 (2002).
[Crossref]

Wegscheider, W.

N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
[Crossref]

Williams, B.

Wingreen, N. S.

N. S. Wingreen and C. A. Stafford, “Quantum-Dot Cascade Laser: Proposal for an Ultralow-Threshold Semiconductor Laser,” IEEE J. Quantum Electron. 33(7), 1170–1173 (1997).
[Crossref]

Yamanishi, M.

Yao, D. Y.

J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Zhai, S. Q.

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144 (2014).
[Crossref] [PubMed]

Zhang, J. C.

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144 (2014).
[Crossref] [PubMed]

J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
[Crossref]

Zhou, W.

Zhuo, N.

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144 (2014).
[Crossref] [PubMed]

Zory, P.

C. Hsu, J. O, andP. Zory, “Intersubband quantum-box semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 491–503 (2000).
[Crossref]

Appl. Phys. Lett. (13)

J. C. Shin, M. D’Souza, Z. Liu, J. Kirch, L. J. Mawst, D. Botez, I. Vurgaftman, and J. R. Meyer, “Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers,” Appl. Phys. Lett. 94(20), 201103 (2009).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

D. Wasserman and S. A. Lyon, “Midinfrared luminescence from InAs quantum dots in unipolar devices,” Appl. Phys. Lett. 81(15), 2848–2850 (2002).
[Crossref]

S. Anders, L. Rebohle, F. F. Schrey, W. Schrenk, K. Unterrainer, and G. Strasser, “Electroluminescence of a quantum dot cascade structure,” Appl. Phys. Lett. 82(22), 3862–3864 (2003).
[Crossref]

N. Ulbrich, J. Bauer, G. Scarpa, R. Boy, D. Schuh, G. Abstreiter, S. Schmult, and W. Wegscheider, “Midinfrared intraband electroluminescence from AlInAs quantum dots,” Appl. Phys. Lett. 83(8), 1530–1532 (2003).
[Crossref]

D. Wasserman, T. Ribaudo, S. A. Lyon, S. K. Lyo, and E. A. Shaner, “Room temperature midinfrared electroluminescence from InAs quantum dots,” Appl. Phys. Lett. 94(6), 061101 (2009).
[Crossref]

V. Liverini, A. Bismuto, L. Nevou, M. Beck, and J. Faist, “Midinfrared electroluminescence from InAs/InP quantum dashes,” Appl. Phys. Lett. 97(22), 221109 (2010).
[Crossref]

V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett. 101(26), 261113 (2012).
[Crossref]

J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres, and T. Benyattou, “Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP(001),” Appl. Phys. Lett. 73(20), 2932–2934 (1998).
[Crossref]

N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, “High power operation of λ ∼ 5.2–11 μ m strain balanced quantum cascade lasers based on the same material composition,” Appl. Phys. Lett. 105(7), 071106 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, S. Tan, D. Y. Yao, L. J. Wang, L. Li, J. Q. Liu, and Z. G. Wang, “High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth,” Appl. Phys. Lett. 100(11), 112105 (2012).
[Crossref]

J. B. Khurgin, “Inhomogeneous origin of the interface roughness broadening of intersubband transitions,” Appl. Phys. Lett. 93(9), 091104 (2008).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

N. S. Wingreen and C. A. Stafford, “Quantum-Dot Cascade Laser: Proposal for an Ultralow-Threshold Semiconductor Laser,” IEEE J. Quantum Electron. 33(7), 1170–1173 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Hsu, J. O, andP. Zory, “Intersubband quantum-box semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 491–503 (2000).
[Crossref]

Nanoscale Res. Lett. (1)

N. Zhuo, F. Q. Liu, J. C. Zhang, L. J. Wang, J. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Quantum dot cascade laser,” Nanoscale Res. Lett. 9(1), 144 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Express (5)

Phys. Status Solidi (1)

I. A. Dmitriev and R. A. Suris, “Quantum cascade lasers based on quantum dot superlattice,” Phys. Status Solidi 202(6), 987–991 (2005).
[Crossref]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) QDCL active region layer structure. (b) Calculated conduction band diagram and subband wavefunctions using 1D model under electric bias.
Fig. 2
Fig. 2 TEM image of a portion of the cleaved cross section of a QDCL active region (Inset: AFM image of the last InAs QD layer in the QDCL).
Fig. 3
Fig. 3 P-I-V curves of QDCL and QCL operating in CW mode around room temperature. Inset: Spontaneous and stimulated emission spectra from both QDCL and QCL samples at room temperature.
Fig. 4
Fig. 4 Temperature dependence of the threshold current when driven in pulsed mode for (a) both QDCL and QCL within the temperature range of 283-363 K and (b) QDCL within the temperature range of 80-190 K with inset of variable temperature spectra.
Fig. 5
Fig. 5 (a) Responsivity of the QDCL and QCL operated as QCD at 77K under normal incident light. Illustration of (b) states in k-space within the ring of radius k ¯ and thickness 2 δ k that are mixed by QD scattering, (c) localized “amoeba-like” wavefunction that extends over multiple QD sites, and (d) dispersions of upper subband 8 not influenced by the QDs and lower subbands (dashed curves) that are hybridized due to QD scattering of the electrons inside QW, and electron relaxation from subband 7 into lower subbands.

Metrics