Abstract

A theoretical method was proposed to compensate the burst envelope distortion in a solid-state master-oscillator power-amplifier (MOPA) system operating in burst mode at an intra-burst repetition rate of 40 MHz. Arbitrary envelope shapes were achieved at inter-burst repetition rate of 100 kHz with 40 pulses in the burst, showing excellent agreement with the calculated ones. This is the first demonstration of arbitrary burst envelope without an adaptive feedback loop in a solid-state laser system. The maximum pulse energy of 100 μJ was achieved at inter-burst repetition rate of 40 kHz, with 10 pulses in the burst.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Burst-mode-operated, sub-nanosecond fiber MOPA system incorporating direct seed-packet shaping

Tao Chen, Hao Liu, Wei Kong, and Rong Shu
Opt. Express 24(18) 20963-20972 (2016)

Burst-mode Yb-doped fiber amplifier system optimized for low-repetition-rate operation

H. Kalaycıoğlu, Ö. Akçaalan, S. Yavaş, Y. B. Eldeniz, and F. Ö. Ilday
J. Opt. Soc. Am. B 32(5) 900-906 (2015)

High power burst-mode optical parametric amplifier with arbitrary pulse selection

M. Pergament, M. Kellert, K. Kruse, J. Wang, G. Palmer, L. Wissmann, U. Wegner, and M. J. Lederer
Opt. Express 22(18) 22202-22210 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Kalaycıoğlu, Y. B. Eldeniz, Ö. Akçaalan, S. Yavaş, K. Gürel, M. Efe, and F. Ö. Ilday, “1 mJ pulse bursts from a Yb-doped fiber amplifier,” Opt. Lett. 37(13), 2586–2588 (2012).
    [Crossref] [PubMed]
  2. S. Breitkopf, A. Klenke, T. Gottschall, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett. 37(24), 5169–5171 (2012).
    [Crossref] [PubMed]
  3. M. Schulz, R. Riedel, A. Willner, S. Düsterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier,” Opt. Express 20(5), 5038–5043 (2012).
    [Crossref] [PubMed]
  4. J. Körner, J. Hein, H. Liebetrau, R. Seifert, D. Klöpfel, M. Kahle, M. Loeser, M. Siebold, U. Schramm, and M. C. Kaluza, “Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2,” Opt. Express 21(23), 29006–29012 (2013).
    [Crossref] [PubMed]
  5. I. Will, H. I. Templin, S. Schreiber, and W. Sandner, “Photoinjector drive laser of the FLASH FEL,” Opt. Express 19(24), 23770–23781 (2011).
    [Crossref] [PubMed]
  6. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37(8), 1346–1348 (2012).
    [Crossref] [PubMed]
  7. M. N. Slipchenko, J. D. Miller, S. Roy, T. R. Meyer, J. G. Mance, and J. R. Gord, “100 kHz, 100 ms, 400 J burst-mode laser with dual-wavelength diode-pumped amplifiers,” Opt. Lett. 39(16), 4735–4738 (2014).
    [Crossref] [PubMed]
  8. M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B 115(2), 197–213 (2014).
    [Crossref]
  9. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
    [Crossref] [PubMed]
  10. M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2(4), 042501 (2009).
    [Crossref]
  11. P. Wu, W. R. Lempert, and R. B. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundarylayer interaction,” AIAA J. 38(4), 672–679 (2000).
    [Crossref]
  12. T. Liu, J. Wang, G. I. Petrov, V. V. Yakovlev, and H. F. Zhang, “Photoacoustic generation by multiple picosecond pulse excitation,” Med. Phys. 37(4), 1518–1521 (2010).
    [Crossref] [PubMed]
  13. I. Agapov, G. A. Blair, and M Woodley, “Beam emittance measurement with laser wire scanners in the International Linear Collider beam delivery system,” Phy. Rev. Spec. Top. 10(11), 112801 (2007).
  14. N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Opt. 48(4), B23–B31 (2009).
    [Crossref] [PubMed]
  15. H. Kalaycıoğlu, K. Eken, and F. Ö. Ilday, “Fiber amplification of pulse bursts up to 20 μJ pulse energy at 1 kHz repetition rate,” Opt. Lett. 36(17), 3383–3385 (2011).
    [Crossref] [PubMed]
  16. S. Breitkopf, A. Klenke, T. Gottschall, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett. 37(24), 5169–5171 (2012).
    [Crossref] [PubMed]
  17. P. Elahi, S. Yılmaz, Y. B. Eldeniz, and F. Ö. Ilday, “Generation of picosecond pulses directly from a 100 W, burst-mode, doping-managed Yb-doped fiber amplifier,” Opt. Lett. 39(2), 236–239 (2014).
    [Crossref] [PubMed]
  18. J. Petelin, B. Podobnik, and R. Petkovšek, “Burst shaping in a fiber-amplifier chain seeded by a gain-switched laser diode,” Appl. Opt. 54(15), 4629–4634 (2015).
    [Crossref] [PubMed]
  19. A. E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986).
  20. J. Ehlert, H. Stiel, and K. Teucher, “A numerical solver for rate equations and photon transport equations in nonlinear laser spectroscopy,” Comput. Phys. Commun. 124(2), 330–339 (2000).
    [Crossref]
  21. J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods (Springer, 1995).
  22. M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52(8), 1–10 (2016).
    [Crossref]
  23. M. Nie, Q. Liu, E. Ji, X. Cao, F. Xing, and M. Gong, “High peak power hybrid MOPA laser with tunable pulse repetition frequency and pulse duration,” Appl. Opt. 56(12), 3457–3461 (2017).
    [Crossref] [PubMed]
  24. M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Active pulse shaping for end-pumped Nd:YVO4 amplifier with high gain,” Opt. Lett. 42(6), 1051–1054 (2017).
    [Crossref] [PubMed]
  25. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  26. S. Yılmaz, P. Elahi, H. Kalaycıoğlu, and F. Ö. Ilday, “Amplified spontaneous emission in high-power burst-mode fiber lasers,” J. Opt. Soc. Am. B 32(12), 2462–2466 (2015).
    [Crossref]
  27. H. Kalaycıoğlu, Ö. Akçaalan, S. Yavaş, Y. B. Eldeniz, and F. Ö. Ilday, “Burst-mode Yb-doped fiber amplifier system optimized for low-repetition-rate operation,” J. Opt. Soc. Am. B 32(5), 900–906 (2015).
    [Crossref]
  28. X. Shen, H. Zhang, H. Hao, D. Li, P. Yan, and M. Gong, “Self-phase modulation of nanosecond pulses in fiber amplifiers with gain saturation,” Opt. Express 24(5), 4382–4390 (2016).
    [Crossref]

2017 (2)

2016 (3)

X. Shen, H. Zhang, H. Hao, D. Li, P. Yan, and M. Gong, “Self-phase modulation of nanosecond pulses in fiber amplifiers with gain saturation,” Opt. Express 24(5), 4382–4390 (2016).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52(8), 1–10 (2016).
[Crossref]

2015 (3)

2014 (3)

2013 (1)

2012 (5)

2011 (2)

2010 (1)

T. Liu, J. Wang, G. I. Petrov, V. V. Yakovlev, and H. F. Zhang, “Photoacoustic generation by multiple picosecond pulse excitation,” Med. Phys. 37(4), 1518–1521 (2010).
[Crossref] [PubMed]

2009 (2)

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2(4), 042501 (2009).
[Crossref]

N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Opt. 48(4), B23–B31 (2009).
[Crossref] [PubMed]

2007 (1)

I. Agapov, G. A. Blair, and M Woodley, “Beam emittance measurement with laser wire scanners in the International Linear Collider beam delivery system,” Phy. Rev. Spec. Top. 10(11), 112801 (2007).

2000 (2)

J. Ehlert, H. Stiel, and K. Teucher, “A numerical solver for rate equations and photon transport equations in nonlinear laser spectroscopy,” Comput. Phys. Commun. 124(2), 330–339 (2000).
[Crossref]

P. Wu, W. R. Lempert, and R. B. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundarylayer interaction,” AIAA J. 38(4), 672–679 (2000).
[Crossref]

Agapov, I.

I. Agapov, G. A. Blair, and M Woodley, “Beam emittance measurement with laser wire scanners in the International Linear Collider beam delivery system,” Phy. Rev. Spec. Top. 10(11), 112801 (2007).

Akçaalan, Ö.

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Blair, G. A.

I. Agapov, G. A. Blair, and M Woodley, “Beam emittance measurement with laser wire scanners in the International Linear Collider beam delivery system,” Phy. Rev. Spec. Top. 10(11), 112801 (2007).

Breitkopf, S.

Cao, X.

Çetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Che, Y.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2(4), 042501 (2009).
[Crossref]

Danczyk, S. A.

Drescher, M.

Düsterer, S.

Efe, M.

Ehlert, J.

J. Ehlert, H. Stiel, and K. Teucher, “A numerical solver for rate equations and photon transport equations in nonlinear laser spectroscopy,” Comput. Phys. Commun. 124(2), 330–339 (2000).
[Crossref]

Eken, K.

Elahi, P.

Eldeniz, Y. B.

Faatz, B.

Feldhaus, J.

Fu, X.

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Active pulse shaping for end-pumped Nd:YVO4 amplifier with high gain,” Opt. Lett. 42(6), 1051–1054 (2017).
[Crossref] [PubMed]

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52(8), 1–10 (2016).
[Crossref]

Fuest, F.

M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B 115(2), 197–213 (2014).
[Crossref]

Gong, M.

Gord, J. R.

Gottschall, T.

Gürel, K.

Hao, H.

Hein, J.

Holzwarth, R.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Hu, Z.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2(4), 042501 (2009).
[Crossref]

Ilday, F. Ö.

Jauregui, C.

Ji, E.

Jiang, N.

Kahle, M.

Kalaycioglu, H.

Kaluza, M. C.

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Klenke, A.

Klöpfel, D.

Körner, J.

Lempert, W. R.

N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Opt. 48(4), B23–B31 (2009).
[Crossref] [PubMed]

P. Wu, W. R. Lempert, and R. B. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundarylayer interaction,” AIAA J. 38(4), 672–679 (2000).
[Crossref]

Li, D.

Liebetrau, H.

Limpert, J.

Liu, B.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2(4), 042501 (2009).
[Crossref]

Liu, Q.

Liu, T.

T. Liu, J. Wang, G. I. Petrov, V. V. Yakovlev, and H. F. Zhang, “Photoacoustic generation by multiple picosecond pulse excitation,” Med. Phys. 37(4), 1518–1521 (2010).
[Crossref] [PubMed]

Liu, Z.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2(4), 042501 (2009).
[Crossref]

Loeser, M.

Mance, J. G.

McManus, T. A.

M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B 115(2), 197–213 (2014).
[Crossref]

Meyer, T. R.

Miles, R. B.

P. Wu, W. R. Lempert, and R. B. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundarylayer interaction,” AIAA J. 38(4), 672–679 (2000).
[Crossref]

Miller, J. D.

Murakami, M.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2(4), 042501 (2009).
[Crossref]

Nie, M.

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Otto, H. J.

Papageorge, M. J.

M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B 115(2), 197–213 (2014).
[Crossref]

Petelin, J.

Petkovšek, R.

Petrov, G. I.

T. Liu, J. Wang, G. I. Petrov, V. V. Yakovlev, and H. F. Zhang, “Photoacoustic generation by multiple picosecond pulse excitation,” Med. Phys. 37(4), 1518–1521 (2010).
[Crossref] [PubMed]

Podobnik, B.

Prandolini, M. J.

Riedel, R.

Rossbach, J.

Roy, S.

Sandner, W.

Schramm, U.

Schreiber, S.

Schulz, M.

Seifert, R.

Shen, X.

Siebold, M.

Slipchenko, M. N.

Stiel, H.

J. Ehlert, H. Stiel, and K. Teucher, “A numerical solver for rate equations and photon transport equations in nonlinear laser spectroscopy,” Comput. Phys. Commun. 124(2), 330–339 (2000).
[Crossref]

Sutton, J. A.

M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B 115(2), 197–213 (2014).
[Crossref]

Tavella, F.

Templin, H. I.

Teucher, K.

J. Ehlert, H. Stiel, and K. Teucher, “A numerical solver for rate equations and photon transport equations in nonlinear laser spectroscopy,” Comput. Phys. Commun. 124(2), 330–339 (2000).
[Crossref]

Tünnermann, A.

Uehara, Y.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2(4), 042501 (2009).
[Crossref]

Wang, J.

T. Liu, J. Wang, G. I. Petrov, V. V. Yakovlev, and H. F. Zhang, “Photoacoustic generation by multiple picosecond pulse excitation,” Med. Phys. 37(4), 1518–1521 (2010).
[Crossref] [PubMed]

Webster, M. C.

Will, I.

Willner, A.

Woodley, M

I. Agapov, G. A. Blair, and M Woodley, “Beam emittance measurement with laser wire scanners in the International Linear Collider beam delivery system,” Phy. Rev. Spec. Top. 10(11), 112801 (2007).

Wu, P.

P. Wu, W. R. Lempert, and R. B. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundarylayer interaction,” AIAA J. 38(4), 672–679 (2000).
[Crossref]

Xing, F.

Yakovlev, V. V.

T. Liu, J. Wang, G. I. Petrov, V. V. Yakovlev, and H. F. Zhang, “Photoacoustic generation by multiple picosecond pulse excitation,” Med. Phys. 37(4), 1518–1521 (2010).
[Crossref] [PubMed]

Yan, P.

Yavas, S.

Yilmaz, S.

Zhang, H.

Zhang, H. F.

T. Liu, J. Wang, G. I. Petrov, V. V. Yakovlev, and H. F. Zhang, “Photoacoustic generation by multiple picosecond pulse excitation,” Med. Phys. 37(4), 1518–1521 (2010).
[Crossref] [PubMed]

AIAA J. (1)

P. Wu, W. R. Lempert, and R. B. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundarylayer interaction,” AIAA J. 38(4), 672–679 (2000).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

M. J. Papageorge, T. A. McManus, F. Fuest, and J. A. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B 115(2), 197–213 (2014).
[Crossref]

Appl. Phys. Express (1)

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Express 2(4), 042501 (2009).
[Crossref]

Comput. Phys. Commun. (1)

J. Ehlert, H. Stiel, and K. Teucher, “A numerical solver for rate equations and photon transport equations in nonlinear laser spectroscopy,” Comput. Phys. Commun. 124(2), 330–339 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52(8), 1–10 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

Med. Phys. (1)

T. Liu, J. Wang, G. I. Petrov, V. V. Yakovlev, and H. F. Zhang, “Photoacoustic generation by multiple picosecond pulse excitation,” Med. Phys. 37(4), 1518–1521 (2010).
[Crossref] [PubMed]

Nature (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (8)

P. Elahi, S. Yılmaz, Y. B. Eldeniz, and F. Ö. Ilday, “Generation of picosecond pulses directly from a 100 W, burst-mode, doping-managed Yb-doped fiber amplifier,” Opt. Lett. 39(2), 236–239 (2014).
[Crossref] [PubMed]

M. N. Slipchenko, J. D. Miller, S. Roy, T. R. Meyer, J. G. Mance, and J. R. Gord, “100 kHz, 100 ms, 400 J burst-mode laser with dual-wavelength diode-pumped amplifiers,” Opt. Lett. 39(16), 4735–4738 (2014).
[Crossref] [PubMed]

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Active pulse shaping for end-pumped Nd:YVO4 amplifier with high gain,” Opt. Lett. 42(6), 1051–1054 (2017).
[Crossref] [PubMed]

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37(8), 1346–1348 (2012).
[Crossref] [PubMed]

H. Kalaycıoğlu, Y. B. Eldeniz, Ö. Akçaalan, S. Yavaş, K. Gürel, M. Efe, and F. Ö. Ilday, “1 mJ pulse bursts from a Yb-doped fiber amplifier,” Opt. Lett. 37(13), 2586–2588 (2012).
[Crossref] [PubMed]

S. Breitkopf, A. Klenke, T. Gottschall, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett. 37(24), 5169–5171 (2012).
[Crossref] [PubMed]

S. Breitkopf, A. Klenke, T. Gottschall, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett. 37(24), 5169–5171 (2012).
[Crossref] [PubMed]

H. Kalaycıoğlu, K. Eken, and F. Ö. Ilday, “Fiber amplification of pulse bursts up to 20 μJ pulse energy at 1 kHz repetition rate,” Opt. Lett. 36(17), 3383–3385 (2011).
[Crossref] [PubMed]

Phy. Rev. Spec. Top. (1)

I. Agapov, G. A. Blair, and M Woodley, “Beam emittance measurement with laser wire scanners in the International Linear Collider beam delivery system,” Phy. Rev. Spec. Top. 10(11), 112801 (2007).

Other (3)

A. E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986).

J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods (Springer, 1995).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Detailed pulsed model cycle.
Fig. 2
Fig. 2 Flow diagram of the iterative process.
Fig. 3
Fig. 3 Schematic diagram of the master oscillator setup. AWG: arbitrary waveform generator, EOM: electro-optical modulator, OI: optical isolator, WDM: wavelength division multiplex, YDF: Ytterbium doped fiber, BPF: band pass filter (8 nm).
Fig. 4
Fig. 4 Evolution of the pulse shape during the iteration process. (Inset: the spectrum of the intra-burst pulses after the two fiber amplifiers.)
Fig. 5
Fig. 5 Input and output burst shapes consisting of 40 pulses at inter-burst repetition rate of 100 kHz for the solid-state MOPA system. (a), (c), (e), (g): input burst shapes for concave, figure of “M”, double rectangular and triangle shapes. (b), (d), (f), (h): output burst shapes for concave, figure of “M”, double rectangular and triangle shapes.
Fig. 6
Fig. 6 Input and output burst shapes consisting of 20 pulses at inter-burst repetition rate of 40 kHz for a flat-top output burst.
Fig. 7
Fig. 7 The spectrogram of the MOPA output.
Fig. 8
Fig. 8 The stability of the input and output power for the MOPA system at inter-burst repetition rate of 100 kHz with 40 pulses in the burst. (Inset: the beam quality of the output laser beam).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I in ( t )= I out ( t )/ G( t ) ,
G( t )=1+( G i 1 )exp[ J out ( t )/ J sat ],
J out ( t )= T dt I out ( t ) .
J sat = hν/ σ es ,
J out ( t )= J sat ln{ 1+ G i [ exp( J in ( t )/ J sat )1 ] }.
G e =G( t p ).
G( t r )= G 0 1exp( t r /τ ) G e exp( t r /τ ) ,
t r =1/f t p ,
Δν= 1 Δt ln( 1/2 ) π = 0.44127 Δt

Metrics