Abstract

The stable condition for π-polarization emission in an a-cut Nd:YLF laser is numerical analyzed to find the critical pump power for generating the orthogonally polarized emission. With the numerical analysis, an orthogonally polarized SML lasers at wavelength of 1047 nm and 1053 nm is experimentally achieved in a simple concave-plano cavity without any additional optical element. It is experimentally observed that the polarization switching and coexistence was successfully demonstrated by introducing gain competition and anisotropic thermal lens effect. In the orthogonal polarization mode-locked operation, the pulse durations are found to be 19.1 and 18.8 ps for π- and σ-polarization with pulse repetition rates of 3.85 and 3.89 GHz, respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Exploiting birefringent thermal lensing effect to manipulate polarization states of an Nd:YVO4 self-mode-locked laser

P. H. Tuan, M. C. Tsai, and Y. F. Chen
Opt. Express 25(23) 29000-29009 (2017)

Investigation of the antiphase dynamics of the orthogonally polarized passively Q-switched Nd:YLF laser

H. C. Liang, D. Li, E. H. Lin, C. C. Hsu, and H. Y. Lin
Opt. Express 26(20) 26590-26597 (2018)

Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen
Opt. Express 20(16) 18230-18237 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
    [Crossref]
  2. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21(22), 1869–1871 (1996).
    [Crossref] [PubMed]
  3. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
    [Crossref]
  4. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
    [Crossref] [PubMed]
  5. P. Zhang, Y. D. Tan, N. Liu, Y. Wu, and S. L. Zhang, “Phase difference in modulated signals of two orthogonally polarized outputs of a Nd:YAG microchip laser with anisotropic optical feedback,” Opt. Lett. 38(21), 4296–4299 (2013).
    [Crossref] [PubMed]
  6. A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
    [Crossref]
  7. Y. Lü, J. Xia, X. Fu, A. Zhang, H. Liu, and J. Zhang, “Diode-pumped orthogonally polarized Nd:LuVO4 lasers based on the 4F3/2 – 4I11/2 transition,” J. Opt. Soc. Am. B 31(4), 898–903 (2014).
    [Crossref]
  8. A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2–3), 401–406 (2010).
    [Crossref]
  9. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
    [Crossref]
  10. M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
    [Crossref] [PubMed]
  11. S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with locked and precessing states of polarization,” Opt. Express 20(24), 27434–27440 (2012).
    [Crossref] [PubMed]
  12. J. Thévenin, M. Vallet, and M. Brunel, “Dual-polarization mode-locked Nd:YAG laser,” Opt. Lett. 37(14), 2859–2861 (2012).
    [Crossref] [PubMed]
  13. C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
    [Crossref] [PubMed]
  14. J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
    [Crossref] [PubMed]
  15. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [Crossref] [PubMed]
  16. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  17. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
    [Crossref] [PubMed]
  18. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
    [Crossref] [PubMed]
  19. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
    [Crossref] [PubMed]
  20. A. Lagatsky, C. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12(17), 3928–3933 (2004).
    [Crossref] [PubMed]
  21. C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
    [Crossref]
  22. Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
    [Crossref]
  23. H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
    [Crossref] [PubMed]
  24. Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen, “Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking,” Opt. Express 20(16), 18230–18237 (2012).
    [Crossref] [PubMed]
  25. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
    [Crossref]
  26. Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
    [Crossref]
  27. A. Brenier, “Two-frequency pulsed YLiF4:Nd lasing out of the principal axes and THz generation,” Opt. Lett. 40(19), 4496–4499 (2015).
    [Crossref] [PubMed]
  28. N. Hodgson and H. Weber, Laser Resonator and beam propagation, 2nd ed. (Springer, New York, 2005), Chaps 8 and 13.
  29. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [Crossref]

2016 (1)

2015 (4)

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

A. Brenier, “Two-frequency pulsed YLiF4:Nd lasing out of the principal axes and THz generation,” Opt. Lett. 40(19), 4496–4499 (2015).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

2014 (3)

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Y. Lü, J. Xia, X. Fu, A. Zhang, H. Liu, and J. Zhang, “Diode-pumped orthogonally polarized Nd:LuVO4 lasers based on the 4F3/2 – 4I11/2 transition,” J. Opt. Soc. Am. B 31(4), 898–903 (2014).
[Crossref]

2013 (1)

2012 (4)

2011 (1)

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

2010 (4)

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2–3), 401–406 (2010).
[Crossref]

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2007 (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

2006 (1)

J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

2002 (1)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

1999 (2)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

1996 (1)

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Akhmediev, N. N.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Balle, S.

J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
[Crossref] [PubMed]

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Bergman, K.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Bindra, K. S.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Brehm, M.

Brenier, A.

A. Brenier, “Two-frequency pulsed YLiF4:Nd lasing out of the principal axes and THz generation,” Opt. Lett. 40(19), 4496–4499 (2015).
[Crossref] [PubMed]

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2–3), 401–406 (2010).
[Crossref]

Brown, C.

Brunel, M.

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Chang, C. C.

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

Chang, M. T.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Chen, Y. F.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
[Crossref] [PubMed]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen, “Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking,” Opt. Express 20(16), 18230–18237 (2012).
[Crossref] [PubMed]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

Cheng, H. P.

Cho, C. Y.

Clarkson, W. A.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Collings, B. C.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Cundiff, S. T.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Friel, G. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Fu, X.

Gong, M.

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Gupta, P. K.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Hanna, D. C.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Hardman, P. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Higuchi, T.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Huang, K. F.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

Huang, W. C.

Huang, Y. J.

Huang, Y. P.

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Javaloyes, J.

J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
[Crossref] [PubMed]

Ji, E.

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Kanda, N.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Keilmann, F.

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Knox, W. H.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Konishi, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Kringlebotn, J. T.

Kuwata-Gonokami, M.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Lagatsky, A.

Laming, R. I.

Lee, C. Y.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

Li, J.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2–3), 401–406 (2010).
[Crossref]

Li, Y.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Liang, H. C.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

Liu, H.

Liu, N.

Liu, Q.

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Loh, W. H.

Lü, Y.

Mou, C.

Mukhopadhyay, P. K.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Mulet, J.

J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
[Crossref] [PubMed]

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Nie, M.

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Oak, S. M.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Pollnau, M.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Rozhin, A.

Schliesser, A.

Sergeyev, S. V.

Sharma, S. K.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Shimizu, H.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Sibbett, W.

Singh, A.

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Soto-Crespo, J. M.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Su, K. W.

Sung, C. L.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Tan, Y. D.

Tang, C. Y.

Thévenin, J.

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Tu, C.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2–3), 401–406 (2010).
[Crossref]

Turitsyn, S. K.

Tzeng, Y. S.

Vallet, M.

van der Weide, D.

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Walsh, B. M.

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

Wu, Y.

Xia, J.

Yoshioka, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Zhang, A.

Zhang, J.

Zhang, P.

Zhang, S. L.

Zhang, Z.

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Zhu, Z.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2–3), 401–406 (2010).
[Crossref]

Zhuang, W. Z.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

Appl. Phys. B (2)

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Optical bifurcated fiber diode-pumping for two-wavelength laser operation with Yb3+-doped GdAl3(BO3)4 birefringent crystal,” Appl. Phys. B 98(2–3), 401–406 (2010).
[Crossref]

Z. Zhang, Q. Liu, M. Nie, E. Ji, and M. Gong, “Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations,” Appl. Phys. B 120(4), 689–696 (2015).
[Crossref]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

IEEE J. Quantum Electron. (1)

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

Laser Phys. (1)

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

Meas. Sci. Technol. (1)

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Nat. Commun. (1)

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Laser Technol. (1)

A. Singh, S. K. Sharma, P. K. Gupta, P. K. Mukhopadhyay, K. S. Bindra, and S. M. Oak, “Studies on simultaneous dual wavelength operation at 912.2 nm and 914 nm from dual gain diode-pumped Nd3+ doped vanadate laser,” Opt. Laser Technol. 64, 257–263 (2014).
[Crossref]

Opt. Lett. (6)

Phys. Rev. Lett. (4)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Other (1)

N. Hodgson and H. Weber, Laser Resonator and beam propagation, 2nd ed. (Springer, New York, 2005), Chaps 8 and 13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup for the dual-wavelength orthogonally polarized self-mode-locked Nd:YLF lasers.
Fig. 2
Fig. 2 Experimental results for the average output power for π- and σ-polarization states and the total output power versus the pump power obtained with different ROC of input mirror: (a)ROC = 200mm, (b) ROC = 300 mm, (c) ROC = 400 mm, (d) ROC = 500 mm.
Fig. 3
Fig. 3 Experimental results of laser beam profiles under dual-polarized operation. (a) π-polarization, (b) σ-polarization.
Fig. 4
Fig. 4 Theoretical and experimental results of the critical pump power as a function of ROC of input mirror for π-polarization emission.
Fig. 5
Fig. 5 (a)The lasing spectra at different pump power for ROC = 300 mm input mirror; the detailed characteristic of the emission spectrum for (b)π- polarization, (c) σ-polarization.
Fig. 6
Fig. 6 The oscilloscope trace of the mode-locked pulses for π-polarization with the time span of: (a) 2 μs and (b) 2 ns; The oscilloscope trace of the mode-locked pulses for σ-polarization with the time span of: (c) 2 μs and (d) 2 ns.
Fig. 7
Fig. 7 Autocorrelation traces of the output pulses (a) π-polarization; (b) σ-polarization.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g i * = g i D d j ( 1 d i ρ i ),i,j=1,2; ij,
0 d 1 d 2 ( 1 d 1 ρ ) D 2 [ d 1 ( 1 d 1 + d 2 ρ )+ d 2 ( 1 d 1 ρ ) ]D+( 1 d 1 + d 2 ρ )1,
1 ρ d 1 D 1 d 2 1 ρ d 1 .
| D cri |= 1 | f cri | = 1 ρ .
f th = π K c ω p 2 ξ P in ( dn/ dT ) ( 1 1exp( α l c ) ),
P cri = π K c ω p 2 ξρ( | dn/ dT | ) ( 1 1exp( α l c ) ).

Metrics